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Preface

The international conference “Neuroinformatics” is the annual multidisciplinary
scientific forum dedicated to the theory and applications of artificial neural net-
works, the problems of neuroscience and biophysics systems, adaptive behavior,
and cognitive studies.

The scope of the conference is wide, ranging from theory of artificial neural
networks, machine learning algorithms, and evolutionary programming to neu-
roimaging and neurobiology.

Main topics of the conference cover theoretical and applied research from the
following fields:

neurobiology and neurobionics: cognitive studies, neural excitability, cellular
mechanisms, cognition and behavior, learning and memory, motivation and emo-
tion, bioinformatics, computation, modeling, and simulation;
neural networks: neurocomputing and learning, architectures, biological founda-
tions, computational neuroscience, neurodynamics, neuroinformatics, deep learning
networks;
machine learning: pattern recognition, Bayesian networks, kernel methods, gen-
erative models, information theoretic learning, reinforcement learning, relational
learning, dynamical models, classification and clustering algorithms, self-
organizing systems;
applications: medicine, signal processing, control, simulation, robotics, hardware
implementations, security, finance and business, data mining, natural language
processing, image processing, and computer vision.

A total of about 90 reports were presented at the Neuroinformatics-2017
Conference. Of these, 28 papers were selected for which articles were prepared and
published in this volume.

Boris Kryzhanovsky
Witali Dunin-Barkowski

Vladimir Redko
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The Analysis of Regularization in Deep Neural
Networks Using Metagraph Approach

Yuriy S. Fedorenko, Yuriy E. Gapanyuk(&),
and Svetlana V. Minakova

Bauman Moscow State Technical University,
Baumanskaya 2-ya, 5, 105005 Moscow, Russia

{fedyura11235,morgana_93}@mail.ru, gapyu@bmstu.ru

Abstract. The article deals with the overfitting problem in deep neural net-
works. Finding the model with proper number of parameters matching the
simulated process can be a difficult task. There are a range of recommendations
how to chose the number of neurons in hidden layers, but most of them don’t
always work well in practice. As a result, neural networks work in underfitting
or overfitting regime. Therefore in practice complex model is usually chosen and
regularization strategies are applied. In this paper, the main regularization
techniques for multilayer perceptrons including early stopping and dropout are
discussed. Regularization representation using metagraph approach is described.
In the creation mode, the metagraph representation of the neural network is
created using metagraph agents. In the training mode, the training metagraph is
created. Thus, different regularization strategies may be embedded into the
training algorithm. The special metagraph agent for dropout strategy is devel-
oped. Comparison of different regularization techniques is conducted on Cov-
erType dataset. Results of experiments are analyzed. Advantages of early
stopping and dropout regularization strategies are discussed.

Keywords: Deep neural network � Regularization � Overfitting � Early
stopping � Dropout � Metagraph � Metagraph agent

1 Introduction

The choice of deep models has an essential advantage: it often means a priori
proposition that the function, obtained after the models training, can be presented as a
composition of simple functions [1]. But at the same time it’s important that the
number of trained parameters (model complexity) correspond to the solving task. If the
model complexity is too low, neural network can’t be trained to necessary function (for
example, a single layer perceptron can’t solve the XOR problem). If the model com-
plexity is too high, the model will be trained not only to necessary dependencies but
also to noise. It’s clear that in practice it is quite difficult to choose a proper size of
model. Therefore, the initial model complexity is usually rather high and you need to
use regularization techniques to prevent overfitting.

© Springer International Publishing AG 2018
B. Kryzhanovsky et al. (eds.), Advances in Neural Computation, Machine Learning,
and Cognitive Research, Studies in Computational Intelligence 736,
DOI 10.1007/978-3-319-66604-4_1



2 Description of the Used Neural Network

For researching regularization strategies we apply multilayer perceptron with three
hidden layers. The output and hidden layers of neural network have softmax and relu
activation functions accordingly. Traditionally the optimal parameters of model are
searched by minimization of negative log-likelihood loss function [2]. Mini-batch SGD
with gradient calculation by backpropagation [3] was used for model training. The
initial number of neurons in each hidden layer is selected in accordance with the
requirement of maintaining balance of the networks width and depth. This allows
neural network to reach optimal performance [4]. A smooth reducing of data dimen-
sionality from n inputs to m outputs could be provided using the following expression:

m
hk

� hk
hk�1

� hk�1

hk�2
� . . .� h2

h1
� h1

n
;

Where hk – is a number of neurons in k-th hidden layer of network. The minimum
initial number of neurons of the last hidden layer of the network is hkmin ¼ m.

The initial values of weights are of particular importance, because they influence
not only on algorithm convergence but also on it generalization ability [5]. In this
research the initial weights are sampled from the uniform distribution with limits:

Wi;j � U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

hi þ hj
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

hi þ hj

svuut

0

@

1

A;

where hi; hj is a number of units in (i-1) and i-th layer accordingly.

3 Regularization of Deep Neural Networks

Usually training of the deep model is in three main scenarios:

• 1. The model cannot handle real data, which corresponds to underfitting;
• 2. Model handles real data correctly;
• 3. Model handles not only relevant data, but also many other processes – noises. It’s

the overfitting regime.

In practice, it is often difficult to find model with a number of parameters, providing
the second scenario. Therefore, to obtain the necessary mode, you need to train a
complex model and apply regularization to it.

One of the most well-known regularization strategies is L2 regularization in which
the sum of squares of parameters values is added to the loss function. When using L2

regularization it is observed the greatest reducing of the components from which value
of objective function depends less significantly [1]. Also, there is a L1 regularization in
which the sum of modules of parameters values is added to the loss function. It leads to
the sparsity of the coefficients in the model. Therefore, this strategy is used by some
feature selection algorithms [6].

4 Y.S. Fedorenko et al.



Recently the early stopping regularization method has become popular. Essentially,
when using this method, the model training is stopped when validation set error begins
to increase. It may be shown [7] that for many loss functions with simple gradient
descent optimization early stopping is equivalent to L2 regularization, but it automat-
ically determines the correct amount of regularization while weight decay requires
many training experiments to select necessary coefficient. So, the early stopping
reduces computational cost of training procedure.

Dropout is another one regularization strategy. The using of ensemble of models
often leads to improvement of quality of machine learning algorithms. But at the same
time the simultaneous training of several models may be computationally intensive.
Dropout [8] trains the ensemble of neural networks in a computationally inexpensive
way. When using bagging k different models are trained on k different datasets con-
structed from the original training set. When using dropout, the randomly sampled
binary mask that switches off part of the neurons is applied for each input example
(mask is formed independently for each example). The probability of including neuron
in this mask is a model hyperparameter.

4 Regularization Representation Using Metagraph Approach

In our paper [9] the metagraph representation of perceptron neural network was pro-
posed. The distinguishing feature of this approach is the ability to change the structure of
neural network during creation or training using metagraph agents. Metagraph is a kind
of complex network model: MG ¼ V ;MV ;Eh i, where MG – metagraph; V – set of
metagraph vertices; MV – set of metagraph metavertices; E – set of metagraph edges.
From the general system theory point of view metavertex is a special case of mani-
festation of emergence principle which means that metavertex with its private attributes
and connections became whole that cannot be separated into its component parts.

For metagraph transformation the metagraph agents are used. There are two kinds
of metagraph agents: the metagraph function agent agF and the metagraph rule agent
agR. The metagraph function agent serves as function with input and output parameter
in form of metagraph: agF ¼ MGIN ; MGOUT ; ASTh i, where agF – metagraph function
agent; MGIN – input parameter metagraph; MGOUT – output parameter metagraph;
AST – abstract syntax tree of metagraph function agent in form of metagraph.

The metagraph rule agent uses rule-based approach: agR ¼ MG; R; AGST
� �

;R ¼
rif g; ri : MGj ! OPMG; where agR – metagraph rule agent; MG – working meta-

graph, a metagraph on the basis of which the rules of agent are performed; R – set of
rules ri; AG

ST
– start condition (metagraph fragment for start rule check or start rule);

MGj – a metagraph fragment on the basis of which the rule is performed; OPMG
– set of

actions performed on metagraph.
In this paper, we also use the “active metagraph” concept, which means combi-

nation of data metagraph with attached metagraph agent.
The structure of metagraph transformations is presented at Fig. 1.

The Analysis of Regularization 5



In the creation mode, the metagraph representation of neural network is created
using metagraph agents. According to modelling tasks the complexity of created
neuron structure can be various. In the simplest case, the neuron may be considered as a
node with activation function. In more complex cases the neuron may be represented as
a nested metagraph, which contains metavertices with complex activation function
addressing neuron structure. Thus, in the end of creation mode the “Neural Network”
(NN) structure is created. In case of deep network this is a flat graph of nodes (neurons)
connected with edges. But node may be represented as complex metavertex and
neurons of each layer of network may also be combined into metavertex.

In the training mode, the “Training Metagraph” (TM) is created. TM structure is
isomorphic to the NN structure. For each node NNn

i in NN the corresponding
metavertex TMn

i in TM is created. And for each edge NNe
i in NN the corresponding

edge TMe
i in TM is created. For the TM creation, the agent agNN! TM is used. This

agent is kind of function agent.
TM may be considered as an active metagraph with metagraph agent agTM bound to

TM graph structure. Agent agTM implements a particular training algorithm. As a result
of training the changed weights are written to the TMn

i :
Agent agTM is also created with the agNN!TM agent. Different regularization

strategies could be embedded into the agTM training algorithm.
For the single NN we can create several TM with different regularization strategies.

For example, TML1 means that agNN!TM agent creates TM graph structure with agTM
agent that implements training algorithm with L1 regularization. Similarly, TML2

stands for L2 regularization and TMES stands for early stopping.
It should be noted that neither of these regularization strategies require changing the

network structure during the training process. But in case of dropout we have to change
the network structure. In this case, the agent agNN DROPOUT is used. This agent is kind
of metagraph rule agent.

Using agNN DROPOUT metagraph agent we can implement different dropout
strategies. Applying different agiNN DROPOUT agents to the original NN structure we
resulting the set of modified NNDROPOUT

i network structures. For each NNDROPOUT
i the

corresponding TMDROPOUT is created for network training.
At Fig. 1 the transformation with structure changing is shown with dashed arrow,

the transformation without structure changing is shown with solid arrow.
Thus, the metagraph approach allows representing neural network training with

different regularization strategies either with or without network structure transformation.

Fig. 1. The structure of metagraph transformations

6 Y.S. Fedorenko et al.



5 Experiments

The experimental analysis was conducted on CoverType dataset [10]. It contains
15,120 examples in training set (11,340 examples for training set and 3,780 for vali-
dation set) and 565,892 examples in test set. Series of experiments with L1, L2 regu-
larization, early stopping and dropout was conducted. The results of experiments are
presented at Fig. 2 and Table 1. On each graph the loss function value on training and
test set is presented. The dashed lines correspond to experiments with early stopping.
The results of experiments show that L1 regularization works slightly worse than L2

regularization. It’s not surprising because L1 regularization leads to sparse represen-
tation sacrificed prediction quality. L2 regularization aims to search better solution, but
it does not aim to provide sparse representation or model simplicity. Using early
stopping without regularization allows obtaining reasonably good result without
computationally expensive selection of parameters. Dropout shows the best results with
less training epoch than L2 regularization. So with dropout network is trained better and
faster than when using other methods.
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Fig. 2. Training perceptron with three hidden layers on CoverType dataset with different
regularization strategies

Table 1. The best error rate of classification for different regularization techniques

Dataset/Regularization type Without regularization L1 L2 Dropout

CoverType 24.84% 24.59% 24.58% 22.39%
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6 Conclusion

In real tasks the models with relatively large number of parameters are usually chosen
and regularization techniques are used to reduce overfitting in these models. Along
with L1 and L2 regularizations there are more effective techniques such as early
stopping and dropout. Early stopping automatically determines the correct value of
regularization coefficient, so it less computationally expensive than L2 regularization.
Experimental results show that the most effective regularization strategy is dropout. It
reduces overall training time of the model as well as error rate.
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Abstract. In their previous studies, the authors proposed to use the approach
associated with adding noise to the training set when training multilayer percep‐
tron type neural networks to solve inverse problems. For a model inverse problem
it was shown that this allows increasing the resilience of neural network solution
to noise in the input data with different distributions and various intensity of noise.
In the present study, the observed effect was confirmed on the data of the problem
of magnetotelluric sounding. Also, maximum noise resilience (maximum quality
of the solution) is generally achieved when the level of the noise in the training
data set coincides with the level of noise during network application (in the test
dataset). Thus, increasing noise resilience of a network when noise is added during
its training is associated with the fundamental properties of multilayer perceptron
neural networks and not with the properties of the data. So this method can be
used solving other multi-parameter inverse problems.

Keywords: Neural networks · Inverse problems · Noise resilience · Training with
noise · Regularization

1 Introduction

The inverse problems (IPs) represent a very important class of problems. Almost any
task of indirect measurements can be attributed to them. Inverse problems include
multiple problems from the areas of geophysics [1], spectroscopy [2], various types of
tomography [3], and many others.

Among them is also the IP of magnetotelluric sounding (MTS), whose purpose is
the restoration of the distribution of electrical conductivity in the thick of the earth by
the values of the components of electromagnetic fields induced by natural sources,
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measured on the surface [4]. Due to the shielding of the underlying layers by the over‐
lying ones, the contribution of the more deep-lying layers to the changes in the param‐
eters of the measured field is smaller.

In the general case, such problems do have no analytical solutions. So usually they
are solved by optimization methods based on the repeated solution of the direct problem
with the minimization of the residual in the space of observable quantities [1], or by
matrix methods using regularization by Tikhonov [5].

Optimization methods have some disadvantages such as high computational cost,
the need for good first approximation and, most importantly, the need for a correct model
for solving the direct problem. For methods based on regularization, the main problem
is the necessity of choosing the regularization parameter. In this paper we consider
artificial neural networks (ANN) as an alternative method of solution of various IPs [6–
8] free from these drawbacks.

Another feature of IPs is the possible instability of the solution. Therefore, if the
input data contains noise, it reduces the effectiveness of the IP solution methods, both
traditional and neural network ones. Practical IPs almost always contain noise due to
measurement uncertainty. Despite the fact that the neural network itself is resistant to
noise, this is often insufficient when solving inverse problems, because the incorrectness
of the problem turns out to be more significant than the ability of the network to overcome
it. Development of approaches to increase the resilience of IP solution methods to noise
is an urgent task.

The method of adding noise to the input data of a neural network when training has
been known for a long time. In [9, 10] it was shown to increase the generalization ability
of the network. Most often it is considered as one of the ways to avoid neural network
overtraining [11–13]. In [14] it is shown that using this method is equivalent to regula‐
rization by Tikhonov. In [15] it was demonstrated that using this method also reduced
the network training time. Currently, this method is also used when training deep neural
networks [16].

One of the authors has previously used this method with neural network solution of
IPs of laser spectroscopy with a small number of determined parameters (up to 3) [17–
19]. It has been shown that adding noise when training neural networks allowed one to
improve the resilience of the IP solution to the noise in the input data; however, the
effectiveness of this technique heavily depends on the specifics of the particular task.

The present study is a direct continuation of the study [20], which dealt with the
application of the method of adding noise to the training of a perceptron to enhance the
resilience of neural network solutions to noise in the input data for a strongly non-linear
multi-parameter model IP, where the dependence of the “observable data” from the
“parameters” was explicitly set in the form of a polynomial dependence. This IP by its
external manifestations is a simplified model analogue of the IP of MTS [4, 21, 22]. In
[20], we confirmed the findings of the previous studies on the acceleration of ANN
learning and on improving their resilience to noise, and we determined the optimal
parameters of this approach.

The aim of the present study was to check the listed effects on the data of the IP of
MTS.
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2 The Initial Data and the Statement of the IP of MTS

The study was carried out on simulated data obtained through numerical solution of the
direct two-dimensional problem of MTS [21]. The calculated “observable values” are
Ex, Ey, Hx, Hy components of the induced electromagnetic fields at various frequencies
and in various locations (pickets) on the surface of the earth.

The calculation largely depends on the scheme of the parameterization, i.e. on the
way of describing the distribution of electrical conductivity (EC) of the underground
area. In the present study we use the data obtained for the most general parameterization
scheme G0, which describes the distribution of EC by the values in the corners of rectan‐
gular blocks arranged in layers (nodes of a grid), with subsequent interpolation between
nodes. The dataset consisted of 12,000 patterns, obtained for random combinations of
EC in different nodes in the range from 10−4 to 1 Sm/m.

The described data array was used to solve the IP of determining the values of EC
in the nodes (output dimensionality of the problem NO = 336 parameters) by the field
values (input dimensionality of the problem NI = 4 field components × 13 frequen‐
cies × 126 pickets = 6552 input features). The solution of this IP is connected with
considerable difficulties associated with the large input and output dimensionality of the
data, which involves the use of special approaches to its reduction.

The study was conducted for nodes lying vertically one above the other.

3 Description of the Noise

Two types of noise were considered: additive and multiplicative, and two kinds of
statistics: uniform noise (uniform distribution) and Gaussian noise (normal distribution).
The value of each input feature xi was transformed in the following way:

x
agn

i
= xi + norm_inv(random,𝜇 = 0, 𝜎 = noise_level) ⋅ max(xi)

xaun

i
= xi ⋅ (1 − 2 ⋅ random) ⋅ noise_level ⋅ max(xi)

x
mgn

i
= xi ⋅ (1 + norm_inv(random,𝜇 = 0, 𝜎 = noise_level))

xmun

i
= xi ⋅ (1 + (1 − 2 ⋅ random) ⋅ noise_level)

for additive Gaussian (agn), additive uniform (aun), multiplicative Gaussian (mgn) and
multiplicative uniform (mun) noise, respectively.

Here, random is a random value in the range from 0 to 1, norm_inv function returns
the inverse normal distribution, max(xi) is the maximum value of a given feature over
all patterns, noise_level is the level of noise (considered values: 1%, 3%, 5%, 10%, 20%).

To generate noisy data sets (with different types and various levels of noise), based
on each pattern from the source sets, 10 samples with different realizations of noise were
created. The original datasets (without noise) contained 3000 patterns in the training set,
6000 patterns in the validation set, and 3000 patterns in the test dataset. Thus, each of
the noisy training sets and each of the noisy test sets contained 30,000 patterns. No noise
was introduced into the validation set (see below).
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4 The Use of Artificial Neural Networks

ANNs were used in the following way. Training was performed on the training set of
data. To prevent overtraining, the validation set was used (the training was stopped after
500 epochs with no average error reduction on the validation set). An independent eval‐
uation of the results was carried out using test sets.

In our previous study [20] it was shown that the best training option, which demon‐
strated greater accuracy and less computational cost, was the variant in which the training
set contained noise, but the validation set contained no noise. This option was also used
in the present study.

To reduce the output data dimensionality, autonomous determination of the param‐
eters [21] was used, where each parameter was determined separately from the rest. To
reduce the input data dimensionality, we used selection of significant input features [22].
Thus, each of the ANN had a single output and a number of inputs, determined as the
result of selection.

The problem was solved by perceptrons with 3 hidden layers containing 24, 16, 8
neurons. Sigmoidal transfer function was used in the hidden layers, and linear in the
output layer. For each determined parameter, 5 ANNs were trained with various initi‐
alizations of the weights; performance indexes of these 5 ANNs were averaged.

5 Results

Neural networks trained on data with noise of a certain level and statistics were applied
to test data sets with various levels of noise of the same statistics.

Figure 1 shows the dependence of the solution quality (coefficient of multiple deter‐
mination R2) on the level of the noise in the test data set for networks trained on training
sets with various noise levels, for the determined parameter y17 (upper layer of the grid),
for various types and levels of the noise. Here one can see that the higher is the level of
noise in the training dataset, the worse the network operates on noiseless data, but the
slower it degrades with increasing noise level. For the other considered parameters, the
nature of the dependency is completely similar.

Figure 2 presents the dependence of the solution quality (coefficient of multiple
determination R2) on the level of the noise in the training dataset for different noise levels
in the test dataset, for the determined parameter y83 (third layer of the grid), for various
types and levels of the noise. The character of the dependences shows that for each level
of noise in the test data set, there is its optimal ANN, as a rule, the one trained with noise
of the same level as the one contained in the considered test set.

As the effect of increasing noise resilience of neural network solutions of IP with
adding noise to the training set was observed for two different types of IPs, we can
conclude that this effect is connected with the fundamental properties of the perceptron,
rather than with the properties of the data.
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Fig. 1. The dependence of the solution quality (coefficient of multiple determination R2) on the
level of noise in the test data set for networks trained on training sets with various noise levels.
Determined parameter y17. Additive Gaussian (agn), additive uniform (aun), multiplicative
Gaussian (mgn), multiplicative uniform (mun) noise. Various curves correspond to the specified
noise level in percent in the training set while training the networks.
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Fig. 2. The dependence of the solution quality (coefficient of multiple determination R2) on the
level of noise in the training data set for various noise levels in the test data set. Determined
parameter y83. Additive Gaussian (agn), additive uniform (aun), multiplicative Gaussian (mgn),
multiplicative uniform (mun) noise. Various curves correspond to the specified noise level in
percent in the test dataset.

6 Conclusion

In this study, the existence of the effect of increasing noise resilience of a neural network
solution of the inverse problem to noise in the input data with adding noise to the training
set when training neural networks, has been confirmed on the data of IP of magnetotel‐
luric sounding. The effect was observed for different distributions and at various inten‐
sities of the noise.

As the results of the study, we can draw the following conclusions:
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1. The higher is the level of noise in the training data set, the worse the network operates
on data without noise, but the more slowly it degrades with increasing noise level
in the test data set.

2. Maximum noise resilience (maximum quality of the solution) is generally achieved
when the level of the noise in the training data set coincides with the level of noise
during network application (in the test dataset).

3. The observed effect is associated with the fundamental properties of multilayer
perceptron neural networks and not with the properties of the data. So this method
can be used solving other multi-parameter inverse problems.

Acknowledgement. The authors would like to thank E.A. Obornev, I.E. Obornev, and M.I.
Shimelevich for providing the data on which this study has been performed.
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Abstract. A new approach to the construction of multilayer neural net-
work approximate solutions for evolutionary partial differential equa-
tions is considered. The approach is based on the application of the
recurrence relations of the Euler, Runge-Kutta, etc. methods to variable
length intervals. The resulting neural-like structure can be considered as
a generalization of a feedforward multilayer network or a recurrent Hop-
field network. This analogy makes it possible to apply known methods
to the refinement of the obtained solution, for example, the backpropa-
gation algorithm. Earlier, a similar approach has been successfully used
by the authors in the case of ordinary differential equations. Compu-
tational experiments are performed on one test problem for the one-
dimensional (in terms of spatial variables) heat equation. Explicit for-
mulas are derived for the dependence of the resulting neural network
output on the number of layers. It was found that the error tends to zero
with an increasing number of layers, even without the use of the network
learning.

Keywords: Partial differential equation · Approximate solution · Mul-
tilayer solution · Neural network · One-dimensional heat equation

1 Introduction

Let us consider an evolution equation of the form

∂

∂t
u(x, t) = F (u(x, t), x, t), (1)

where u(x, t) is a sufficiently smooth function with respect to the variables
(x, t) ∈ Rp × R+ and F is some linear mapping, for example, a differential
operator. It is assumed that the required solution u(x, t) satisfies the initial con-
dition u(x, 0) = ϕ(x). Other additional conditions, such as belonging to a certain
functional space, boundary conditions, etc., can be omitted in the context we are
considering. Discussion of these conditions makes sense in solving a particular
problem. We construct approximate solutions of problem (1) as a function of
time (with conditionally fixed x) for the interval [0, t] with variable right end.
For this, we use the recursive scheme of the implicit Euler method of the form

uk+1(x) = uk(x) + hF (uk+1(x), x, tk+1), (2)
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with a constant step h = t/n, where n is called the number of layers. You can
also use other methods, such as the Runge-Kutta method. As an approximation
to the solution, we propose to use un(x, t). We denote by uk(x) the value of
the solution on the layer with number k (at tk = kt/n) and obtain a series of
equations for approximations uk(x) = u(x, tk)

1
h

uk+1(x) − F (uk+1(x), x, tk) =
1
h

uk(x), k = 0, . . . , n − 1;

u0(x) = u(x, 0) = ϕ(x).

To solve these equations, one can apply any suitable method, for example,
the Newton method. As a result, we obtain a recurrence relation of the form
uk+1(x, t) = G(uk(x, t), x, tk+1) that can be interpreted as a procedure for the
transition from layer to layer of a neural-like structure. In this case, the similarity
with neural networks increases if the operator can be represented in integral
form G(u, x, t) =

∫
K(u, x, t, y, s)dyds. Thus, we obtain a neural network with

a continuum of neurons, similar to that considered in [17] for other problems.
The final neural structure can be considered as the generalization of multilayered
backpropagation networks or recurrence Hopfield networks [16]. Such an analogy
allows us to apply to the refinement of the resulting solution (an operator G or
a kernel K) known methods, for example, the back propagation algorithm.

In the case when the mapping F is representable in the form (u(x, t), x, t) =
Lu(x, t)+f(x, t), where L is some linear operator, for example, a linear differen-
tial operator with respect to the spatial variable x, we can proceed to the next
series of approximations

(
1
h

I − L)uk+1(x) =
1
h

uk(x) + fk+1(x), k = 0, . . . , n − 1. (3)

Here, I is an identity mapping and fk+1(x) = f(x, tk+1) is some known function.
The value u0(x) = ϕ(x) is still considered as a given. If λ = 1/h does not belong
to the spectrum of the operator L then the operator resolvent R = R(L) =
(L − 1

hI)−1 exist and approximations are given by formulas

u1(x) = − 1
h

Rϕ(x) − Rf1(x),

uk+1(x) = − 1
h

Ruk(x) − Rfk+1(x), k = 1, . . . , n − 1.

In the case where the resolvent can be represented in integral form, the result
can be interpreted as a neural network with a continuum of neurons and apply
the corresponding learning algorithms to refine the solution.

We will be interested in the case of an ordinary differential operator L on
the semiaxis, that is,

∂

∂t
u(x, t) = Lu(x, t), (4)

where (x, t) ∈ R+ × R+, L is a linear differential operator with respect to the
spatial variable x. As a boundary condition, we consider the boundedness of the
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solution at infinity. A series of recurrence relations takes the form

Luk+1(x) − 1
h

uk+1(x) = − 1
h

uk(x). (5)

The problem of constructing the resolvent for this case solved comprehensively.
This approach is illustrated using a simple model problem that has a known

analytical solution.

2 Model Problem

As an example, we consider the classical heat equation [1] in the dimensionless
form

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2
, (6)

where x ∈ R and t ∈ R+. We solve the initial-boundary value problem with a
piecewise-given initial condition

u(x, 0) = θ(x) =
{

1, x ≥ 0,
0, x < 0.

(7)

Function θ(x) is one of the typical activation functions widely used when the
neural networks applying. The linearity of the problem under consideration
makes it possible to reduce to this case any problem with an initial condition for
which the function u(x, 0) is representable as a neural network with one hidden
layer whose neurons have the activation function θ(x).

The solution will be sought among functions that are bounded at infinity.
Using the methods of [2], we will construct an approximate solution based on
the implicit Euler method [3] on the time interval with the variable right end [0, t]
(taking into account the initial condition (7)). Step h = t/N varies depending on
the selected number of iterations N . Applying the implicit Euler method with
respect to the time variable t we obtain a second-order linear equation with
respect to the variable x

u′′
n+1(x) − 1

h
un+1(x) = − 1

h
un(x), 0 ≤ n ≤ N.(4) (8)

Direct calculations showed that u1(x) =
{

1 − 1/2 exp(−x/
√

h), x ≥ 0;
1/2 exp(x/

√
h), x ≤ 0.

Let us derive recurrent formulas for solving an equation of the type (8). For
simplicity, we first make the change of variables. We denote z := x/

√
h, then the

Eq. (8) has the form
u′′
n+(z) − un+1(z) = −un(z), (9)

where u1(z) =
{

1 − 1/2 exp(−z), z ≥ 0;
1/2 exp(z), z ≤ 0.

Taking into account the properties of

a second-order linear equation of the form (9), in general form, it is necessary
to write out the solution for the following problem

y′′(z) − y(z) = A + P+
m(z) exp(z) + P−

m(z) exp(−z). (10)
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Here, P+
m(z) =

∑m
i=0 p+i zi, P−

m(z) =
∑m

i=0 p−
i zi are polynomials of degree m.

Let us find a particular solution for the term P+
m(z) exp(z). Since the number

λ = 1 is a root of k = 1 multiplicity of the characteristic polynomial χ(λ) =
λ2 −1 for Eq. (10), we seek a particular solution by the method of undetermined
coefficients in the form y∗(z) = zQ+

m(z) exp(z) = exp(z)
∑m

i=0 q+i zi+1.
We substitute the representation for the solution y∗(z) into Eq. (10) leaving

only the term P+
m(z) exp(z) and arrive at equality

(
exp(z)

m∑

i=0

q+i zi+1
)′′ − exp(z)

m∑

i=0

q+i zi+1 = exp(z)
m∑

i=0

p+i zi. (11)

After simplifications, we obtain the relations for the required coefficients q+i in
terms of the given p+i . From these relations it follows that

q+m =
p+m

2(m + 1)
; (12)

q+i =
p+i

2(i + 1)
− q+i+1

i + 2
2

, i = 0, . . . , m − 1. (13)

For the term P−
m(z) exp(−z) on the right-hand side of the equation, we similarly

have a representation for solving

y∗(z) = zQ−
m(z) exp(−z) = exp(−z)

m∑

i=0

q−
i zi+1. (14)

The method of undetermined coefficients leads to relations, analogous to
formulas (12)–(13).

3 Calculations

Using formula (13), we can easily calculate the approximate solution from rela-
tions (8) for any values N of the number of iterations. Note that the exact
solution of the problem (6)–(7) has the form

u(x, t) =
1
2

− 1√
π

∫ z

0

exp(−t2)dt. (15)

General form of solution obtained after the use of N iterations looks like

uN (x, t) =

⎧
⎨

⎩

1 − P+
N−1

(
x√
t/N

)
exp

( − x√
t/N

)
, x ≥ 0,

P−
N−1

(
x√
t/N

)
exp

(
x√
t/N

)
, x ≤ 0.

(16)

In Fig. 1, we can clearly evaluate the order of approximation of the method. The
graphs of errors for different values of the number of iterations and at different
instants of time are presented. We note that the order of the maximum error
of a particular solution for a fixed number of iterations does not depend on the
chosen time moment t.

Note that there is a tendency |uN (x, t) − u(x, t)| < 10−(1+[N/10]).
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Fig. 1. Error graph of the approximate solution of problem (6)–(7) obtained by (8) in
the case of x ∈ [−5; 5] and (a) N = 3; t = 0, 1, (b) N = 20, t = 0, 5, (c) N = 1000,
t = 20.

4 Conclusions

It should be noted that the above formulas should be considered as a direct oper-
ation of the neural network with initially given weights. If the received accuracy
is not enough, then you can apply the usual learning procedure (for example, the
error back propagation method). In this case, the numerical parameters of for-
mulas (10)–(13) are considered as weights and an appropriate error functional
is minimized [5–15]. The construction of a solution of a differential equation
in the form of an initially multi-layer functional model with the possibility of
subsequent training is a breakthrough method [16].

The proposed neural network approach seems promising. It is known [4] that
any function from L2(R) can be approximated with a given accuracy by means of
the corresponding weighted sum of shifts of functions of the form (7). Moreover,
instead of functions of the form (7) under initial conditions, one can consider
sigmoidal or other functions that are used as the basis function of the neural
network with a single hidden layer in the approximation of a given function. In
this case, for such an approximation of the initial condition, the general scheme
of the solution of problem (1) described in the article will be preserved. External
influences on each of the layers can also be taken into account and calculated
using Duhamel’s integrals.
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Implementation of a Gate Neural Network
Based on Combinatorial Logic Elements
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Abstract. Generally, math models which use the “continuous mathematics” are
dominant in the construction of modern digital devices, while the discrete basis
remain without much attention. However, when solving the problem of con-
structing effective computing devices it is impossible to ignore the compatibility
level of the mathematical apparatus and the computer platform used for its
implementation. In the field of artificial intelligence, this problem becomes
urgent during the development of specialized computers based on the neural
network paradigm. In this paper, the disadvantages of the application of existing
approaches to the construction of a neural network basis are analyzed. A new
method for constructing a neural-like architecture based on discrete trainable
structures is proposed to improve the compatibility of artificial neural network
models in the digital basis of programmable logic chips and general-purpose
processors. A model of a gate neural network using a mathematical apparatus of
Boolean algebra is developed. Unlike formal models of neural networks, pro-
posed network operates with the concepts of discrete mathematics. Formal
representations of the gate network are derived. The learning algorithm is
offered.

Keywords: Boolean algebra � Boolean neural network � Combinatorial logic �
Delta rule � Gate neural network � Logical network � Widrow-Hoff rule

1 Introduction

Quite often in practice, there are problems associated with the compatibility of the
functional and hardware-software parts of the device. These problems are very complex
and require an integrated approach. Their solution leads to a change in qualitative and
quantitative characteristics according to specified requirements.

Artificial intelligence algorithms require complex use of hardware and software.
Due to specific nature of the research, such basic indicators as productivity, diminu-
tiveness and low economic costs associated with the production and maintenance of the
devices being developed remain unchanged. The approach based on modeling of
artificial neural networks is versatile and flexible, but has limitations related to the field
of their application. Among the disadvantages inherent to the computer of von Neu-
mann architecture, we can distinguish the following:

• virtualization of calculators, architecture, physical processes;
• the dependence of the processing time on the size of the program;
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• unjustified growth of hardware costs when increasing productivity;
• low energy efficiency, etc.

At present, there is an increasing number of specialized intellectual architectures
aimed at overcoming the described drawbacks [1–8]. Such devices have wide appli-
cation range and are compatible with the environment of the computer system, but they
also have some disadvantages. Generally, math models which use the “continuous
mathematics” are dominant in the construction of modern digital devices, while the
discrete basis remain without much attention. However, solving the problem of con-
structing effective computing devices it is impossible to ignore the compatibility level
of the mathematical apparatus and the computer platform used for its implementation.
In the field of artificial intelligence, this problem becomes urgent during the devel-
opment of specialized computers based on the neural network paradigm.

Existing mathematical models of a neuron operate with continuous quantities, are
realized on the basis of an analog elements, which leads to their poor compatibility with
digital equipment. But at the same time, most neural networks use the principles of
digital logic [2–4, 6–8]. And as the result, in promising computing devices being
developed multi-level systems of models are implemented. These systems introduce
certain disadvantages in the final implementation of the solution [9, 10].

In this paper, a method for constructing a neural-like architecture based on discrete
trainable structures is proposed to improve the compatibility of artificial neural network
models in the digital basis of programmable logic chips and general-purpose
processors.

2 Model of the Gate Neural Network

The trainable gate network is representative of Boolean networks [5, 11–16] with the
ability to specify the type of mapping of the vector of input signals to the output vector,
using the learning algorithm. Such a network can be considered as an attempt to
combine certain features of neural network technology and combinational logic gates to
achieve a synergistic effect in the implementation of high-performance embedded
systems.

We obtain a formalized representation of this type of network. It is known from
dicrete mathematics that the full disjunctive normal form (FDNF) can be represented as
follows:

f x1; . . .; xPð Þ ¼ _
r1; . . .; rPð Þ

f r1; . . .; rPð Þ ¼ 1

xr11 ^; . . .;^xrPP ; ð1Þ

while the disjunction of all sets has the form:

y ¼ f r1; . . .; rPð Þ ¼ 1 ð2Þ
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Rule (2) can be reformulated as a disjunction over all full product terms (FPT) of P
variables:

_2
P

n¼1
wn xð Þ ¼ 1 ð3Þ

Then the minimal term can be written in the following way:

wn xð Þ ¼ ^P
p¼1

xMp n�1ð Þ
p ð4Þ

Next, we define the function Mp (a):

Mp að Þ ¼ 0; a 2 i � T ; iþ 0; 5ð Þ � T½ Þ;
1; otherwise:

�
ð5Þ

where the period T ¼ 2p; i ¼ 0; 1; 2; . . .; 2
P

T � 1:
The function (5) is square wave logical basis, similar to the Rademacher function

[17]. Figure 1 shows the form of this function for p � 3.

The square wave function masks each variable included in Eq. (4) with the goal of
specifying all FPTs. Next, we represent the FPT (3) in vector form:

w ¼ w1 xð Þ; w2 xð Þ; . . .; wN xð Þ½ �; ð6Þ

Fig. 1. View of the square wave function for p � 3
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where x—the column vector of input signals:

x ¼ x1; x2; . . .; xP½ �T : ð7Þ

Next, we weigh functions of input signals in vector form, which is known from the
theory of neural networks [1, 18, 19]:

wT ^ w ¼ y; ð8Þ

where w—the column vector (9), and y—the column vector (10):

w ¼ w1; w2; . . .; wN½ �T ; ð9Þ

y ¼ y1; y2; . . .; yS½ �T : ð10Þ

The matrix Eq. (8) has a similar form with the equation describing the formal
neuron, radial basis function network [18, 19] and also the sigma-pi network [20], but
in this case the multiplication operation is replaced by the conjunction operation, since
the matrices have a binary form.

For a network containing one element in the output layer, we get the following
expression:

wT ^ w ¼ w1; w2; . . .; wN½ � ^
w1 xð Þ
w2 xð Þ
� � �

wN xð Þ

2
664

3
775 ¼ _N

n¼1
wn ^ wn xð Þ: ð11Þ

Next, we substitute (4) into (11), and obtain the following relation in the general
form:

y ¼ _N
n¼1

wn ^ ^P
p¼1

xMp n�1ð Þ
p ð12Þ

The Eq. (12) is the model of a Boolean (gate) trainable network. It follows from
expression (12) that in such model there are no operators inherent to neural networks,
since they are bit-oriented. Weights are Boolean variables there, and not real numbers.
This model describes a two-layer network in which the first layer is represented by a set
of N constituent units (4), besides this layer does not require training. The output layer
is represented by one disjunctive element, which summarizes the minterms, enabled by
means of weight coefficients.
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A similar dependence can be obtained for a network with several elements in the
output layer:

wT ^ w ¼

w11; w12; . . .; w1N

w21; w22; . . .; w2N

� � �
wS1; wS2; . . .; wSN

2
6664

3
7775 ^

w1 xð Þ
w2 xð Þ
� � �

wN xð Þ

2
664

3
775 ¼

_N
n¼1

w1n ^ wn xð Þ

_N
n¼1

w2n ^ wn xð Þ
� � �

_N
n¼1

wsn ^ wn xð Þ

2
666664

3
777775
¼

y1
y2
� � �
yS

2
664

3
775:

ð13Þ

Then the Eq. (6) for each output can be written in a general form:

ys ¼ _N
n¼1

wsn ^ ^P
p¼1

xMp n�1ð Þ
p ð14Þ

The analysis of dependences (13) and (14) shows that it is possible to synthesize on
their basis an arbitrary combination device with P inputs and S outputs, which has two
levels of gates and has an increased speed in hardware implementation. These formulas
represent a trainable logical basis. Figure 2 shows a graph of the network.

x1

x2

xp

y1

y2

y3

ys

Fig. 2. Trainable gate neural network
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It is known that the maximum number of combinations of P variables is equal to 2P,
and the number of functions is 22

P
. It follows that the number of neurons of the first

layer is not more than 2P:

N � 2P: ð15Þ

In turn, the number of neurons in the output layer is less than 22
P
:

S� 22
P
: ð16Þ

Thus, the maximum sum from (15) and (16) describes the largest network without
repeating elements. However, duplication of elements can be aimed to increasing the
reliability of the network.

It is not difficult to show that the obtained model can be realized in the form of a
full conjunctive normal form (FCNF). On the basis of de Morgan’s laws for several
variables [21], we can show:

_N
n¼1

an ¼ ^N
n¼1

�an: ð17Þ

Applying the rule (17) to expression (12) we obtain:

ys ¼ ^N
n¼1

�wsn _ _P
p¼1

x
�Mp n�1ð Þ
p

� �
: ð18Þ

Next, replacing the variables, we get the FCNF:

ks ¼ ^N
n¼1

msn _ _P
p¼1

xWp n�1ð Þ
p

� �
: ð19Þ

Equations (12) and (19) are equivalent in essence like the FCNF and the FDNF are
equivalent. It is seen from (19) that the weighing is performed by the disjunction
operation, in contrast to (12).

3 Network Learning Algorithm

The learning algorithm of the perceptron according to the Widrow-Hoff rule is known
from the theory of neural networks, [18, 19]:

wsn tþ 1ð Þ ¼ wsn tð ÞþDwsn tð Þ; ð20Þ

Dwsn tð Þ ¼ xn tð Þ � ds � ys tð Þð Þ; ð21Þ

On the basis of (20) and (21), it is easy to see the following:
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• weight wsn can increase or decrease depending on the sign of the increment of
weight Dwsn;

• weight change occurs when the output signal ys deviates from the reference ds only
for the input xn which causes this influence.

Using these statements, we can show the training algorithm for a binary network.
We convert these formulas into a system of residual classes. It is known that additive
operations and multiplication will look like the following [22]:

a� bð Þmod c ¼ amod cð Þ � bmod cð Þð Þmod c; ð22Þ

a � bð Þmod c ¼ amod cð Þ � bmod cð Þð Þmod c: ð23Þ

We describe (20) and (21), using (22) and (23). Then the Widrow-Hoff rules will
take the form which is typical for operations performed by digital devices:

wsn tþ 1ð Þmod q ¼ wsn tð ÞþDwsn tð Þð Þmod q

¼ wsn tð Þmod qþDwsn tð Þmod qð Þmod q;
ð24Þ

Dwsn tð Þmod q ¼ xn tð Þ � ds � ys tð Þð Þð Þmod q

¼ xn tð Þmod qð Þ � dsð Þmod q� ys tð Þmod qð Þð Þmod q;
ð25Þ

where q is a positive integer.
It is required that all variables (24) and (25) could accept only two states, or that the

modulo is equal 2. Considering that additive operations can be replaced by the
exclusive-OR operation and multiplication—by conjunctions, the Widrow-Hoff rule
will be written in the following form:

wsn tþ 1ð Þ ¼ wsn tð Þ � xn tð Þ ^ ds � ys tð Þð Þ: ð26Þ

We apply rule (26) to the received network model (12). Taking into account the
influence of minterms (4) on the learning element, we obtain the learning rule for the
Boolean network:

wsn tþ 1ð Þ ¼ wsn tð Þ � ds � ys tð Þð Þ ^ ^P
p¼1

xp tð Þ� �Mp n�1ð Þ
: ð27Þ

4 Analysis of the Results

On the basis of the dependence (12), the following features of the model can be noted:

• the model is a network;
• first and second layer have specialization;
• signals can be either excitatory or inhibitory;
• the type of generalization is different for FDNF and FCNF networks;
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• there is no influence of minterms (maxterms) on each other.

Unlike formal models of neural networks, the Boolean network operates with the
concepts of discrete mathematics. From the point of view of an intelligent approach,
only binary input signals processing may seem insufficient when working with
higher-order sets, but the feature of the obtained formulas (12), (19) is in the possibility
of applying them as a logical basis controlled by weight coefficients. It is known that on
the basis of a Boolean basis arbitrary combinational devices are constructed. Fur-
thermore, with the actual implementation of the trainable gate network, it is charac-
terized by greater performance and reliability associated with the fixed depth of the
gates and the simplicity of the individual handlers. For solving more complicated tasks
it is possible to use the series of gate networks. In this case, the topology of the device
is more homogeneous, which leads to the interchangeability of its individual elements.

The developed network can be considered as a basis for constructing feedforward
neural networks with a flexible topology that can be adapted to a specific task, up to the
level of logical elements.

The proposed approach has the following advantages:

1. Greater homogeneity of the topology of the device, in contrast to the formal neuron,
which contains adders, multipliers, activation functions.

2. Increase of the applied component on the hardware level to solve specific problems.
3. Reduction of the occupied area of the crystal, which is required for the hardware

implementation of the network.
4. Parallelizing of the processing and learning of the network at the level of logical

elements.
5. Flexible learning architecture of a formal neuron.

5 Conclusion

The work in the field of creating discrete learning networks is aimed to solve the
problems of optimizing hardware and software costs in the construction of neural
networks and digital equipment in general. The trainable gate network is not intended
to replace a feedforward neural network, but it can be considered as a basis for con-
structing any digital network. The possibilities of gate networks are quite various. They
can find the application for the creation of associative memory devices, cryptography,
high performance combinational devices, solvers of Boolean functions and in other
applications.
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Abstract. Dynamic model of a recurrent neuron with a sigmoidal acti-
vation function is considered. It is shown that with the presence of a
modulation parameter its activation characteristic (dependence between
input pattern and output signal) varies from a smooth sigmoid-like func-
tion to the form of a quasi-rectangular hysteresis loop. We demonstrate
how a gateway element can be build using a structure with two recogniz-
ing neurons and one output neuron. It is shown how its functional prop-
erties change due to changes in the value of the modulation parameter.
Such gateway element can take the output value based on a weighted sum
of signals from the recognizing neurons. On the other hand it can perform
a complex binary-like calculation with the input patterns. We demon-
strate that in this case it can be used as a coincidence detector even for
disjoint-in-time patterns. Futhermore, under certain extreme conditions
it can be triggered even if only the one input pattern was recognized.
Also the results of numerical simulations presented and some directions
for further development suggested.

Keywords: Neurodynamic model · Hystersis · Adaptiveness

1 Introduction

There are a number of challenges in the field of development of an intelligent
control systems for highly autonomous robotic systems such as unmanned aerial
vehicles. One of these challenges is related to a mechanism that provides the
control system with the ability to accumulate the experience from processed
data and apply it in further. In other words, it is the task of developing a model
with unsupervised or semi-supervised online learning algorithm which can work
effectively in a dynamic and uncertain environment under a condition of limited
computing resources.

Related and similar tasks are already successfully solved by methods from
the field of machine learning such as incremental learning models [1,2]. They can
be applied to an environment in which there are some types of uncertainty and
noise or other difficulties. Almost all of them are based on feedforward and simple
recurrent architectures which means that they can not reliably maintain activity
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of neurons without an external signal. But from our point of view this is necessary
for context dependent recognition and learning [3]. The LSTM model [4] is the
most suitable in this case because it has a special context cell to maintain internal
neural network activity. But learning algorithms of this model are based on
supervised techniques which is unacceptable in our problem.

We previously proposed the concept of a neural network model [3] as one
of the possible approaches to solving the problem outlined above. Our model
divided into two parts: working network that performes pattern recognition and
learning as well as auxiliary network that evaluates the first one and produces the
value of the modulation parameter. An important feature of neuron model used
in a working network is that its activation characteristic (i.e. the dependence
between an input pattern and an output value) can contain a hysteresis loop [5]
under certain values of the modulation parameter as described in [6,7]. And
as shown in [8,9] the presence of a hysteresis loop in an activation function is
related to robust implementations of some working memory models. But at the
same time activation characteristic will have the form of a smooth curve under
other values of the modulation parameter. Thus, we can change the behaviour
of neurons from gradual to trigger mode and can use this property to implement
a gateway element with some interesting features.

2 Neuron Model

A neuron model used in this paper differs in some details from the one which
was described in the related article [7]. Namely, in this article the activation
function was replaced by a sigmoidal function and the threshold parameter was
moved into a weights vector as one of the coefficients. As a result, model became
as follows: {

du/dt = αy + i(w,x) − μu,

y = f(h(u, θ)),
(1)

where u ∈ � is a potential variable, y ∈ [0; 1] is an output variable, w ∈ �M

is a weights vector, x ∈ [0; 1]N is an input vector, α ∈ [0;+∞) is a recurrent
connection weight, μ ∈ (0; 1) is a potential dissipation parameter, θ ∈ (0;+∞]
is a modulation parameter, i(w,x) is an external excitation function (in the
following we will omit the arguments for brevity) which can be specified as a
scalar product or as a Gaussian radial basis function or as any other distance
measure function, h(u, θ) = u/θ is a potential modulation function, f(z ) =
σ(z − Δ) is a sigmoidal activation function with Δ = 3.0. Also we assume that
the values of parameters α and μ are fixed and selected in advance while the
value of a modulation parameter θ is changeable during model operating.

It can be shown that the value of variable y will converge exponentially to
some stable equilibrium point y∗ of the dynamic system (1). To find these points
we need to rewrite equations (1) as follows:

F (y) = du/dt = αy + i − μθg(y) (2)
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where g(y) = Δ+log(y/(1 − y)) is the function inverse to the function f . In this
case the equilibrium points can be determined from the condition F (y∗) = 0.
Moreover, equilibrium point y∗

j will be stable if F ′(y∗
j ) < 0 and unstable if

F ′(y∗
j ) > 0, otherwise, additional analysis will be required. It should be noted

that there is no analytical solution and therefore this equation must be solved
either graphically as shown on Fig. 1 or using numerical methods.

Fig. 1. Graphical solutions of a model (1): (a) the stable point y∗ in the case of
monostability; (b) the stable points y∗

1,3 and the unstable point y∗
2 in the case of

bistability

At the same time bifurcation analysis can be performed analytically based
on the Eq. (2). It can be shown that a model (1) has cusp catastrophe [10] by
parameters θ and i . Corresponding pitchfork bifurcation at the point θ = α/4μ
shown in Fig. 2a where the values of parameter i at each point was choosen to
get a symmetrical curve. In the case of θ ≥ α/4μ there exist only one stable
equilibrium point and activation characteristic function has the form of a sig-
moidal curve as shown in Fig. 1a. Moreover, the slope of this curve decreases as
the value of the parameter θ increases.

Fig. 2. The properties of the dynamic system (1): (a) a pitchfork bifurcation at the
point θ = α/4μ; (b) the dependence of the thresholds i± on the modulation parameter
θ (shaded region corresponds to a bistability area); (c) the boundary between areas of
a stable (not shaded region) and unstable (shaded region) points
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In the case of θ < α/4μ a bistability region arises and it corresponds to the
range i ∈ (i−; i+) as shown in Fig. 1b. As we can see increasing of the parameter
i value leads to abrupt change of the output value y at the point i+ and a
similar abrupt change occurs at the point i− during its decreasing. It can be
shown that these threshold values i± are determined by the extremes of the
Eq. (2) and can be evaluated as follows: i± = −αy± + μθg(y±) where y± =
0.5 ∓ √

0.25 − μθ/α. Figure 2b shows the dependence between these thresholds
and modulation parameter θ. As shown in Fig. 2c the values y± themselves
determine the region (y−; y+) where the stable equilibrium points y∗ can not
exist. As a result, activation characteristic function takes the form of a hysteresis
curve with a loop which becomes closer and closer to a rectangular shape with
decreasing value of the modulation parameter θ.

3 Gateway Model

Let us consider now a gateway model formed by connecting the neurons as shown
in Fig. 3a. As a result, overall gateway state will be described as follows:{

duk/dt = αyk + ik − μuk,

yk = f(h(uk, θ)),
(3)

where the first and second (k = 1, 2) neurons process input patterns from two
different data channels with appropriate external excitation values i1,2 and the
third one (k = 3) generates the gateway output signal o = y3 using excitation
value i3 = βy1 + βy2.

Fig. 3. Architecture: (a) gateway element; (b) computational element for future
research based on the model of gateway element

Consider the case when the value of parameter θ corresponds to the region
of monostability. As we noted early, in this case activation characteristic of a
neuron has the form of a sigmoidal curve. Denote it as a function φθ(i) where
the subscript emphasizes the dependence between the slope of this curve and
the value of modulation parameter θ. Then the value of gateway output signal
can be represented as o = φθ(i3) where i3 = β · (φθ(i1) + φθ(i2)). Thus, the
external signals i1 and i2 will be transfered by the gateway element in the form
of nonlinear weighted sum and the amplitudes of these nonlinear transformations
are controlled by the value of modulation parameter θ.
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In the case of bistability the value of neuron output variable y takes values
from the neighborhoods of points 0 (inactive state) and 1 (active state) as shown
in Fig. 2c, i.e. y ∈ O+

θ (0) and y ∈ O−
θ (1) where the subscript emphasizes the

dependence between the width of neighborhoods and the value of modulation
parameter θ. In this case we can conclude that the value of i3 ∈ O−

θ (2β) if both
of values i1 and i2 overcome the threshold value i+ and i3 ∈ Oθ(β) if only the
one of them overcome the threshold value and otherwise i3 ∈ O+

θ (0). But the
gateway output o can be in active state only when the value of i3 overcome the
threshold i+. So, for a some fixed range of modulation parameter θ values we
can choose the value of parameter β that satisfy to inequality z1 < i+ < z2
for ∀z1 ∈ Oθ(β) and ∀z2 ∈ Oθ(2β). In this case the gateway output o will be
active only when both input patterns from data channels are recognized. In
other words, the gateway element will become a coincidence detector. But on
the other side, we also can choose the value of parameter β which will admit
an activation of the gateway element even if input pattern from only the one
channel recognized.

Also note the extreme condition when the value of threshold parameter i−

falls below zero as shown in Fig. 2b. In this case the neurons that had previously
passed into the active state can remain active even if there is no input signal.
As a result, the gateway element can determine a coincidence by disjoint-in-time
patterns due to self-sustained activity of recognizing neurons.

We performed numerical simulation to confirm the results obtained above
with the following parameters: μ = 0.75, α = 3.0 and β = 0.5. During the
simulation we explicitly changed the values of external excitation signals i1,2

as well as the value of modulation parameter θ. As shown in Fig. 4 the results
of simulation meet with our expectations. The case of performing a nonlinear
weighted summation corresponds to the time interval [t1; t2]. The case of input
patterns coincidence detection corresponds to the time interval [t3; t4] and the
special case of coincidence detection for disjoint-in-time patterns corresponds to
the time interval [t5; t6].

Fig. 4. Results of performed numerical simulation with different values of the external
excitation signals i1,2 and different values of the modulation parameter θ
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4 Conclusions

We demonstrated that activation characteristic of the described neurodynamical
model of neuron can vary from a smooth sigmoid-like function to the form of a
quasi-rectangular hysteresis loop. It was shown how these changes are controlled
by the value of modulation parameter θ and how this parameter is related with
other parameters of the model.

Also we demonstrated how a gateway element can be build using the
described neuron model. It was shown that for the certain range of modulation
parameter values the gateway element transfers the input signals as a nonlin-
ear weighted sum but for the other range of modulation parameter values it
begins to perform a binary-like calculation as a complex coincidence detector
with additional functional features.

As shown in Fig. 3b further research is related to the development of a com-
putational element that would learn to associate the ascending and descending
data streams in neural network based on the results obtained here for the model
of gateway element.
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Abstract. It was recently shown, that neural language models, trained on large
scale conversational corpus such as OpenSubtitles have recently demonstrated
ability to simulate conversation and answer questions, that require common-sense
knowledge, suggesting the possibility that such networks actually learn a way to
represent and use common-sense knowledge, extracted from dialog corpus. If this
is really true, the possibility exists of using large scale conversational models for
use in information retrieval (IR) tasks, including question answering, document
retrieval and other problems that require measuring of semantic similarity. In this
work we analyze behavior of a number of neural network architectures, trained
on Russian conversations corpus, containing 20 million dialog turns. We found
that small to medium neural networks do not really learn any noticeable common-
sense knowledge, operating pure on the level of syntactic features, while large
very deep networks shows do posses some common-sense knowledge.

Keywords: Deep highway networks · Conversational modeling · Information
retrieval

1 Introduction

It was recently shown [1] that large-scale heterogenous dialog corpus can be used to
train neural conversational model, that exhibits many interesting features, including
capabilities to answer common-sense questions. For example, neural network model can
tell that dog have four legs, and usual color of grass is green, even though these question/
answer pairs do not explicitly exists in the dataset. This raises a question if such model
can learn implicit ontology from conversations. If true, such models can be applied to
the tasks outside of dialog modeling domain, such as information retrieval and question
answering.

Unfortunately, this property has not received yet sufficient attention. Recent research
on neural conversational models have been focused on incorporating longer context [2,
3], dealing with generic reply problem [4], incorporating attention and copying mech‐
anism [5]. Attempts to connect neural conversational models to external knowledge
bases were also made [6], however, we are not aware of any papers that investigated
nature of knowledge that can be stored in neural network synaptic weights.
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In this work, we investigate the possibility of using large dialog corpus to train
semantic similarity function. We train a number of neural network architectures,
including recently proposed deep highway neural network model [7] on large number
of dialog turns, extracted from both Russian part of OpenSubtitles database [8] and data
collected from publicity available books in Russian, totaling 20 millions dialog turns.
The training goal was to classify if sentence represent a valid response to previous
utterance or not.

We found that smaller neural network models can learn general similarity function
in sentence-space. This function performance is superior to simple neural bag of words
models in selecting proper dialog responses and finding sentences, relevant to the query.
However, these networks don’t incorporate any meaningful knowledge about the world.

Large neural networks seem to incorporate some common-sense knowledge to
semantic similarity function, as demonstrated by reranking possible answers to various
common-sense and factoid questions.

2 Methods and Algorithms

2.1 Datasets

Russian part of OpenSubtitles database was downloaded from http://
opus.lingfil.uu.se/. OpenSubtitles [8] is a large corpus of dialogs, consisting of movie
subtitles. However, the data in this corpus is much smaller (about 10 M dialog turns
after deduplication) then its English counterpart. OpenSubtitles is also very noise
dataset, because it contains monologues, spoken by the same character, that are impos‐
sible to separate from dialogues, and also dialog boundaries are unclear.

To extend the available data for this work, we used Russian web-site lib.ru and mined
publicly available fiction books for conversations of book characters. A heuristic parser
was written to extract dialog turns from book texts. 10 M dialog turns was mined by this
approach, resulting in total corpus size of 20 M dialog turns.

2.2 Neural Network Architectures

The structure of models, used for this work is shown on the Fig. 1. A number of speci‐
alized architectures were proposed for sentence matching task [9], including convolu‐
tional and LSTM models.

Overall, our model consists of two encoder layers that compute representations of
source sentences, one or more processing layers stacked on top of each other and output
layer, consisting of a single unit that outputs the probability of response being appro‐
priate to context. In this work we tested two types of encoders LSTM-based encoder
along with simpler fully connected encoder.

Neural bag of words (NboW) model is a fixed length representation xf obtained by
summing up word vectors in the text and normalizing result (by multiplying by 1/|xf|).
This model was used as a baseline in [9].
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2.3 Word Vectors

Real-valued embedding vectors for words were obtained by unsupervised training of
Recurrent Neural Network Language Model (RNNLM) [10] over entire Russian Wiki‐
pedia. Text was preprocessed by replacing all numbers with #number token and all
occurrences of rare words were replaced by corresponding word shapes.

3 Results and Discussion

3.1 Reply Selection Accuracies

Table 1 reports response selection accuracies for three different models on the test set,
consisting of 10,000 contexts. For each context 4 random responses were given to
classifier to rank along with “correct” (actual response from dataset).

Table 1. Model accuracies in selecting right context/response pairs

Model Accuracy
Random baseline 19.7
Neural bag of word encoder with 1 fully connected processing layer 21.2
Fully connected encoder with 1 fully connected processing layer 37.8
Fully connected encoder with 4 highway processing layers 41.1
LSTM encoder with 4 highway processing layers 39.3

Two findings are particularly surprising. First, NboW model did not achieved any
significant improvements over random baseline, in contrast with results reported in [9]
for matching English twitter responses. This result might be due to the fact that our
corpus is much larger (about 10 times) and much more noisy. Second, LSTM encoder
actually performs worse than simple fully connected encoder, and it is also much slower.
This is interesting, because fully-connected encoders with zero-padded sentences are
not commonly evaluated for such tasks, because they are assumed to be bad models,
because of their potential to overfit the data. However, with a special case of conversa‐
tion, where most responses are small in size, and given a lot of data, apparently fully-
connected encoders could be usable option.

Another interesting point here is that we observed that small model with 1 processing
layer also scored 29.8 on the task of matching English sentences using pre-trained word
vectors for English language, without training the network itself on English data. This
result indicates that small models actually learn some language-independent generic
similarity function that operate on word vectors and not involve deeper understanding
of the content.

3.2 Factoid Answer Selection from Alternatives

To evaluate model capability for question answering, we designed a test set of 300
question-answers pairs, using search engine snippets as candidate answers. The task was
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to select snippet, containing the correct answer (all snippets were first evaluated by
human, to asses if they contain necessary answers). Top 10 snippets were selected for
evaluation for each question. Table 2 summarizes results of all models.

Table 2. Accuracies on factoid question answering

Model Percent of correct answers
First snippet baseline 30.3%
Fully connected encoder with 1 fully connected processing layer 36.2%
Fully connected encoder with 4 highway processing layers 34.7%
LSTM encoder with 4 highway processing layers 32.0%

For this task, a model with one processing layer demonstrated best results. Overall,
improvements over were small, probably because search engine snippets already repre‐
sent strong baseline. Manual inspection of ranking results revealed, that improvements
were due to models capacity to distinguish between snippets that contained answers and
snippets that were just copies of the questions (see Table 3).

Table 3. Example ranking of candidate snippets for the question “cкoлькo звeзд нa нeбe” (How
many stars are there in the sky?)

Answer text Answer ranking
B яcнyю пoгoдy нa нeбe виднo oкoлo 3000 звeзд
(“on clear whether, about 3000 stars can be seen at the sky”)

0.76

Cкoлькo жe звeзд нa нeбe?
(“How many stars are in the sky?”)

0.68

Ha этoй cтpaницe вы yзнaeтe, cкoлькo звeзд нa caмoм дeлe виднo нa
нeбe
(“On this page you will learn how many stars can be seen at the sky”)

0.55

We therefore conclude, that model can use sentence structure to decide if it can be
viewed as appropriate answer or not.

3.3 Common Sense Questions

Finally, to test models capacity to understand the world, we prepared a set of 100
common-sense questions, like “what is the color of the sky?”, “what pizza is?”. Like in
previous setup, we evaluate model capability to choose correct answer out of 5 options.
Results are summarized in Table 4.

Table 4. Accuracies on multiple-choice common-sense questions

Model Result
Random baseline 19.5%
Fully connected encoder with 1 fully connected processing layer 20.3%
Fully connected encoder with 4 highway processing layers 26.5%
LSTM encoder with 4 highway processing layers 19.8%
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Only deep model with fully-connected encoder demonstrated some understanding
of common sense questions above random baseline and even here results are generally
poor. Table 5 shows example rankings of answers to a typical question by best model.

Table 5. Example ranking of candidate answers for common sense questions

Чтo тaкoe coбaкa?
What dog is?

Чтo тaкoe
aвтoмoбиль?
What automobile is?

гдe живeт чeлoвeк?
Where does human
live?

Кaкoгo цвeтa зeмля?
What is the color of the
ground?

0.71 живoтнoe
(animal)

0.84 мoтop
(motor)

0.844 нopa
(burrow)

0.87 зeлeнaя
(green)

0.49 pacтeниe
(plant)

0.70 мexaнизм
(mechanism)

0.841 дoм
(house)

0.86 жeлтaя
(yellow)

0.48 кoнцeпция
(concept)

0.67 живoтнoe
(animal)

0.52 лec
(forest)

0.83 бypaя
(brown)

0.45 плaнeтa
(planet)

0.65 фoнapь
(lamp)

0.48 лyжa
(water pool)

0.82 чepнaя
(black)

0.43 мexaнизм
(mechanism)

0.59 квaдpaт
(square)

0.42 джoн
(John)

0.79 бeлaя
(white)

0.38 фoнapь
(lamp)

0.54 дoм
(house)

0.41 мoтop
(motor)

0.70 дoм
(house)

0.36 дoм
(house)

0.46 плaнeтa
(planet)

0.40 фoнapь
(lamp)

0.62 кpacнaя
(red)

0.32 квaдpaт
(square)

0.46 кoнцeпция
(concept)

0.35 квaдpaт
(square)

0.46 фoнapь
(lamp)

0.30 aфpикa
(Africa)

0.45 aфpикa
(Africa)

0.17 мope
(sea)

0.45 cиняя
(blue)

0.19 джoн
(John)

0.39 pacтeниe
(plant)

0.16 джoн
(John)

Manual examination rankings revealed, that questions that concern relationships of
two and more entities are more difficult to answer, compared to the questions related to
the single entity (Table 5)

4 Conclusions

We found that large neural dialog models can learn some common-sense knowledge,
although to the limited extent. There is, however, a room for improvement, because we
found that even our large model did not significantly overfit the training set, and there
is also a possibility for collecting more training data.

Another interesting finding is that our models learned to understand sentence struc‐
ture of question/answer pairs and can select answers those structure is more likely to
contain answers to the question.

Finally, we observed that simple encoder, based on fully-connected layer with
padded input outperforms LSTM-based encoders both in computing speed and response
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selection accuracy. Further analysis is needed to understand the significance of this
finding.

Subsequent work should probably include analysis of even larger models, and
detailed analysis of what happens in encoding layers, to better understand how these
models really operate and what they can do. Also, testing sets need to be expanded in
both size and extend of coverage of various common-sense topics.
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Abstract. The article is devoted to the analysis of neural networks from the
positions of the neuromorphic approach. The analysis allows to conclude that
modern artificial neural networks can effectively solve particular problems, for
which it is permissible to fix the topology of the network or its small changes. In
the nervous system, as a prototype, the functional element - the neuron - is a
fundamentally complex object, which allows implementing a change in topology
through the structural adaptation of the dendritic tree of a single neuron. Prom‐
ising direction of development of neuromorphic systems based on deep spike
neural networks in which structural adaptation can be realized is determined.
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1 Introduction

Currently, there are many poorly formalized problems that are badly solved by existing
methods (detection and recognition of objects in conditions of significant data shortage,
control of unstable systems, control of the behavior of mobile agents in a volatile envi‐
ronment, etc.).

One of the most promising common approaches to solving such problems is artificial
neural networks (ANN), in particular, deep neural networks (DLN), which are now
actively developing. This is due, in particular, with the advent of new hardware (NVIDIA
graphics accelerators [1], specialized processors (BrainScaleS [2, 3], SpiNNaker [4],
NIDA [5], DANNA [6], Neurogrid [7], IBM TrueNorth [8]), which allow efficient
numerical calculations on the basis of the mathematical apparatus of the DLN, and the
direction of neuromorphic systems, whose architecture and design are based on the
principles of the work of the biological neural structures of the nervous system. This is
a fairly broad interpretation, in which the deep learning fit well. Possible successes of
neuromorphic systems are associated, first of all, with the biological plausibility of their
basic neuron component and its hardware implementation. In this sense, some special‐
ized processors (in particular, IBM TrueNorth) refer specifically to processors of the
neuromorphic type.
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2 Overview of Deep Neural Network Architectures

Today, the practical application of neural networks is most intensively developed in the
trend of deep learning.

There is a large number of networks within this trend [9]. The basic architectures,
from which all the main implementations are obtained:

– Feed forward (FF) (Perceptron, Autoencoders [10]);
– Fully connected networks (FCN) (Markov Chain [11], Hopefield network [12],

Boltzmann Machine [13];
– Convolutional neural networks (CNN) (LeNet [14], VGG-19 [15], Google Inception

[16]);
– Recurrent neural networks (RCN) (LSTM [17], Deep Residual Network (ResNet)

[18–20]);

There are separately presented architectures such as growing neural networks, in
which the following widespread types can be distinguished:

– Networks based on Kohonen maps (SOM [21], ESOM [22], GHSOM [23], SOS
[24]);

– SOINN, ESOINN [25];
– Neural Gas Network [26] and its derivatives GNG [27], IGNG [28], GCS [29],

TreeGCS [30], PGCS [31] and others.

Relatively new works are devoted to the implementation of spiking neural networks,
based on the above architectures [32–34]. The advantages of deep spiking neural
networks are firstly declared in the significant energy savings in the case of hardware
implementation.

If we consider the achievements of neural networks from the point of view of solving
particular problems, great progress has been made in this direction. So, according to the
results of the competition in recent years, DLN have been won in most computer vision
tasks (pattern recognition, object detection, segmentation, etc.). It is important to note
that such networks are effective in problems in which there are high local correlations
in the input data.

Also, there is the big problem of combining a set of private solutions, formed by
neural networks to solve common problems of controlling agent behavior in a complex
environment. In other words, the solution, for example, of object detection problem,
converts the space of high-dimensional input data into a space of low dimensionality of
the classes of objects to be detected. If it is necessary to create a flexible control system
for the behavior of the agent (robot) in a volatile environment, we are forced to operate
with a number of such particular solutions. This naturally limits the agent in adaptability
to changes in the environment. Part of this problem is solved in growing networks.

Despite the fact that ANN were originally based on the analogy with the nervous
system, the majority of neural networks in their topology, training rules and principles
of functioning as a whole is very different, and the trend away from biological likelihood
is growing. In particular, the development of networks follows the path of increasing
the number of layers, but not the complexity of the functional element of neural networks
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- the neuron; and growing neural networks are based on the addition of neurons and
layers, in contrast to change in the structure of a neuron dendritic tree in a biological
system, where each dendrite provides complex information processing.

If we compare the known features of the nervous system and ANN (assuming that
the advantages of the still disjointed architectures of ANN will be unified), then
following table can be made (Table 1).

Table 1. Comparison of the features of artificial neural networks and the nervous system

System property Artificial neural network Nervous system
The complexity of the
functional element

Low High

The possibilities of structural
adaptation of the network

The network topology is
rigidly defined within the
architecture. Topology can be
changed block-wise using
global optimization
algorithms

Topology is partially defined
by DNA, but low-level parts
can change their function
(solved tasks), at the initial
stage of growth, and high-level
parts always

The principle of remembering
information in the network
structure

Generalization of input data
and reduction of the dimension
of the problem.
Formation of one (or a limited
number) of output vectors

Generalization of input data
and reduction of the dimension
of the problem.
Formation of a set of vectors of
output data (work
simultaneously in a set of
contexts)

Method of network
restructuration

Change the number of neurons
in the layer, the number of
layers, the number of neurons
in the ensemble

Change in the structure of the
neuron membrane (number
and length of dendrites—
generalizing elements, the
number of synapses, the size of
the neuron).
Change in the number of
neurons in the “layer”/
ensemble, the number of
“layers”

Methods for parametrizing the
network

Change in the weight of the
neuron input

Change the size of the synapse

It seems promising to consider the possibility of complicating the model of the neural
networks functional element with an emphasis on the possibilities of network structural
adaptation, in the trend of the neuromorphic approach.

3 Neuron Models

There are many widespread models of neurons. By the level of abstraction, models can
be divided into:
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– Biological (biophysical)-models based on the modeling of biochemical and physio‐
logical processes, which, as a consequence, lead to a certain behavior of the neuron
in certain modes of operation (the Hodgkin–Huxley model [35]).

– Phenomenological-models describing certain phenomena of the behavior of a neuron
in certain modes of operation as a “black box” (the Izhikevich model [36]).

– Formal-models with the highest level of abstraction, describing only the basic prop‐
erties of the neuron (formal neuron [37]).

Each model can correspond to several features from this classification. In the frame‐
work of ANN in general, and DLN, in particular, modifications of formal neuron models,
with different activation functions (Sigmoid, hyperbolic tangent, ReLU and its deriva‐
tives [38]) are used. Spiking variations of deep networks basically contain such models
of neurons as variations of the threshold integrator model [39], the Izhikevich model
mentioned above.

One of the promising options for implementing the model of an element of neuro‐
morphic systems is the phenomenological model of a dynamic spike neuron with the
ability to describe the spatial structure of the dendritic apparatus [40]. This model allows
us to describe the variable topology of a neural network, based on the principles of neural
structure formation known from neurophysiology [41].

4 Discussion

The main feature of the nervous system, which is still not considered in the ANN
archives, is a great potential in structural (topological) restructuring. Structural adapta‐
tion in the nervous system is largely based on the high complexity of a single element
of the network - the neuron.

The analysis allows to identify the following areas of development of ANN in the
framework of the neuromorphic approach:

– Complicating the neuron model, adding the possibility of describing the structure of
the membrane (as generalizing and binding elements) of the neuron.

– Development of learning algorithms, taking into account the modification of the
structure of the generalizing and binding elements of the neuron.

– Development of ANN architectures that allow training and data output simultane‐
ously in multiple contexts.
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Abstract. The paper deals with a model of pulse neural network that is
applicable for solving of various tasks of processing sensory information. These
tasks relate to dynamical variables processing. The distinctive feature of the
problem statement is that dynamical variables are represented by pulse (spike)
trains. We propose two supervised temporal learning rules for pulse neural
network executing the required linear dynamic transformations of variables
represented by pulse trains. To generate the required output of the network
model we used a reference system with desired properties. The rules minimize
the difference between the actual and required pulse train in a local window. The
first temporal learning rule was named WB-FILT as it uses the filtered values of
errors between binary vectors representing the desired and actual pulse
sequences. The second rule was named WB-INST as it uses instantaneous value
of the error, which is the difference of the desired and the actual elements of
binary vectors. We demonstrated rule’s properties by computer simulation of the
mappings of the regular and the dynamical pulse trains. It has been shown that
proposed rules are able to configure the simple network that implements a linear
dynamic system.

Keywords: Pulse neuron � Pulse train � Supervised learning � Dynamic system

1 Introduction

Now much attention is paid to the pulse neural networks (PNN) for processing of
dynamical variables [1, 2]. In PNN the dynamical variables are encoded by pulse
(spike) trains. Development of supervised learning rules for functional PNN which
implements the required processing of dynamical variables during the mapping process
of the input pulse trains to the desired output pulse trains is considered as an important
problem in neuroinformatics [3].

Various temporal supervised learning rules providing the desirable mappings of the
pulse trains and using precise time of pulses are proposed in [4–7]. However, in most
cases they are oriented on pattern classification problems and are not aimed to the direct
application in adaptive real-time systems where processing of the dynamical variables
represented by the multi-pulse trains is required.

The vector-matrix digital model of the pulse neuron (PN) and the supervised
learning rule for real-time adaptive signal processing were proposed in [8, 9].
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The purpose of this paper is the extension of the scope of the PN vector–matrix model
[8, 9] that provides direct realization of the required linear transformations of
dynamical variables based on the input and output pulse sequences of the PN.

2 Problem Formulation

We will consider the adaptive modeling scheme of the linear dynamic system
appearing as a reference system which performs the required linear transformation
(mapping) of the input dynamical variable u(t) to the output variable yd(t) represented
(encoded) by means of desired pulse sequence sd(t). We want to construct the PNN
model which reproduces the dynamics of the reference system based on the desired
(required) pulse train sd(t).

To solve the problem, we will use the multi-input PN model that was considered in
[8]. It is assumed that bipolar input pulse trains ui(t) generated by the encoding
presynaptic neurons arrive at inputs of the PN linear filters with pulse responses hi(t).
Filter reactions xi(t) are weighted with synaptic weights wi and summarised to form the
summary postsynaptic potential yo(t) of the PN. If the integral of the module of
yo(t) exceeds a threshold then an output pulse of the PN with the sign corresponding to
the sign of yo(t) is emitted and integrator state is nullified. The specified chain of the
conversions corresponds to the LIF-neuron.

If we calculate the values of yo(t) at discrete time tn = nDt, where Dt is a time
sampling step, then [8, 9]

yoðnÞ ¼ wTxðnÞ; xiðnÞ ¼ bTi ðnÞhi; ð1Þ

where wT ¼ w0;w1; . . .;wI�1ð Þ is synaptic weight vector, biT(n) is sliding binary vector
whose elements are equal to signs of the input pulses at time moments tn, hi denotes the
impulse response vector hi ¼ hi 0ð Þ; hi 1ð Þ; . . .; hi K � 1ð Þð ÞT. In this case, we can use
the supervised learning rule in the form of Widrow-Hoff [9]:

DwðnÞ ¼ lxðnÞeðnÞ; ð2Þ

Where l is a learning rate, e nð Þ ¼ yd nð Þ � y0 nð Þ is an error.
The rule (2) assumes that PN input signals are pulses and the output signal of the

PN is represented by sample values of the dynamical variable yo(t). Therefore, the rule
(2) cannot be used directly for training of a PNN where not only input signals, but also
output signals are represented by pulse sequences.

We will derive the supervised PN learning rules for a case when the required output
signal yd(t) of the reference dynamic system and the actual output signal yo(t) of the PN
model (1) are represented by the pulse trains. We will call such rules that are driven
directly by the time of pulses as temporal rules.
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3 Temporal Learning Rules of the Pulse Neuron

In order to calculate the error e(n) we will use the known similarity measures of the
pulse trains [10, 11]. The most often used measure convolves of the pulse trains with
some positive smooth localized kernel hr(t). In accordance with (1) the convolution of
an actual output pulse train so(t) and desired pulse trainsd(t) with a kernel hr(t) can be
written as follows

~yoðnÞ ¼ bTo ðnÞhr; ~ydðnÞ ¼ bTd ðnÞhr; ð3Þ

where hr is the vector of samples of a kernel hr(t), bo
T(n) and bd

T(n) are the binary sliding
vectors containing of M elements and corresponding to the pulse sequences so(t) and
sd(t). Length M is selected considering dynamics of the reference system and the
processed signals. In fact, binary vectors fix some temporal prehistory of pulses.

Variables ~yoðnÞ and ~ydðnÞ can be interpreted as the result of conversions of
dynamical variables yo(n) and yd(n) to the pulse trains so and sd, and then back to the
origin form for the purpose of restoration of these variables from the pulse sequences. If
we perform replacement of yo(n) and yd(n) by variables ~yoðnÞ and ~ydðnÞ in the learning
rule (2) we will derive the temporal learning rule

DwðnÞ ¼ lxðnÞ bTd ðnÞ � bTo ðnÞ
� �

hr
� �

: ð4Þ

Having compared (2) and (4), we conclude that the error e(n) in the rule (4)
corresponds to the difference of binary vectors representing the desired and actual pulse
sequences. At the same time this error is smoothed by a window (by a filter) with
weights hr. We will name this temporal rule WB-FILT, as it compares filtered binary
vectors (by analogy with [7]).

The window hr is often selected so that the pulses (elements of binary vectors)
which were formed later will have the greater weight. If the length of the window is
restricted to a single sample then from (4) we derive the simple learning rule

DwðnÞ ¼ lxðnÞ bd nð Þ � b0 nð Þð Þ; ð5Þ

where bd(n) and bo(n) are the elements of binary vectors. This temporal rule uses the
instantaneous value of the error, which is equal to the difference of binary vectors
elements. Therefore, we will name it WB-INST (by analogy with [7]).

4 Computer Simulation

During the simulation, the simple model of bipolar IF-neuron with single input was
used as the model of an encoding neuron. The encoding neuron converts an input
signal u(t) to a pulse train. This pulse train simultaneously arrives to all inputs of the
PN. Pulse responses of the PN filters were identical in the form, but shifted in time for
the sampling step, i.e. hi tð Þ ¼ exp � t � iDtð Þ=ssð Þ; where ss is the time constant.
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To keep the shape of signals the finite symmetric exponent was used as a kernel
function. The kernel function was shifted for the half of its length to provide the linear
phase characteristic. Such kernel function creates the time delay equal to (M−1)/2 (if
M is odd) that requires the correction of the rule (4):

DwðnÞ ¼ lx n� ðM � 1Þ=2ð Þ bTd ðnÞ � bTo ðnÞhr
� �� �

: ð6Þ

In the first computational experiment (I = 401, K = 64, M = 129, Dt = 0.5 ms), we
run the training process to map the regular input pulse train with the period of 12.5 ms
to the desired pulse train with the period of 20.5 ms. The specified pulse sequences
were created by the encoding neurons when their inputs are constant signals with
amplitude u(t) = 0.08 and yd(t) = 0.05. It provided one pulse within the significant
duration of the pulse response hi(t). In this case, the filter reactions to pulses in the
separate channels of PN are not accumulated. It allows tracing the learning dynamics of
PN visually.

The actual output pulse train in the form of a raster and the diagram of themean-square
error after training of the PN with the help of WB-INST rule (5) are illustrated in Fig. 1.
The raster was created from the actual pulse train by cutting it into segments.

Similar results also turn out using the WB-FILT rule (6). However, in case of a
mapping of the regular pulse trains the WB-FILT rule provides faster convergence in
comparison with the WB-INST rule due to averaging of the error e(n) by hr.

In the second experiment (I = 2001, K = 10,M = 65, Dt = 10 ms), the training of a
mapping of the dynamical pulse sequences was carried out. We want to build a PNN
with the dynamics defined by the dynamics of the reference system which implements
double integration of the dynamical input variable u(t). The similar problem arises in
the case of signal processing of accelerometers [12].

Fig. 1. Results of the mapping of the regular pulse sequences
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During the training, the input signal u(t) equal to the sum of sine signals with the
multiple frequencies was applied to the input of the encoding neuron, and the corre-
sponding desired (reference) signaly d(t) arrived at the input of other encoding neuron.
The desired output signal yd(t) is calculated with the help of normalized values of
frequency response of the reference double integrator [12].

The distributions of the weight vector elements after training of PN are shown in
Fig. 2. Interpreting w as a pulse response, it is possible to obtain the frequency
response of the PNN model which corresponds to the double integrator in the bandpass
range (curves 2 and 3). The frequency response of the reference double integrator
(curve 1) was set in 30 uniformly distributed frequency points. Figure 2 shows that the
mean square of the error e(n) is decreasing with growth of n and the frequency response
of the synthesized PNN model approximates the frequency response of the reference
double integrator well. Pulse periodic behavior of the error is explained by periodicity
of used signals.

It is interesting to note that despite the differences in the nature of elements dis-
tribution of the vector w for two rules (5) and (6) the frequency responses obtained with
their help are the very close (curves 2 and 3).

5 Conclusions

The presented temporal supervised learning rules WB-INST and WB-FILT are appli-
cable for using in digital adaptive systems with the reference PNN that performs the
required linear transformations of the dynamical variables represented by pulse
sequences.

The quantitative changes of synaptic weights are proportional to an error and
reactions of the PN synaptic connections to input pulses. In such common formulation,
the proposed temporal learning rules are similar to the known rules: ReSuMe [4],
SPAN [5], PSD [6], INST and FILT [7].

However, an important distinction of the proposed temporal learning rules is that
they are formulated in the discrete time in a general view. It allows deriving further
variations of these rules oriented on specifics of processing tasks of dynamical

Fig. 2. Results of the mapping of the dynamical pulse sequences
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variables. In addition, the offered PN model and rules due to the sparsity of binary
vectors are quite effective from computational point of view.
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Abstract. The computer architecture for the neural-network control system with
a synchronous peripheral subsystem allows transmitting information about the
state of the control object and its environment with maximum accuracy. Synchro‐
nization between executive resources eliminates restrictions on the interaction
between the components of complex control objects. This problem used to be able
to be solved only by breaking the problem into slightly dependent smaller tasks.
The proposed model is a coherent information environment for neural-network
control system, with simultaneous record mode of the object state parameters.
This mode is important for the control systems objects with unidentified degrees
of freedom – typical field of applications of neural systems. The proposed model
of the synchronous information environment is necessary even the control system
is implemented with a fixed algorithm.

Keywords: Coherent information environment · Neural network · Digital neural-
network control system · Subsystem of input-output

1 Introduction

Like any digital control system (DCS), a digital neural-network control system (DNCS)
consists of: a subsystem of measurement – sensors and analog-to-digital converters
measure the parameters of the control object (CO) and its surroundings; the calculation
subsystem, which calculates and generates control actions; and executive subsystem –
digital-to-analog converters and actuators directly to the control the component parts of
the CO and interaction with the environment.

The function of the calculation subsystem in DNCS performs the computer imple‐
mented on the basis of a neural network. At the beginning of the life cycle of the DNCS,
neural network is not trained [1–4], therefore, the control algorithm is missing, the model
of the control object is not formed; the degrees of freedom, dynamic parameters, etc.
are unknown. The neural network training occurs as a result of simulation and evaluation
of control experiments. Every following experiment is performed on the object,
formally, with the new DCS, which is generated as a result of previous experiments.

Unlike traditional DCSs with hard control algorithms, in DNCS the information from
the subsystem of measurement is used not only to calculate control actions but also for
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correction of models of the control object. It is because of the need to use the state
parameters of the control object for the adequate formation of the model of the object
to the subsystem of measurement of the DNCS special requirements.

We explain the last statement in more detail. The comparison will hold, and consider
the traditional, centralized DNCS as an alternative digital control system after all, the
DCS with a neural network computer, due to the uncertainty of the model of the CO, is
built as the system with a single central computer.

Traditional digital control systems are implemented as a hierarchical set of regula‐
tors, coordinated control the object in the mode of loosely related tasks. Each of these
tasks controls one of the degrees of mechanical, electrical, functional, etc. freedom of
control object. The structure and intensity of information exchanges in the composite
parts like DCS to reflect the degrees of independence of control object parts, in other
words, the structure of the DCS follows the structure of the control object, is decomposed
by degrees of its freedom. The operation of the object in each of the degrees of freedom
are relatively independent, so we can control the object as a whole, through simplified
control tasks of parts, which tasks account for limited, local set of state parameters of
the CO. This set of state parameters is necessary for this local control task.

We now consider the time profile of the practice control tasks in traditional DCS.
Each of the local control tasks – control can function quite independently from the

rest of not only algorithmically, but also in time, i.e. the duration of the control cycles
in independent tasks can be different, and the phases of the operation, even if the same
duration of the cycle is asynchronous. In centralized, traditional digital control systems
with a fixed control algorithm, the local control tasks are processed by the computing
subsystem in the split mode of time – sequentially. Measuring sub-task of each local
control problem generates a limited set of status settings for that task only. Individual
state components are sampled in the close moments of time and the simultaneity of their
survey, does not affect the quality of governance in the local control loop. However, in
a single computer, phase of the survey parameters in different regulatory tasks, separated
in time is already noticeable, but control of the object is possible, because the control is
executed through independent, locally sustainable degrees of freedom, with the agree‐
ment of the other slower time scale.

Unlike traditional DCS, in DNCS initial structuring of control tasks does not exist,
therefore there is no possibility of partitioning the full set of state parameters of the CO
and its surrounding on the group phase of formation which should be close in time and
may vary from group to group. Therefore, a set of state parameters for DNCS should be
formed as a single array simultaneously recorded and measured state variables. Due to
the fact that the components of this array relevant at the same time and can only be edited
at the same time, it is logical to call the state vector of the control object. The described
situation is similar to the motion: periodic discrete recording and playback of continuous
processes will be valid if all the objects in the frame and their connections in that frame
are recorded at the same time, because the viewer (in DCS – analysis) of all parts of the
frame happens in parallel and simultaneously. Continuing the analogy we can say that
for DNCS we need to find a way of perception of the parameters of the CO and his
associates in the so-called «instant snapshot» in time of the control object. Next, the
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paper describes the technology of creating information environments that are suitable
for simultaneous, coordinated control of subsystem of measurement of the DNCS.

2 Analysis of the Structure of a Digital Neural Network Control
System Based on the Universal Computer

A trained digital neural network control system is a hierarchical set of control loops.
Moreover, the structure of any loop repeats a common structure of a digital control
system. As a rule, tasks: reception of state parameters, calculation, issuing of control
signals in all the control loops are addressed in the framework of one cycle of control.

In Fig. 1 shows a typical structure of a digital neural network control system.

Fig. 1. Generalized structure of the neural network control system

From sensors (S1…Sn), after analog-digital conversion (ADC) into a computer, data
on the state of the CO are delivered. Using the received state data, the neural network
computer adjusts the model of the control object. On the basis of current models of the
CO and target parameters of the action of the CO, the calculator calculates the amount
of control and, after digital-to-analog conversion (DAC), sends it to the executive
devices - actuators (ED1…EDm), which implement command on a control object.

The computer, in modern DNCS, is implemented in the architecture of the mainframe
and operates in asynchronous multitask mode.

Because of the lack of generated control algorithm in untrained DNCS, in this DNCS
it is impossible to execute serial calculation of the control loops. Therefore, the calcu‐
lation in the control cycle is organized in the style of a group of functionally similar
operations, starting with the measurement phase for all sensors, and ends with the phase
of issuing set-points for all actuators, and all phases of the control cycle are implemented
in the software.

To connect sensors and actuators to the central processor of a computer, a set of
standard interfaces is used. With rare exceptions, the standard interfaces implemented
in the universal microprocessor, the hardware level is supported byte (word) stream
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transaction and the transaction start is always performed in software. Also, in the time
domain, the formation of structural units (state packets and control packets) is imple‐
mented programmatically. These packets circulate in interface channels. In microproc‐
essors there is no broadcast mechanism to control the active interfaces, even in a minimal
functionality in the form of a simultaneous launch exchange control packs, and software
control interfaces of the input subsystem does not enable to implement universal
computer strict mode «instant snapshot».

3 Implementation of Phases of the Control Cycle of the Neural
Network System

As already mentioned, a specific feature of the algorithm of the DNCS is the presence
of the enlarged phase of similar operations in each cycle of operation:

phase of measurement (capturing the state of the control object in the sensors, convert
analog parameters into digital code – state vector, transfer of the state vector in the
memory of the computer);
phase of calculation (the calculation of control actions on the control object);
phase of execution (delivery the control vector to actuators, perform new control
actions, the expectations of the control object reactions, before the next control cycle).

The above phases are repeated in each control cycle with the constant period [5].
The cyclical nature of information processes in DHCS shown in Fig. 2.

Fig. 2. Phases of the cycle of operation of the digital neural network control system

Peripheral subsystem of modern microprocessors does not allow the control on
sensors of the DNCS in the style, which is necessary for the implementation of the
measurement phase of the control cycle. Therefore, it is necessary to consider the possi‐
bility of hardware support mode «instant snapshot» out of a microprocessor. It is possible
to formulate the ability of such coherent subsystem of input data into a computer of the
DNCS:

hardware implementation of batch transaction interfaces, the interaction with sensors
of the DNCS;
synchronous start-mode of the transaction, which fixes the parameters of the control
object;
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hardware formation mechanism of a single set of state parameters of the CO – the state
vector;
hardware start-mechanism of the state packet transfer into computer.

These functions have as their goal that is the formation of an «instant snapshot» and
these functions are implemented in a coherent information environment on the basis of
the operations of synthesis and analysis of time intervals. The hardware of the modern
programmable logic integrated circuits (FPGA) is ideal for such tasks, and the tasks of
the synchronous control of hardware functions with time. The strict temporary
performing frames, which perform communication transactions with sensors, enable to
implement an «instant snapshot» with maximum precision.

If the same model of peripheral control nodes is implemented in the output
subsystem, it will be possible to reach the precise control of the phase of issuing control
actions individually for each actuator. This will make it possible to carry out precisely
the synchronous work of almost all resources of the control object, for example, mobile
platforms and transportable useful load.

4 A Coherent Information Environment Model for Neural-
Network Control System

On the basis of the analysis, the developed model is a coherent information environment
for neural network control system [6]. Its structural scheme is shown in Fig. 3.

Fig. 3. A coherent information environment for neural network systems
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According to this model, all nodes in the system operate at a fixed, pre-established
schedule. The lack of asynchrony in the interaction with peripheral devices enables to
capture an «instant snapshot» of the control object. Snapshot is a simultaneous fixing of
all state parameters of the control object. In a synchronous manner, we undertake all the
functions of the input/output and create for DNCS an idealized information environment.

Components of the state vector are actually inputs of the neural network of computer.
Regardless of the control algorithm in neural network control system, all components
of the state vector entering the processing should be relevant at the same time in the
limit of one cycle of system operation. The synchronous architecture of the subsystem
input-output allows you to create a parameters package of the control object with the
desired DNCS properties.

5 Conclusion

The computer architecture for DNCS with synchronous peripheral subsystem allows
maximum accuracy to transmit information about the state of the control object and its
environment. Synchronous work of executive resources will enable to remove restric‐
tions on the interaction of subsystems of complex control objects, which are forced to
operate in the mode of loosely related tasks.

The proposed model of the synchronous information environment relevant in the
implementation of control systems with a fixed algorithm.
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Abstract. A modelling and simulation problem is considered for lon-
gitudinal motion of a maneuverable aircraft that is viewed as a nonlin-
ear controlled dynamical system under multiple and diverse uncertainties.
This problem is solved by utilizing semi-empirical neural network based
approach that combines theoretical domain-specific knowledge with train-
ing tools of artificial neural network field. Semi-empirical approach allows
for a substantial accuracy improvement over traditional purely empiri-
cal models such as the Nonlinear AutoRegressive neural network with
eXogenous inputs (NARX). It also provides solution to system identifi-
cation problem for aerodynamic characteristics of an aircraft, such as the
coefficients of aerodynamic axial and normal forces, as well as the pitch
moment coefficient. Representative training data set is obtained using an
automatic procedure which synthesizes control actions that provide a suf-
ficiently dense coverage of the region of change in the values of variables
describing the simulated system. Neural network model learning efficiency
is further improved by the use of special weighting scheme for individ-
ual training samples. Obtained simulation results confirm the efficiency
of proposed simulation approach.

Keywords: Nonlinear dynamical system · Semi-empirical model ·
Neural network · System identification

1 Introduction

When designing an aircraft, one of the most important problems is identifying
of its aerodynamic characteristics. An approach was proposed in [1–3] to solve
this problem using semi-empirical artificial neural network (ANN) models of
nonlinear controlled dynamical systems. These semi-empirical models are based
on the grey-box model concept introduced in [4,5].

This approach differs significantly from the traditionally accepted method
for solving problems of this class, which are based on the use of the linearized
model of the aircraft disturbed motion. The conventional approach uses the
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representation of the dependences for the aerodynamic forces and moments in
the form of their Taylor series expansion, leaving in it, as a rule, only members
not higher than the first order.

Accordingly, the solution of the identification problem with the conventional
approach is reduced to reconstructing from the experimental data the depen-
dences describing the coefficients of the Taylor expansion, in which the deriv-
atives of the dimensionless coefficients of the aerodynamic forces and moments
with respect to the various parameters of the motion of the aircraft (CLα

, Cyβ
,

Cmα
, Cmq

etc.) are determining.
In contrast, the semi-empirical approach performs the reconstruction of the

relations for the force coefficients CD, CL, Cy and moments Cl, Cn, Cm as some
whole non-linear dependences on the corresponding arguments, without their
series expansion and linearization, i.e. the functions themselves, represented in
the ANN-form, are evaluated, and not the coefficients of their expansion in the
series. Each of these dependences is implemented as a separate ANN-module,
built into a semi-empirical ANN-model. Derivatives CLα

, Cyβ
, Cmα

, Cmq
and

others can be found, if necessary, using the results obtained during formation
of the ANN-modules for the coefficients of forces and moments within the semi-
empirical ANN-model.

A mathematical model of the longitudinal motion of a maneuverable air-
craft is derived, which is used as a basis in the formation of the corresponding
semi-empirical ANN-model, as well as for the generation of a training set. An
algorithm for this generation is proposed, which provides a fairly uniform cov-
erage of the possible values of state variables and controls for the maneuverable
aircraft by training examples. Next, a semi-empirical ANN-model of the longi-
tudinal controlled motion of the aircraft is formed, including the ANN-modules
realizing the functional dependences for the coefficients CD, CL and Cm. The
identification problem for these coefficients is solved when learning the obtained
ANN-model. The corresponding simulation results characterizing the accuracy
of the obtained ANN-model as a whole are given as well as the accuracy of the
solution of the identification problem for aerodynamic coefficients.

2 Mathematical Model of Longitudinal Motion for
Maneuverable Aircraft

To solve the problem, it is required to form a source mathematical model of
the longitudinal motion of an aircraft. This model is represented by a system
of nonlinear ordinary differential equations (ODE), traditional for aircraft flight
dynamics [6].

The model consists of 9 equations of the first order for aircraft state variables,
including 4 equations for variables VT , γ, R and h, describing trajectory aircraft
motion; 2 equations for the variables Θ and q, describing angular aircraft motion;
1 equation for the variable T̄ for aircraft engine power level response; 2 equations
for variables δe and δ̇e describing the actuator dynamics for the aircraft elevator.
Here VT is aircraft total velocity, m/s; γ is flight path angle, deg; R is range of
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flight, m; h is altitude, m; Θ is pitch angle, deg; q is body-axis pitch rate, deg/s;
T̄ is actual power level of the aircraft engine; δe is elevator deflection, deg; δ̇e

is rate of elevator deflection, deg/s. The right-hand sides of the equations of
motion contain the relations for aerodynamic forces, axial CX and normal CZ ,
and also for the aerodynamic pitch moment Cm. These relations are non-linear
functions of the appropriate arguments, namely, the angle of attack α and also
VT , δe and q. Command signal of the elevator actuator δeact

and engine throttle
setting δth were used as control signals.

The concretization of this model of motion was carried out for the case of
a maneuverable F-16 aircraft. The required data characterizing this aircraft,
including the model of its engine, are taken from [7]. The computational exper-
iments performed with this model were carried out in the altitude range from
1000 m to 9000 m and in the range of Mach numbers from 0.1 to 0.6.

3 Generation of a Representative Set of Training Data

When solving problems of the considered type, one of the most important tasks
is the generation of a representative set of data that characterizes the behavior
of the simulated dynamic system on a rather large range of values for the sys-
tem state and control variables. This task is critically important for obtaining
a authentic dynamic system model, but it has no simple solution. The required
training data for the generated ANN-model can be obtained by means of spe-
cially organized test excitations for the simulated system.

The training set used in the experiments described in this article was formed
using an automatic procedure proposed by the authors. This procedure synthe-
sizes control actions that provide a sufficiently dense coverage of the region
of change in the values of variables describing the simulated system. Then,
the resulting set of control actions is applied to the simulation object and the
obtained trajectories are used to generate the training set. The test set is formed
in a similar way.

In addition to the representative training set, we use the weighting of indi-
vidual examples from the training set to improve the learning efficiency for the
ANN-model. It is based on the following considerations. If the arguments of the K
examples from the training set are located in a small neighborhood, then this sit-
uation is analogous to giving weight K to some average example from this region.
Thus, the irregular distribution of examples can lead to increased model accuracy
in some areas due to its lowering in others. In order to avoid such a situation, after
completing the procedure for synthesizing the training set, the elements of this set
are weighed. For this purpose, set of vectors Λ is formed. Vectors λ ∈ Λ consist of
control variables and state variables of each selected trajectory 〈u(t), x(t)〉 ∈ Q at
each moment of time t ∈ [Tmin, Tmax], where u(t) and x(t) are control and state
vector of simulated dynamical system. For each element λ ∈ Λ, we search for ele-
ments located in its ε-neighborhood. Then, the corresponding example from Q is
assigned a weight inversely proportional to the number of neighbors found.

When implementing this algorithm on a computer, you should select an
appropriate data structure for representing the set Λ and some auxiliary sets
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associated with it. This structure should ensure the effective execution of oper-
ations for finding the nearest neighbor, searching for neighbors in a given neigh-
borhood, and adding new elements in the generated training set. In this paper,
as such a structure, we used a k-dimensional tree, namely, its implementation in
the FLANN library [8].

This algorithm was successfully used to generate a training set for a semi-
empirical ANN-model of the longitudinal motion for the F-16 maneuverable
aircraft. The following range of variables was considered: δeact

∈ [−250, 250], δe ∈
[−250, 250], δth ∈ [0, 1], T̄ ∈ [0, 100]%, γ ∈ [−900, 900], q ∈ [−100, 100] deg/s,
VT ∈ [35, 180] m/s, α ∈ [−200, 900].

4 Semi-empirical Neural Network Model of Aircraft
Longitudinal Motion

A general approach to the formation of semi-empirical ANN-models of control-
lable dynamical systems was presented in [1,2]. For the problems of identifi-
cation of aircraft aerodynamic characteristics these models are considered in
[3], where using the mathematical model of complete aircraft angular motion
were solved the problem of finding relationships for aerodynamic lateral and
normal force coefficients CY and CZ as well as for aerodynamic rolling, pitch-
ing and yawing moment coefficients Cl, Cm and Cn. In this section, we build
a semi-empirical ANN-model of the aircraft longitudinal motion, based on the
mathematical model mentioned above. This ANN-model allows us to find the
relations for the coefficients CX , CZ and Cm, with respect to the vast range of
possible values of the variables on which these relations depend.

The training and test sets were formed according to the procedure described
in the previous section, with a sampling step Δt = 0.01 s. The vector of state
variables is partially observable y(t) = [VT (t), α(t), q(t)]T , α = Θ−γ. The output
of the system is affected by additive white noise with root mean square deviation
(RMS) σVT

= 0.01 m/s, σα = 0.01 deg, σq = 0.005 deg/s.
Training of semi-empirical ANN-models is a non-trivial task. The appropri-

ate algorithms for solving it are considered in [3]. This training is carried out
in the Matlab system for neural networks in the form of LDDN (Layered Digi-
tal Dynamic Networks) using the Levenberg-Marquardt optimization algorithm
based on the root-mean-square error of the model [9]. The Jacobi matrix is
calculated using the RTRL (Real-Time Recurrent Learning) algorithm [10].

ANN-modules for nonlinear functions CX , CZ and Cm are formed as sigmodal
feed-forward networks. As inputs of each of the modules, the values of α, δe and
q/VT are taken. The ANN-modules for the CX and CZ functions have two hidden
layers, the first of which includes 10 neurons and the second one contains 20.
The ANN-module for the Cm function has three hidden layers, the first of which
includes 10 neurons, the second one has 15 and the third has 20 neurons.

The simulation error on the test set for the obtained semi-empirical ANN-
model of the longitudinal motion for the maneuverable aircraft is: RMSVT

=
0.00026 m/s, RMSα = 0.183 deg, RMSq = 0.0071 deg/s.
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Fig. 1. Simulation results: (a) – coefficient CX(α, δe) for δe = −250 (marker �), δe = 00

(marker ◦) and δe = −250 (marker ×) according to [7]; (b) – approximation error ECX

for fixed values of q = 0 deg/s and VT = 150 m/s
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The accuracy of the dependences representation for the aerodynamic coef-
ficients can be seen from the example of the coefficient CX as shown in Fig. 1.
The upper part of this figure shows the actual values (according to the data
from [7]) of the CX depending on the angle of attack and the elevator deflec-
tion angle. The lower part of the figure shows the errors with which appropriate
ANN-module reproduces the corresponding dependence. It can be seen that the
accuracy achieved is very high. The results for the other two coefficients (CZ

and Cm) look similar.

5 Conclusions

The results presented above allow us to draw the following conclusions. As in
the case described in [3] for the coefficients of aerodynamic forces CL, Cy and
moments Cl, Cn, Cm, methods of semi-empirical ANN-modeling provide the
possibility to solve successfully the problem of longitudinal force coefficient iden-
tification if the characteristics of the engine are known. If data for these charac-
teristics are not available, then the result of solving the identification problem
will be the relationship for the total coefficient of axial force, whose arguments
will include the δth control variable. Usually this is quite enough to simulate the
motion of the aircraft.

The second important conclusion, which follows from the obtained results, is
that the “computational power” of the semi-empirical ANN-model is quite suffi-
cient to represent complex nonlinear functional dependencies defined on a broad
range of their argument values, provided that there is a training set possessing
the required level of representativeness.

The simulation results demonstrate the high accuracy of both the ANN-
model of the obtained aircraft longitudinal motion and high representation accu-
racy for corresponding aerodynamic characteristics.
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Abstract. Dump truck fault’s short-term forecasting is the important
step for solving real-time fleet dispatching tasks and to provide reli-
able, efficient and safe open-pit mining. This paper presents a multi-
agent adaptive fuzzy neuronet for dump truck fault’s short-term fore-
casts. The agents of the multi-agent adaptive fuzzy neuronet are fulfilled
based on recurrent networks. An automatic determination of the opti-
mal architecture’s parameters of a neuronet is the most critical task.
In order to train the effective multi-agent adaptive fuzzy neuronet we
use algorithm, in which the multi-dimensional Particle Swarm Opti-
mization is combined with the Levenberg-Marquardt algorithm. The
multi-dimensional Particle Swarm Optimization is first applied to glob-
ally optimize the multi-agent adaptive fuzzy neuronet’s structure, and
then Levenberg-Marquardt is used to speed up convergence process.
The simulation results show that proposed training algorithm outper-
forms multi-dimensional Particle Swarm Optimization and Levenberg-
Marquardt algorithm in training the effective multi-agent adaptive fuzzy
neuronet for dump truck fault’s short-term forecasts.

Keywords: Multi-agent adaptive fuzzy neuronet · Multi-dimensional
Particle Swarm Optimization · Dump truck fault’s short-term forecasting

1 Introduction

Nowdays, SUEK is one of the largest coal companies in the world and the num-
ber one coal producer in Russia. It attempts to find intelligent technologies to
improve the key areas of their operations. Dump trucks are equipped with sen-
sors and communication devices. Dump truck fault’s short-term forecasting is
the important step for solving real-time fleet dispatching tasks and to provide
reliable, efficient and safe open-pit mining. For more efficient dump truck fault’s
short-term forecasting, it is important to take uncertainties into account. These
uncertainties originate from dump truck’s punishment or under random pertur-
bations of weather, which cause complex dynamics of dump truck fault’s time
series. Several algorithms have been developed to overcome the given difficulties.
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B. Kryzhanovsky et al. (eds.), Advances in Neural Computation, Machine Learning,
and Cognitive Research, Studies in Computational Intelligence 736,
DOI 10.1007/978-3-319-66604-4 11



Forecasting Based on the Multi-agent Adaptive Fuzzy Neuronet 73

The most important approaches are those that provide effective data processing
based on intelligent algorithms. The aforementioned approaches include com-
bining evolutionary intelligent agents, neuronets and fuzzy logic. This paper
presents a multi-agent adaptive fuzzy neuronet (MAFN) for dump truck fault’s
short-term forecasts. The results of the MAFN on the challenging real-world
problems [1] revealed its following advantages: supports the real time mode and
competitive performance, as compared to classical methods; trained MAFN effec-
tively processes the noisy data. The agents of the MAFN are fulfilled based on
recurrent networks. An automatic determination of the optimal architecture’s
parameters of a neuronet is the most critical task. The effective network archi-
tecture is up-to-date designed by a human expert, requiring an extensive analysis
of the system and the trial-error process. This process is difficult because it is
hard to anticipate all conditions of optimal neuronet architecture. The global
optimum provided by the multi-dimensional Particle Swarm Optimization (MD
PSO) [2] process corresponds to an optimum multi-agent adaptive fuzzy neu-
ronet architecture where the MAFN architecture’s parameters (delays, a number
of nodes in hidden layer, corresponded weights and biases) are generated from
the global optimum. Furthermore, the MD PSO provides a ranked list of MAFN
configurations, from the best to the worst. This is an important information,
arguing which configurations can effective solve a particular problem. In order
to train the effective multi-agent adaptive fuzzy neuronet we use algorithm, in
which the MD PSO is combined with the Levenberg-Marquardt algorithm [3].
The MD PSO is first applied to globally optimize the network’s structure, and
then Levenberg-Marquardt is used to speed up convergence process. The sim-
ulation results show that proposed training algorithm outperforms MD PSO
and Levenberg-Marquardt algorithm in training the effective MAFN for dump
truck fault’s short-term forecasts. The multi-agent adaptive fuzzy neuronet was
fulfilled based on extensive empirical database, collected from an open-pit mine.

2 The Multi-agent Adaptive Fuzzy Neuronet for Dump
Truck Fault’s Short-Term Forecasts

Sources of database’s information are position, speed, course (GPS) and gar
load sensors. The multi-agent adaptive fuzzy neuronet is trained based on the
“KARIER” database of aforementioned dump truck’s sensors. This database
was collected at the Chernogorsky open pit mine from 2013 till 2016. On the
basis of dispatching reports moments of dump truck’s malfunction during the
period up to 10 days is defined. All possible dump truck’s malfunctions were
divided into 3 classes. The dump truck’s malfunction classes P t

h are qualitative
and were coded as appropriate, where h = 1..32, t = 1..1461. The aforementioned
classification includes the following classes:

• class 1: the dump truck’s malfunction will have occurred within the next
2 days, P t

h = (1,0);
• class 2: the dump truck’s malfunction will have occurred within period from

3 to 10 days, P t
h = (0,1);
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• class 3: the dump truck’s malfunction will have not occurred within the next
10 days, P t

h = (0,0).

The multi-agent adaptive fuzzy neuronet is fulfilled based on the data

st
h = (xt

h = (V t
h , V mt

h,W t
h,Wmt

h, It
h, Imt

h, Tmt
h), P t

h), (1)

where P t
h is dump truck’s malfunction class; vt is speed of a dump truck, vm is

an maximum speed limit of a dump truck (km/h), dt is a time period of cor-
responded condition from last dump truck’s malfunction, V t

h =
∑

vt≤vm(vtdt),
V mt

h =
∑

vt>vm(vtdt), Tmt
h =

∑
T t>tm(T tdt), T t is an ambient temperature; pt

is the pressure of a dump truck’s tire (an indicator corresponded to the average
tonnages of the transported mined minerals), pm is a maximum pressure limit of
a dump truck, W t

h =
∑

pt≤pm(ptdt),Wmt
h =

∑
pt>pm(ptdt); it is the indication

of an inclinometer (degrees), imt is a maximum indication of an inclinometer
limit of a dump truck, It

h =
∑

it≤im(itdt), Imt
h =

∑
it>im(itdt). The number of

samples is 46752 (h ∗ t = 46752).

2.1 The Training Algorithms of the Multi-agent Adaptive Fuzzy
Neuronet

The multi-agent adaptive fuzzy neuronet architecture’s parameters (delays, num-
ber of nodes in hidden layer, corresponded weights - w and biases) have been
coded into particles a. The agents gjq(xt

h, wjq) of the multi-agent adaptive fuzzy
neuronet f(xt

h, a) are fulfilled as two-layered recurrent networks. In this research
an agent’s number is three. The fitness function evaluated as follows:

E(f) = (1/46752)
32,1461∑

h=1,t=1

∣
∣
∣
∣P t

h − f(xt
h, a)

∣
∣
∣
∣ . (2)

In order to train the multi-agent adaptive fuzzy neuronet f we use MD PSO
[2]. With the encoding of the multi-agent adaptive fuzzy neuronet structure
into particles, MD PSO provides not only the positional optimum in the error
space, but as well the optimum dimension of space of a task and the dimensional
optimum in the neuronet structure space. The dimension range of the MD PSO
is Dmin = 43,Dmax = 313. The MD PSO method includes three steps:

Step 1. The MD PSO (termination criteria: {IterNo, εc, ...})
For ∀a ∈ 1, S, do Randomize xda(0), vda(0) Initialize xd̃a(0) = xda(0)
For ∀d ∈ Dmin,Dmax do Randomize xxd

a(0), xvd
a(0) Initialize xyd

a(0) =
xxd

a(0)
End For. End For.

Step 2. For ∀i ∈ {1, IterNo} Do: For ∀a ∈ {1, S} Do:
If (f(xx

da(i)
a )) < min(f(xy

xda(i)
a (i − 1)),minp∈S−{a}(f(xx

xda(i)
p (i))))

then xy
xda(i)
a (i) = xx

xda(i)
a (i).

If f(xx
xda(i)
a (i)) < f(xy

xda(i)
gbest(xda(i))

(i−1)) then gbest(xda(i)) = a, where
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gbest(d) is global best particle index in dimension d, xy
xda(i)
aj (i − 1) is

j-th component of the personal best (pbest) position of particle a, in
dimension xda(i).

If xx
xda(i)
a (i) < f(xy

x˜da(i−1)
a (i − 1)) then xd̃a(i) = xda(i) end If.

If xx
xda(i)
a (i) < f(xydbest(i − 1)) then dbest = xda(i). End If. End For.

If the termination criteria are met, then Stop.
Step 3. For ∀a ∈ 1, S Do: For ∀j ∈ {1, xda(i)} Do: Compute

vx
xda(i)
a,j (i + 1) = w(i)vx

xda(i)
a,j (i) + c1r1,j(i)(xy

xda(i)
a,j (i) − xx

xda(i)
a,j (i)) +

c2r2,j(i)(xy
xda(i)
j (i) − xx

xda(i)
a,j (i)),

If vx
xda(i+1)
a,j (i) ∈ [Xmin,Xmax] then xx

xda(i)
a,j (i + 1) = xx

xda(i)
a,j (i) +

vx
xda(i)
a,j (i + 1) else xx

xda(i)
a,j (i + 1) = U(Xmin,Xmax) end If. If

xx
xda(i+1)
a,j (i + 1) ∈ [Xmin,Xmax] then xx

xda(i)
a,j (i + 1) = xx

xda(i)
a,j (i + 1)

else xx
xda(i)
a,j (i + 1) = U(Xmin,Xmax)

end If. End For. [vmin, vmax] is dimensional velocity range.
vda(i + 1) = vda(i) + c1r1(i)(xd̃a(i) − xda(i)) + c2r2(i)(dbest − xda(i)).
If vda(i + 1) < vmin then z = vmin end If. If vda(i + 1) > vmax then
z = vmax end If. If vmin ≤ vda(i + 1) ≤ vmax then xda(i + 1) =
xda(i) + vda(i + 1) else xda(i + 1) = xda(i) + z end If.
If (xda(i + 1) < Dmin) or (xda(i + 1) > Dmax) or (Pd(i) ≥
max(15, xda(i + 1))) then xda(i + 1) = xda(i) end If. End For. End
For.

The MD PSO provides an optimum multi-agent adaptive fuzzy neuronet archi-
tecture f1 and corresponded two-layered recurrent neuronetworks architectures
gi. The Levenberg-Marquardt algorithm [3] can be described as follows:

Step 1. Initialize the weights and parameter μ (in this research μ = 0.01).
Step 2. Compute the train error E(f1) as (2).
Step 3. Due to obtain the increment of weights Δwi we solve the following equa-

tion
Δwi = [JT

i Ji + μx]−1JT
i E(f1),

where Ji is the Jacobian matrix, μ is the learning rate which is to be
updated using the β depending on the outcome.

Step 4. Update wi = wi +Δwi. Recomputed the train error E’(f) according (2).
Step 5. If E′(f1)>E(f1) then wi = wi+Δwi; μ = μβ; Go to step 2 else μ = μ/β;

go to step 4 end If.

In order to train the effective agents of the multi-agent adaptive fuzzy neuronet
for dump truck fault’s short-term forecasts the MD PSO and the Levenberg-
Marquardt algorithm have been combined. The MD PSO is first applied to
globally optimize the network’s structure (the PSO will stop after a global solu-
tion is localized within small region), and then Levenberg-Marquardt is used to
speed up convergence process.
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2.2 The Multi-agent Adaptive Fuzzy Neuronet

The algorithm of the agent’s interaction uses a fuzzy-possibilistic algorithm [4]
and includes four steps:

Step 1. for each agentq in subculture Sj do gjq(xt
h) −→ GetResponse(agentq;

xt
h), νq −→ TakeAction(gjq(xt

h)): Evaluate error as E(g)(2), Calculate
νq = 1 − E.
End For. w = [gj1(xt

h), ..., gjq(xt
h)].

Step 2. Solve equation [Πq
i=1(1 + λwi) − 1]/λ = 1,−1 < λ < ∞.

Step 3. Calculate s =
∫

h ◦ Wλ = supα∈[0,1]min{α,Wλ(Fα(νj))}, where
Fα(νj) = {Fi|Fi > α}, νj ∈ V,Wλ(Fα(νj)) = [Πk

Fi∈Fα(νj)
(1+λwi)−1]/λ

Step 4. Calculate f = Fes(gjq(xt
h)) = maxνj∈V s(wj).

The fuzzy-possibilistic method allows for the forecasting of the dump truck’s
malfunction class in a flexible manner, so as to take into account the responses
of all agents based on fuzzy measures and the fuzzy integral.

Fulfillment of the multi-agent adaptive fuzzy neuronet briefly can be
described as follows:

Step 1. All samples N = 46752 (N = h ∗ t = 46752) were classified into two
groups according truck’s operating mode: A1 is normal mode (Ct

h =
−1), A2 is punishment (Ct

h = 1). This classification generates vector
with elements Ct

h.
Step 2. Two-layer recurrent network (number of hidden neurons and delays are

7 and 2, respectively): F (st
h) was trained. The vector (1) was network’s

input. The vector Ct
h was network’s target. Fuzzy sets Aj (A1 – normal

mode, A2 – punishment) with membership function μj(s) are formed
base on aforementioned two-layer recurrent network F (st

h), where j =
1..2.

Step 3. We train based on o optimization algorithm (If o = 1 then opti-
mization algorith is MD PSO; If o = 2 then optimization algorith is
Levenberg-Marquardt algorithm; If o = 3 then optimization algorith
is proposed algorithm, in which the MD PSO is combined with the
Levenberg-Marquardt algorithm) three two-layered recurrent neural net-
works: Irjq = gjq(xt

h) (j = 1..2, h = 1..32, t = 1..1461) based on the data
(1). The MD PSO provides the optimum number of hidden neurons and
delays of aforementioned two-layer recurrent networks. The fitness func-
tion is (2). This step provides recurrent neural networks gjq(xt

h) which
forecast the malfunction class of a dump truck. Two agent’s subcultures
Sj are formed base on aforementioned two-layer recurrent networks.

Step 4. If-then rules are defined as:

Πj : If st
h is Aj then f = Fes(gjq(xt

h)). (3)

Simulation of the multi-agent adaptive fuzzy neuronet briefly can be described
as follows.
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Step 1. For ∀c ∈ [1096, 1461]∀h ∈ [1, 32]
Aggregation antecedents of the rules (3) maps input data sc

h into their
membership functions and matches data with conditions of rules. These
mappings are then activates the k rule, which indicates the k truck’s
operating mode and k agent’s subcultures – Sk, k = 1..2.

Step 2. According the k truck’s operating mode the multiagentny adaptive fuzzy
neuronet (trained base on the data sd

h, where d = 1..c − 1) creates the
forecasting dump truck’s malfunction class f = Fes(gjq(xc

h)) as a result
of multi-agent interaction of subculture Sk.

3 Results

To illustrate the benefits of the MAFN in dump truck fault’s short-term fore-
casting, the numerical examples from the previous section are revisited using
author’s software [5,6]. There the three MAFN were fulfilled based on the data
(1). First, the multi-agent adaptive fuzzy neuronet (MAFN1) was trained using
MD PSO. Due to obtain statistical results, we perform 120 MD PSO runs with
following parameters: S = 250 (we use 250 particles), E = 150 (we terminate at
the end of 150 epochs). Figure 1(a) shows that only two distinct sets of MAFN
architecture with dbest= 103 and dbest= 163 can achieve test classification rate

The optimum dimension - dbest
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above 80,2 over data (1), t = 1..1461. We have chosen simpler solution with
dbest=103 as an optimum multi-agent adaptive fuzzy neuronet MAFN1.

Because the MD PSO has a superior generalization ability and a native fea-
ture of having a better and faster convergence to an optimum solution in low
dimensions, it provides simple but effective and robust MAFN. The MAFN1
has three agents of each subculture Sk. The aforementioned agents are the
two-layered recurrent neural network. The agent’s number of hidden neurons
and delays are 3 and 2, respectively. MAFN2 has same architecture. The sec-
ond multi-agent adaptive fuzzy neuronet (MAFN2) was trained by Levenberg-
Marquardt algorithm. The third multi-agent adaptive fuzzy neuronet (MAFN3)
was trained by the proposed algorithm, in which the MD PSO is combined with
the Levenberg-Marquardt algorithm. The MD PSO is first applied to globally
optimize the MAFN’s structure, and then Levenberg-Marquardt is used to speed
up a convergence process. Figure 1(b) shows mean convergence curves of the MD
PSO and the proposed algorithm for train MAFN. In Fig. 1(a), the ineffective-
ness of the MAFN2 can be seen. Figure 1(b) shows that MAFN3 has definitely
more convergence speed than MAFN1 in dump truck fault’s short-term forecast-
ing. Simulation comparison results for a dump truck’s malfunction class short-
term forecasting demonstrates the effectiveness of the multi-agent adaptive fuzzy
neuronet trained by proposed algorithm, in which the multi-dimensional Particle
Swarm Optimization is combined with the Levenberg-Marquardt algorithm as
compared with the same ones trained by MD PSO or Levenberg-Marquardt algo-
rithm. The analysis of the evolving errors shows the potential of the multi-agent
adaptive fuzzy neuronet in Mine Fleet fault’s short-term forecasts.

References

1. Engel, E.A.: Sizing of a photovoltaic system with battery on the basis of the multi-
agent adaptive fuzzy neuronet. In: 2016 International Conference on Engineering
and Telecommunication (EnT), pp. 49–54 (2016)

2. Kiranyaz, S., Ince, T., Yildirim, A., Gabbouj, M.: Evolutionary artificial neural
networks by multi-dimensional particle swarm optimization. Neural Netw. 22(10),
1448–1462 (2009)

3. Horst, R., Tuy, H.: Global Optimization. Springer, Berlin (1996)
4. Engel, E.A.: The method of constructing an effective system of information process-

ing based on fuzzy-possibilistic algorithm. In: Proceedings of the 15th International
Conference on Artificial Neural Networks, Neuroinformatics 2013, part 3, pp. 107–
117 (2013)

5. Engel, E.A.: The multi-agent adaptive fuzzy neuronet. Certificate about State regis-
tration of computer programs. No. 2016662951, M.: Federal Service for Intellectual
Property (Rospatent) (2016)

6. Engel, E.A.: The intellectual system for forecasting of a non-linear technical object’s
state. Certificate about State registration of computer programs. No 2016663468,
M.: Federal Service for Intellectual Property (Rospatent) (2016)



Object Detection on Images in Docking Tasks
Using Deep Neural Networks

Ivan Fomin(✉), Dmitrii Gromoshinskii, and Aleksandr Bakhshiev

The Russian State Scientific Center for Robotics and Technical Cybernetics (RTC),
Tikhoretsky Prospect, 21, 194064 Saint-Petersburg, Russia
{i.fomin,d.gromoshinskii,alexab}@rtc.ru

Abstract. In process of docking of automated apparatus there is a problem of
determining of them relative position. This problem may be effectively solved
with algorithms for relative position calculation, based on television picture
formed by camera, installed on one apparatus and observing another one, or
docking position. Apparatus position and orientation calculates using visual land‐
marks positions and information about 3D configuration of observing object and
visual landmarks’ relative positions. Visual landmarks detection algorithm is the
crucial part of such solution. Study of ability of application of object detection
system based on deep convolutional neural network to task of visual landmark
detection will be discussed in this article. As an example, detection of visual
landmarks on space docking images will be discussed. Neural network based
detection system learned using images of International Space Station received in
process of docking of cargo spacecrafts will be represented.

Keywords: Object detection · Deep neural networks · Convolutional neural
networks · Faster R-CNN · Machine learning · Computer vision

1 Introduction

1.1 Relevance of the Problem

One of the most sophisticated and relevant problems in area of automated apparatus
docking process is determination of relative position between one apparatus and another,
or apparatus and docking position. If both apparatus, or at least one of them, equipped
with video cameras, this problem can be solved using positions of visual landmarks in
images from the camera. As an example, docking between spacecraft and International
Space Station (ISS) will be discussed. Nowadays in process of docking this problem
solving with special radio-electronic and optical systems, components of this systems
must be placed on ISS and spacecraft. Also, all spacecrafts during last 40 years equipped
with specialized television system that using in process of docking for additional visual
control.

Earlier in articles [1, 2] described application of television system to determining
relative position of spacecraft relative to ISS. Special computer applications developed
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to solve this task. These applications can be installed on special laptop PC on the ISS
or on desktop in Mission Control Center. Applications receive video signal from camera,
installed on spacecraft, in process of docking, and performs simultaneous detection and
tracking of visual landmarks that exists onboard ISS. Using data of such landmarks’
positions, known model of camera, relative positions of landmarks determined by
precise 3D model of ISS we able to precisely calculate relative positions of spacecraft
and ISS by solving PnP problem.

1.2 Statement of the Problem

One of the most important components of developed system, that determines perform‐
ance of the system and precision of relative position, determined by system is the module
for simultaneous detection and tracking of visual landmarks. Other methods are fully
mathematically described and their numerical result fully rely on precision of land‐
marks’ pixel positions determined by this module.

Current television system has some specificities. All components on the way from
cameras to PC where our system installed are analog, including components for radio
signal transmitting and receiving on the ISS and Control Center. Each of these compo‐
nents have some different negative influence on the signal, and all of them may cause
different distortions. Examples of distorted images received in the process of docking
represented on Fig. 1 [3].

a)   b)

Fig. 1. Examples of distortions: (a) image size distortion, (b) camera matrix noise

On the other side, instead current approach, when to compensate image distortions
we use algorithms of different complexity, we can use absolutely different approach.
Neural networks at all and partially convolutional neural networks have very good ability
to generalization of input learning information. Two years ago, object detection system
based on deep convolutional neural network [4] have been introduced. This system
utilizes combination of neural networks to detect different objects on images and results
with mean average precision up to 78.8%.

We decided to try to apply this system in our problem to detect visual landmarks in
images from docking video records, study results of this system in our task and decide,
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is it make any sense to use this system for object detection in space docking images or
other images in our future works.

2 Description of Chosen Systems

2.1 Structure of the Faster R-CNN

To perform our studies, we decided to utilize ready-to-use realization of Faster R-CNN
detection system [4] based on the neural networks that implemented using Caffe system
and its Python language bindings, named py-faster-rcnn [5].

In this section, we will briefly discuss overall structure of Faster R-CNN and basic
principles of how it work. Simplified scheme of the system represented on Fig. 2. Input
of the system is the image. Firstly, input image processing by convolutional naurel
network. This part of network contains convolutional layers with ReLU error function
and pooling layers between them.

Image

Convolu�on 
layers

Features

Region Proposal 
Network (RPN)

RoI proposals Classifier

Fig. 2. Scheme of Faster R-CNN system

Convolutional layers perform operation of convolution of small kernels (usually
square) with all channels, that passed to the input of the layer. Pooling layers usually
choose one better output from each area in each output of previous layer, usually pooling
performed in small squares like 2 × 2 or 3 × 3.

Outputs of convolutional neural network are feature maps, that firstly goes to the
input of special network for generation propositions of regions of interest (RoI), that
may contain or not contain some objects.

This network uses results of the convolutional layers to predict possible positions of
objects in the source image and possibility of being an object for each such region.

After moment all RoIs are generated, they pass to the input of the classifier network
part. Every RoI projects to the output of the last convolutional layer and resulting patch
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transforms to the vector of standard size and passes to the input of the classifier that is
fully-connected neural network.

2.2 Learning of Faster R-CNN

Faster R-CNN standard way of learning is sequential learning of each part of the
network. Because networks for RoI proposition and object classification share same
convolutional layers in lower part of whole network this convolutional layer can be
learned together. Classifier (fully-connected part) waits for fixed region proposals during
process of learning, more precisely for RoIs that formed with similar rules for each image
in each learning batch. While RPN learning, all weights are changing, rules of RoI
selection are also changing and it is very hard for learning process to converge. Then in
practice standard learning procedure contains few steps, where RPN and classifier learns
sequentially. First, system leans RPN layers with convolutional layers from scratch.
Then learned on previous step convolutional layer and RPN using to learn classifier. On
third step weights of convolutional net are fixed already, and system performs RPN fine-
tuning. And finally, on fourth step system using fixed fine-tuned RPN to finetune fully-
connected classification layers.

In accordance with authors’ instruction, before learning classifier and convolutional
layer initializing with weight values pre-learned on 1000-classes ImageNet dataset and
using this weight values in learning steps. Convolutional neural networks are “deep
learning” nets, their weights forms in the process of learning from random values, each
layer learn convolution kernels or feature detectors of different scale. To learn network
to generate very good feature detectors network must be learned on very big count of
examples. Because free datasets for object are very small if we compare them to object
classification datasets authors decided to use weights of convolutional and classification
parts previously learned on ImageNet dataset and for each new category set and last
layer config they only fine-tune weights of all layer in assumption that new categories
somehow similar to ImageNet categories. Authors showed that this approach signifi‐
cantly improve their result in PASCAL VOC Challenge.

3 Experimental Researches

For detection system learning we prepared dataset with images that received in process
of docking of space apparatus that docked in different time to different docking nodes
in International Space Station (ISS). Positions of all docking parts visible in each frame
were marked by hands.

To improve quality of object detection we tried to apply augmentation to the data.
Source list of images was increased five times, including original image and image with
height and width increased by 5% and 10% respectively.

Py-faster-rcnn contains three different classification network models, RPN part is
fixed for each model. First model is ZF (network from Zeiler-Fergus article), second is
VGG-CMM-M-1024, same as ZF but parameters of some layers are modified. Final
architecture is VGG-16, that showed best result in PASCAL VOC Challenge in detection
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discipline, in time when original article was published. All models are described properly
in work [6] and deploy versions represented in BVLC Caffe Model Zoo [7].

Unfortunately, VGG-16 architecture not available to experiment because it needs
more than 4 Gb of video memory to perform learning. Models ZF and VGG-CNN-
M-1024 was both tested on different versions of our datasets, and will be compared in
the tables below (Table 1).

Table 1. United table of the results

Node 1 Node 2 Node 3 Node 4
VGG-1024, all objects, no changes 0,790 0,363 0,309 0,394
VGG-1024, augmented 0,765 0,345 0,297 0,508
VGG-1024, high contrast 0,779 0,377 0,250 0,454
ZF, all objects, no changes 0,708 0,316 0,219 0,345
ZF, high contrast 0,727 0,365 0,217 0,36

We learned both network using three different datasets. First dataset is source set,
where all objects from 4 docking nodes are collected in one dataset. Second set is source,
that extended using data augmentation, described before. Images in third dataset are
equals to first, but each image additionally processed by contrast filter, because all
images in source set have low contrast, some of them extremely low.

To receive some comparable quality metrics for our results we decided to use Mean
Average Precision quality metrics, that was calculated according to rules, that can be
found in full PASCAL VOC Challenge rules document [8]. This metric for now is
standard to quality measurement in object detection systems. To make our results short,
Precision-Recall curves and mAP calculated for all objects in test set together.

Tests shown us that increasing of learning set multiple times has very low positive
effect on detection quality. Contrast increasing has low positive effect for one separate
object type, and no effect for the rest objects. Most of best results shown by source
network learned without filtering and/or augmentation.

If we compare results to similar with another architect, object detection mAPs with
VGG-CNN-M-1024 detection network are a bit higher than respective values with ZF
network. Some objects are detected better, another ones – worse.

4 Conclusions

In the process of our research, we performed different experiments of possibility pf
application of Faster R-CNN neural-based object detection system to the task of object
detection in process of docking, as an example we used space docking images. Received
results show us, that system is able to detect objects with good contrast to surrounding
frame area, such as special docking target (used by operator to lead spacecraft to the
docking node) or large docking unit. Visible features, that has low difference from
surroundings, or any other part of the station are almost never detected. Augmenting by
deformation of the size of each image with small changed in ground-truth rectangles
corners coordinates do not increased robustness of detection, or quality. Some results,

Object Detection on Images in Docking Tasks 83



that not represented here, show that increase of contrast and sharpness of testing set
results in higher quality of detection. Influence of filtering will be tested more thoroughly
in our future work.

Attempt to use simpler architecture with different layers’ size resulted in lower
detection quality, so in the future works we will test last of represented architects, that
should result in best quality of detection.
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Abstract. An automatic analysis of images of the histological slices is one of
main steps in process of description of structure of neural network in norm and
pathology. Understanding of structure and functions of that networks may help
to improve neuro-rehabilitation technologies and to translate experimental data
to the clinical practice. Main problem of the automatic analysis is complexity of
research object and high variance of its parameters, such as thickness and
transparency of slice, intensity and type of histological marker, etc. Variance of
parameters make every step of neuron detection very hard and complex task. We
represent algorithm of neuron detection on images of spinal cord slices using
deep neural network. Networks with different parameters are compared to pre-
vious algorithm that based on pixels’ filtration by color.

Keywords: Neuron detection � Deep learning � Object detection � Image
segmentation � Neural networks � Spinal cord slices � NeuN

1 Introduction

Development of new tools for experimental data analysis is important task to increase
the effectiveness of studies devoted to the neuronal control of locomotor and postural
functions. Investigations in this area are significant for the invention of new rehabili-
tation methods of peoples with neuromotor disorders [1–3]. Essential step in these
studies is creation of maps of neuronal distribution within the spinal cord.
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Cell detection on images of the histological slices is an intensively developing area
of interest in bioinformatics. But widely used program solutions [4, 5] are not able to
detect neurons on images containing some defects. There are some articles describing
algorithms of neuron detection on both normal and defective images [6–9], but these
algorithms were developed for 3D images created using high-resolution electronic
microscope. That algorithms cannot be applied to 2D images of histological slices that
contains many different physical defects, so other approach is required.

Last decade (since 2006 year) the popularity of the deep convolutional neural
networks grows exponentially. These algorithms have been applied for the data and
image analysis in many different tasks like object detection [10, 11], object classifi-
cation [12], and image generation for some scientific applications or for entertainment
[13]. Convolutional networks have been also applied for semantic segmentation tasks,
and have shown good results on PASCAL VOC dataset [14]. The main advantage of
the neural networks over the classical image processing methods is requirement only
the initial images and the ground truth markup, that relied upon the current task.
Classical (image segmentation) methods needs large set of rules to segment different
areas of the image, set must be hand-made for each area. Main disadvantage of con-
volutional neural network is need in the large training dataset, and in the learning
dataset covered all or almost all possible variations in the training dataset (it is espe-
cially difficult to achieve when histological slices are processed).

An automatic neuron detection in histological slice images is very hard because of
different problems. (1) Some neurons are seem to be more pale than others because of
their location out of focus; this is a reason of artifacts in optical density assessment.
(2) Not only soma of neurons, but also fragments of their processes (axon, dendrites)
are detected by some neuromorphological methods; potentially this may cause false
results of soma size detection or cells counting. (3) Images of neurons may contain
particular physical defects of the tissue: fractures, compressions, etc., that complicates
an automatic detection of the objects of interest. (4) In many histological methods one
image can contain neurons of very different sizes, that makes harder the tuning of
parameters for automatic detection of neurons on the slice. (5) Different photo cap-
turing conditions such as brightness of light source, opacity of glasses around slice and
slice itself can cause shift in the intensity of RGB channels of the image and can results
in additional complication in the development of algorithm for automatic neuron
detection. Examples of fragments of histological slice images represented on Fig. 1.

Fig. 1. Fragments of cat spinal cord slices. Immunohistochemical detection of the NeuN
protein. All three fragments (1, 2 and 3) are extracted from different regions of the same slice.
Thick arrows point to the bodies of neurons, thin arrows indicate slice defects
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The problem of automatic detection of the neurons on histological slices images is
non-trivial and requires complex algorithm allowing to solve all difficulties described
above. The aim of the present work is a development and testing of such algorithm
based upon the neural-network approach.

2 Methods

Figure 1 contains examples of fragments of one of the frontal slices of cat spinal cord
after immunohistochemical detection of special neuronal marker – NeuN protein. To
solve problem of automatic neuron detection on slices we developed deep neuronal
network (see Fig. 2) that is Fully Convolutional Network (FCN) [10, 11].

First convolutional layer contains 100 filters 3 � 3, parameters of layer are applied
so that output of layer has size equal to input image. This layer developed for detection
of the simple structural elements, like borders and corners. Second layer contains 50
filters of size 3 � 3 or 5 � 5, and is different for each test. Small size of filter in second
layer chosen in assumption that decision if pixel rely to neuron or not can be done using
color of pixel and its small surrounding; experiments approved that assumption is right.

In first two tests second layer work as grid of small fully-connected networks with
each cell 3 � 3 and 5 � 5 respectively, each small “network” works in its own cell and
returns respective output. In third test filter applied to each area of the image as sliding
window, experiments showed that this approach with filter size 3 � 3 returns better
result both visually and numerically.

Third layer is deconvolutional layer that uses set of filters learned by second
convolutional layer to receive image of source size. Last layer (loss) compare output of
deconvolutional layer to target image where areas where are neurons marked with
white color, and other areas marked with black. Target of learning is to minimize loss
between output of deconvolutional layer and target image.

3 Results

We pre-processed the learning/testing and verification datasets. Each dataset contains
fragments of images of the slices (see Fig. 3, left) and corresponding binary masks
where white areas are neurons and black areas are regions surrounded them (sur-
rounding regions) (see Fig. 3, right).

Input image
WxH

1st conv
3x3 str. 1

2nd conv
5x5 str. 5
3x3 str. 3
3x3 str. 1

deconv
5x5 str. 5
3x3 str. 3
3x3 str. 1

Loss

Binary mask
WxH

Fig. 2. Overall scheme of the network.
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To verify the results of network and to compare them to previously developed
algorithm (based on LAB image transform and adaptive filtering by histograms of
components of the transform [15]) we decided to find rectangles around white areas in
markup, and every resulting binary image. To verify the detection, we used two cri-
teria: Intersection over Union (IoU) for rectangle in ground truth image and detection
result more than 50% or distance between centers of rectangles less than 13 pixels.
Second criteria is required because neural network can detect neuron properly, but size
of white area will be less that enough to achieve IoU 50% and more.

Fig. 3. Example of learning/testing markup

Table 1. Comparison of precision and recall for different approaches

LAB filter 5 � 5, step 5 3 � 3, step 3 3 � 3, step 1
Prec Rec Prec Rec Prec Rec Prec Rec

39 0.8 0.909 0.941 0.762 1.000 0.571 1.000 0.571
42 0.944 1.0 0.536 0.882 0.750 0.882 0.714 0.882
44 0.765 1.0 0.733 0.846 0.889 0.615 0.889 0.615
46 0.889 1.0 0.941 0.941 0.923 0.750 0.857 0.750
49 1.0 1.0 0.632 0.727 0.913 0.636 0.864 0.576
50 0.867 0.975 0.909 0.750 1.000 0.675 1.000 0.675
51 0.762 0.762 0.739 0.810 0.800 0.762 0.762 0.762
53 0.765 0.722 0.706 0.667 0.818 0.529 0.818 0.500
54 0.957 0.957 0.840 0.913 1.000 0.762 1.000 0.773
55 0.719 0.885 0.882 0.577 0.667 0.231 0.750 0.231
56 0.952 1.000 0.611 0.550 0.667 0.300 0.571 0.200
57 0.933 0.933 0.743 0.867 0.730 0.900 0.730 0.871
58 0.92 1.000 0.630 0.739 0.905 0.826 0.900 0.783
60 0.882 0.833 0.818 0.500 0.571 0.222 0.625 0.278
62 0.909 0.976 0.884 0.950 1.000 0.927 0.973 0.900
63 0.871 0.964 0.806 0.926 0.923 0.889 0.958 0.852
64 0.885 0.920 0.909 0.800 0.895 0.630 0.684 0.520
65 0.913 0.840 0.947 0.720 1.000 0.538 0.929 0.500
66 0.828 0.923 0.905 0.731 0.882 0.556 0.889 0.615
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Using this two approaches, we could calculate count of true positives (successfully
detected, TP), false positives (false detections, FP), and false negatives (missed neu-
rons, FN) for previous method and each configuration of neural network. Using this
data, we calculated precision (Prec) = TP/(TP + FP) and recall (Rec) = TP/(TP + FN)
for each methods and collected them to Table 1. In the left column represented number
of image in the set, each pair of columns contains precision and recall for each method,
that subscribed in top row.

Best precision has been received with network where second layer contains con-
volution with 3 � 3 filter with step 1. Best recall (detected more neurons) we received
using previously developed method with LAB filter. Main reason recall of method
based on neural network is not enough is small size of learning set (not all possible
neuron views are covered).

4 Conclusions

An approach for detection neurons on photo images of histological slices of cat spinal
cord using deep learning fully-convolutional neural network is represented. Results
shown precision of detection up to 88% for one fragment that outperforms precision of
previously developed approach based on LAB image transform.

Disadvantage of the presented approach is lower completeness of detection. To
improve it, in future we will increase the size of learning data set, and will combine the
results of networks computation with different architects to not lost neurons that hard
for one separate architect. Also we plan to apply to this task more networks especially
developed for object segmentation.

Acknowledgements. This work performed with financial support of Russian Science Founda-
tion by Grant № 14-15-00788.
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Abstract. The dynamics of data traffic intensity is examined using traffic
measurements at the interface switch input. The wish to prevent failures of trunk
line equipment and take the full advantage of network resources makes it
necessary to be able to predict the network usage. The research tackles the
problem of building a predicting neural-net model of the time sequence of
network traffic.
Topological data analysis methods are used for data preprocessing. Nonlinear

dynamics algorithms are used to choose the neural net architecture. Topological
data analysis methods allow the computation of time sequence invariants. The
probability function for random field maxima cannot be described analytically.
However, computational topology algorithms make it possible to approximate
this function using the expected value of Euler’s characteristic defined over a set
of peaks. The expected values of Euler’s characteristic are found by constructing
persistence diagrams and computing barcode lengths. A solution of the problem
with the help of R-based libraries is given. The computation of Euler’s char-
acteristics allows us to divide the whole data set into several uniform subsets.
Predicting neural-net models are built for each of such subsets. Whitney and
Takens theorems are used for determining the architecture of the sought-for
neural net model. According to these theorems, the associative properties of a
mathematical model depend on how accurate the dimensionality of the dynamic
system is defined. The sub-problem is solved using nonlinear dynamics algo-
rithms and calculating the correlation integral. The goal of the research is to
provide ways to secure the effective transmission of data packets.

Keywords: Computational topology � Persistence � Stability � Neural network

1 Introduction

The topicality of the study is determined by the following reasons. The continuing
development of telecommunication and Internet services sets new requirements for the
bandwidth of telecommunication channels. The presence of a great deal of various
services in a single physical transmission medium at pick hours can bring about the
overloading of switching and routing devices in trunk lines and, as result, a reduction of
many services. The wish to prevent failures of trunk line equipment and take the full
advantage of network resources makes the problem of effective use of the
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telecommunications channel bandwidth very important (the direct widening of the
bandwidth inevitably leads to an increase of service costs). It is necessary to have
effective traffic control methods that could use statistical data to predict the traffic
intensity. A lot of modern publications deal with mathematical models of different
types of network traffic [1–3]. The complexity and relevance of this problem urge
further research in the field.

2 The Topological Data Analysis

The topological data analysis is a new theoretical trend in the field of data analysis. The
approach allows the determination of topological data structures. Recent advancements
in the field of computational topology make it possible to find topological invariants in
data collections [2, 4, 5].

The point of the analysis is that stable properties are to be immune to noise,
distortions, errors, lack of data. The practice of using the analysis in different fields
shows that the supposition is true and stable topological properties can provide a lot of
information about data collections. Persistence diagrams are one of basic tools of
computational topology. They make it possible to get useful information about
excursion sets of a function. Below are the basic definitions (according to [4]).

Let X be a topological space being triangulated, f be a continuous tame function
defined over space X. Let us introduce the notation Ua ¼ f�1ð�1; a� for a 2 R. When
moving upwards, components Ua can merge or produce new components. It is possible
to trace how the sub-level topology changes with a by examining homologies of these
sets with, say, persistence homologies. Parameter a 2 R is called the homological
critical value if for certain k the homomorphism induced by nesting f� : HkðUa�eÞ !
HkðUaþ eÞ is not an isomorphism for any sufficiently small e > 0 (homology groups are
considered with coefficients in Z2). Continuous function f is called tame function if it
has a finite number of homological critical values. When b � a, then Ub � Ua. Let us
denote a set of connectivity components as C(a) = C(Ua). It is possible to define a
functional – Euler characteristic – over a set of sub-levels of Ua. Let X � R2. Then, in
the terms of algebraic topology, Euler’s number is vðUaÞ ¼ b0 � b1, where b0, b1 are
the ranks of the first two homology groups. Functional v(Ua) measures the field
topological complexity on the sub-level set. Note that for function f it is possible to deal
with a set of super-levels Ua ¼ f�1½a;1Þ instead of sub-levels.

Let us define the persistence diagram according to [5]. Let f: X ! R be a tame
function. Let a1 < a2 < … < an be critical homological values. Let us consider inter-
jacent values b0; b1; . . .; bn : bi�1\ai\bi. Let us supplement the chosen points in the
following way: b�1 ¼ a0 ¼ �1; bnþ 1 ¼ anþ 1 ¼ þ1. Let us define the multiplicity
of point (ai < aj) for each couple of indices 0 � i < j < n + 1 by setting

l j
i ¼ bbjbi�1

� bbjbi þ bbj�1

bi � bbj�1

bi�1
, where byx ¼ dimðImðf yx ÞÞ;f yx : HkðUxÞ ! HkðUyÞ. Per-

sistence diagram D(f) � R2 of function f stands for a set of points (ai, aj) (i, j = 0, 1, …,
n + 1) adjusted for multiplicity l j

i in combination with a set of diagonal points D ¼
ðx; xÞ x 2 Rjf g adjusted for infinite multiplicity.
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The immunity of a persistence diagram to perturbations of function f is its
remarkable feature. Persistence diagrams can be used to calculate the lengths of the
barcodes of connectivity components. Here the term barcode stands for the component
lifetime. Let us denote the summarized lengths of barcodes of two homology groups H0

and H1 as L0 and L1 correspondingly. Then the mean of the Euler characteristic can be
determined [2] as

v ¼ L0 � L1: ð1Þ

3 Setting the Problem

A second-level interfacial switch of a backbone line provider is taken as a test object in
the paper. The traffic coming to each port of the switch is integrated traffic from user
groups belonging to a particular region. The explanatory drawing is given in Fig. 1.
The Cacti software (SNMP interface protocol) was used to gather statistic data. The
information about the degree of network usage is more useful in practice. The
knowledge of the number of packets in unit time can be misleading. For this reason the
aggregate quantity x(t) – traffic intensity (in bits) at moment t – is taken as an
observable variable. The extension of data is 10080 points or 7 days. The plot of traffic
intensity measured at port GE 0 is shown in Fig. 2. Each point in this plot represents a
number of bits going through the trunk in one minute’s time.

So the goal is to construct a mathematical model for the m-step prediction of traffic
intensity using observations {x(t), t = 1, 2, …, N}, where N is the number of points.
The estimates of Euler’s characteristics are used here as indication of network usage.
The following algorithm is proposed. The whole data collection is to be divided in
clusters with different Euler’s characteristics. A neural-net prediction model is to be
built for each cluster using nonlinear dynamics methods. Below is the result of the
experimentation.

Fig. 1. The measurement arrangement.
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4 Topological Invariants Calculated for a Traffic Intensity
Sequence

Packet TDA from a public repository of R packets was used as a library for finding
stable homologies. The packet has a broad toolkit for topological data analysis by
topological methods.

Before finding topological characteristics, the whole data collection was divided in
some portions. Each portion held data acquired in two hours’ time. For each portion
persistence diagrams, barcodes were determined and Euler’s characteristic estimates
were calculated by formula (1).

The following algorithm was used to find estimates of Euler’s characteristic in the
TDA packet. A triangulation grid was first built using function Grid(). Then function
gridDiag was used to produce matrix Diag. Function gridDiag evaluates the actual
value of the function by the triangulation grid, generates simplex filtration using these
values, and calculates constant homologies from the filtration. Figure 3 shows the
persistence diagrams for one portion of data. The birth time of a component is plotted

Fig. 2. The traffic intensity plot at port GE 0.

Fig. 3. The plot on the right shows the persistence diagram of the superlevel sets of the KDE.

94 N. Gabdrakhmanova



as abscissas; the death time is plotted as ordinates. The dots correspond to
zero-dimensional simplexes, the triangles mark single-dimensional simplexes. Figure 4
presents the barcode chart of zero-dimensional simplexes. Table 1 gives the estimates
computed for different (n = 15) portions of the object. The following notation is used in
the table: n is the number of a portion (interval), L0 and L1 are the summarized barcode
lengths of zero- and single-dimensional simplexes, v is the estimate of Euler’s char-
acteristic (1). The plot in Fig. 5 shows Euler’s characteristic as function of n. The
horizontal axis represents the number of an interval and Euler’s characteristic is
measured on the vertical axis.

Fig. 4. Barcode

Table 1. The estimates of Euler’s characteristic

n 1 2 3 4 5 6 7 8 9 10 11 12

L0 3.7 4.1 3.6 3.7 2.2 1.7 2.0 2.0 1.8 2.4 3.4 3.6
L1 2.3 1.6 1.7 1.8 2.5 1.7 2.0 2.0 1.5 3.3 1.8 2.3
v 1.5 2.6 1.9 1.8 −0.3 −0.1 0.03 0.04 0.3 −0.8 1.5 1.4

Fig. 5. Euler’s characteristic as function of n.
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The results prove that Euler’s numbers are a stable characteristic of traffic intensity.
At the next stage the portions with the same [v] (where [.] is the integer of a number)
are united in a single cluster. A neural-net prediction model is built for each cluster.

5 Building the Neural-Net Model of the Data

Methods of nonlinear dynamics are used to construct a neural-net model for a selected
cluster. The subproblem is set as follows. Let xðtÞf gNt¼1 be measurements of a particular
observable scalar component of a d1-dimensional dynamic system �y. On the whole, the
dimensionality and behavior of the dynamic system are not known. For a given time
sequence it is necessary to build a model that would incorporate the dynamics
responsible for the generation of observations x(t). According to Takens’ theorem, the
geometrical structure of the dynamics of a multivariable system can be restored using
observations xðtÞf gNt¼1 in a D-dimensional space built around new vector �zðtÞ ¼
xðtÞ; xðt � 1Þ; . . .; xðt � ðD� 1ÞÞf gT (where D 	 2d1 + 1). The evolution of points

�zðtÞ ! �zðtþ 1Þ in the restored space corresponds to the evolution of points �yðtÞ !
�yðtþ 1Þ in the initial space. The procedure of searching for a suitable D is called
nesting. The least value of D at which the dynamic restoration is achieved is called the
dimension of the nesting. The algorithm offered by P. Grassberger and I. Proccaccia in
1983 makes it possible to evaluate D using a time sequence.

After D is estimated, the problem at hand can be formulated in the following way.
There is time series xðtÞf gNt¼1 and restoration parameters (D = 11 in our case) are set.
For N1 vectors �zðtÞ ¼ xðtÞ; xðt � 1Þ; . . .; xðt � ðD� 1ÞÞf gT the values of the sought-for
function FðtÞ ¼ Fð�zðtÞÞ are known (because the terms of the time series following �zðtÞ
are known). It is necessary to find the value of the sought-for function at new point �zðtÞ,
x̂ ¼ Fð�zÞ.

Neural nets of the multiple-layer perceptron type [6] are used to tackle the problem.
Only the key results are given below. Figure 6 shows the graph of traffic intensity on a
set of test points. The horizontal axis represents time, the vertical axis shows the
normalized traffic intensity; the solid line corresponds to experimental data x, the
dashed line represents theoretical results x̂.
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Fig. 6. Traffic intensity on a set of test points
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6 Conclusions

The goal of the paper was to test the hypothesis that the use of the topological data
analysis would make it possible to build traffic intensity prediction models due to
finding additional characteristics that cannot be discovered by conventional data
analysis. The data of network traffic intensity in a week’s time were examined. The
computations showed that the traffic intensity dynamics can be described by Betti
numbers and Euler’s characteristics. The algorithm using Euler’s characteristics was
used in the paper to build a model makes it possible to increase the prediction accuracy
by an order of magnitude (as compared with methods not using Betti numbers). The
paper gives the results of first steps towards the application of topological data analysis
for predicting the network traffic intensity. The results proved the prospectiveness of
further research in the field.
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Abstract. Recognition of textures is one of the topical tasks of com-
puter vision. The key step in solving this problem is the formation of fea-
ture description of the texture image. A new approach to the formation of
texture features based on the theory of active perception is proposed. The
results of a computational experiment based on the Brodatz-32 database
are presented, and the accuracy of the classification is demonstrated. The
application of the proposed feature systems for recognition of snow and
land textures in the solution of the problem of auto piloting in complex
natural and climatic conditions is considered.

Keywords: Texture recognition · Theory of active perception · Auto
piloting

1 Introduction

The task of recognizing textures is one of the fundamental problems in the field of
computer vision and image processing. Texture recognition is used for automatic
and automated analysis of medical images, object recognition, environmental
modeling and image search in databases. The methods for recognizing textures
also find their application in solving the problem of auto piloting in complex
natural and climatic conditions.

The structure of the system for recognizing textured images can be repre-
sented as a set of three stages: image preprocessing, formation of image feature
system and making decision.

The preliminary processing of the image usually consists in applying to the
image of the filter suppressing noise. Often the implementation of this stage is
not fulfilled. In this case, the responsibility for the noise invariance is shifted to
the method of forming feature description.

When forming the feature description of a textured image, a wavelet trans-
form is used, a method of analyzing independent components, Markov random
fields and so on. In [1], it is proposed to use the Gabor filter bank to calculate
the feature description. However, the filters included in the Gabor filter bank
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are not orthogonal. The method of forming an image description based on local
binary patterns is presented in [2]. It is based on the calculation of the sign of
the difference between the brightness of neighboring samples. This method is
not resistant to noise due to the use of threshold operation. The modification
of the method of local binary patterns is known – the method of local ternary
patterns [3]. The description formed on the basis of local ternary patterns is
noise-resistant, but not resistant to brightness level changes, since the algorithm
for generating the feature description uses fixed predetermined thresholds.

When solving the problem of classification of textured images on the basis of a
well-known feature description, the method of K-nearest neighbors and artificial
neural networks are often used.

This paper is devoted to solving the problem of recognizing textured images
from the perspective of the theory of active perception (TAP).

2 Using TAP in Image Recognition

The basic transformation of TAP is a U-transformation, which is realized in two
stages [4]. In the first stage, the Q-transformation is applied to the image, after
which we obtain a matrix of visual masses m with a size of 4 × 4 elements.
In the second stage, the set of filters F = {Fi} is applied to the result of the
Q-transformation.

The filter element can take the values “+1” (dark areas) and “−1” (light
areas). Structurally, these filters are similar to the Walsh filters of the Harmuth
system. The specificity of using these filters is that they are applied after the
implementation of the Q-transformation.

In the TAP, to each filter Fi the binary operator Vi is put in correspondence.
In this case the operator Vi or Vi corresponds to the component µi �= 0 of the
vector µi depending on the sign of the component.

Defining the operations of set-theoretic multiplication and addition on the set
{Vi}, an operation analogous to negation, two elements: 1 – V0 0 – V0 we obtain
the algebra of signal description in Boolean functions: AV =< {Vi} : +,× >.
For any Vi, Vj , Vk ∈ V, the laws of commutativity, associativity, idempotency,
and distributivity are fulfilled.

A group algebra is formed on the set of operators:

1. the family of algebraic structures Pn of cardinality 35, called complete groups,
are formed on triples of operators (Vi, Vj , Vk);

2. the family of algebraic structures Ps of power 105 (for 16 filters), called closed
groups, is formed on the four operators (Vi, Vj , Vp, Vm);

Comparing TAP with the known approaches to the formation of the feature
description of the signal, we can note the following:

1. in comparison with the wavelet transform and the Fourier transform, TAP
makes it possible to calculate, with respect to spectral coefficients, signs of a
higher level (due to the use of group algebra);
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2. in comparison with the models of deep learning in TAP, the feature descrip-
tion is calculated without using training, but by predefined templates;

3. only the addition and subtraction operations are used in calculating the U -
transformation.

3 Formation of Feature Description of a Textured Image

The algorithm for forming the feature description of an image consists in combin-
ing descriptions of individual areas of the original image, obtained on the basis
of complete or closed groups, into histograms of complete and closed groups.
The algorithm for forming the feature description can be written as follows:

∀i = 1 : sh : (N − h)
∀j = 1 : sw : (M − w)

Is = I[i : (i + sh − 1); j : (j + sw − 1)];
IG = H[IG,Γ];
ID[IG] = ID[IG] + 1.

The following notations are used in the algorithm record: ID – the image
description obtained during the operation of the algorithm, Is is the region of
the image over which the IG description is formed, the size of the region Is –
h × w samples, Γ is the type of the description being formed: Pnm – complete
groups on the operation of multiplication, Pna – complete groups on the addition
operation, Ps – closed groups. The IG description can be obtained in the form
of complete or closed groups. The value of the shift step of the area Is in the

1, 2, 4, ... 1, 3, 5, ...

1, 4, ...1, 2, ...

1 2 3 4 5
4 2 1 2 1

...

...

Computational 
group numbers

Group number

Frequency of group 
occurrence

Fig. 1. The scheme of calculation of the histogram of groups
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Table 1. Results of the use of histograms of complete and closed groups

Number of Feature Image area Accuracy of Time of feature

images in the descriptions size Is classification description

sample used (in %) calculation (in ms)

32× 16 = 512 Ps 64× 64 97 4

32× 36 = 1024 Ps + Pna 32× 32 97 10

32× 64 = 2048 Ps+Pnm+Pna 32× 32 94 5

image I is sh of horizontal and sw vertical counts of samples. The realization of
the operator H for the calculation of complete and closed groups by the image
is given in [4].

Figure 1 shows the scheme for calculating the group histogram.

4 Computational Experiment

As the initial data for the implementation of the computational experiment,
the Brodatz-32 texture image database is used. When solving the classification
problem, the support vector method with a linear kernel is used.

The results of estimating the accuracy of classification using various feature
descriptions are given in Table 1. To form a sample, each texture image is divided
into 16, 32 and 64 equal parts. The values of the parameters sh and sw are 1/4
of the size of the area.

The results of testing the proposed approach to the formation of the feature
description to various distortions of the classified image are given in Tables 2
and 3. As the feature description, the description obtained after merging the
histograms of complete (on addition and multiplication) and closed groups was
used. This feature description provides the best results when classifying textured
images without distortion.

The size of the classified image is 256 × 256 samples, the size of the sample
is 512 images, the value of the window shift in the sw (sh) image is 32 samples.
During the testing, as a test sample the distorted images were used, and as a
training sample – the entire database of images of textures.

Table 2 shows the results of the evaluation of classification accuracy when
the classified image is rotated by a given angle. Table 3 shows the results of
experiments to study the invariance of the proposed feature description to the
distortion of the classified image by normal noise.

Table 4 shows the results of the classification of the Brodatz-32 database
on the basis of the known methods. Table 5 shows the evaluation of the noise
invariance of the known systems of features (in %).
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Table 2. Evaluation of the invariance to rotation

Angle of rotation (in degrees) 1 2 3 4 5 6 7 8 9 10 15 20

Accuracy of classification (in %) 94 93 93 89 93 91 90 89 87 87 70 58

Table 3. Evaluation of the noise invariance

Signal to noise ratio (in decibels) 20 15 10 5 0

Accuracy of classification (in %) 92 68 59 31 15

Table 4. Accuracy of classification based on the known methods

Reference Feature description of the
texture image

Algorithm of
classification

Accuracy (in %)

[2] Gabor filters KNN 96

[2] Local binary patterns KNN 98

[3] Convolutional neural network Convolutional neural
network

91

[5] Local ternary patterns SVM 95

[5] Local high order statistics SVM 99

Table 5. Invariance to distortion by noise of the known feature descriptions

Invariance to distortion by
noise/Feature descriptions

20 10 5

SIFT 87 55 32

LBP 85 53 20

Comparing the proposed approach with the known ones, we can note the
following:

1. the filters used in constructing the feature description of a textured image, in
contrast to Gabor filters, are orthogonal;

2. when forming a feature description, in comparison with Local Binary Patterns
and Local Ternary Patterns, there is no need to set predefined thresholds;

3. the invariance of the proposed feature descriptions to the distortion of the
classified image by normal noise is comparable to the invariance to normal
noise of LBP and SIFT features [2];

4. in [2] it is indicated that the average time for calculating LBP features by the
image is 0.6 ms, based on Gabor filters – 197 ms (Intel Core i5-2400, C++);
The time of calculation of the proposed systems of features depends on the
size of the processed image, the size of the Is region, and the magnitude of the
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shift of the Is region over the image, and ranges from 1 to 19 ms (Intel Core
i7-4790K, C++); Thus, by the speed of computation the proposed feature
descriptions are as good as the known ones.

5 Conclusion

The article considers an approach to the formation of the feature description of
a textured image based on the theory of active perception. The practical appli-
cation of this feature description is the segmentation of the image obtained from
the video camera to solve the tasks of autopilot in the absence of a road network.
Testing of the proposed approach to the formation of the feature description is
performed using the method of reference vectors based on the Brodatz-32 tex-
tured image database. We obtained the result showing the effectiveness of the
proposed systems of characteristics, their invariance to various distortions of the
classified images.
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Abstract. A two-loop cascade control system of a DC drive is considered in this
research. The task is to keep transients quality in both speed and armature current
loops. It is solved by a usage of P- and PI-controller parameters neural tuner,
which operates in real time and does not require a plant model. The tuner is trained
online during its functioning in order to follow the plant parameters change, but
usage of too high values of a learning rate may result in instability of the control
system. So, the upper bound of the learning rate value calculation method is
proposed. It is based on Lyapunov’s second method application to estimate the
system sustainability. It is applied to implement adaptive control of a mathemat‐
ical model of a two-high rolling mill. Obtained results show that the proposed
method is reliable. The tuner allowed to reduce the plant energy consumption by
1–2% comparing to conventional P-controller.

Keywords: Control system stability · Learning rate · DC drive · Neural tuner

1 Introduction

Adaptive control systems development is quite actual for industrial plants of high power
nowadays [1]. The main idea is to compensate plant parameters change caused by
switching to another functioning mode or equipment wearing by linear P/PI-controllers
parameters adjustment. This allows to decrease energy consumption of the nonlinear
plant. Electric DC drives of different industrial machines (for an instance, rolling mills)
are of particular interest. Their control systems include two loops [2], each of which
contains nonlinear plant: (1) an armature winding, (2) mechanics, which parameters drift
due to mentioned reasons. Both loops are based on P- and PI-controllers, which should
be adjusted. Most of methods to make such an adjustment [3–5] are based on a plant, a
reference model or a state observer usage. Obtaining the plant model or the observer is
a complicated task considering real production. The problem is to choose the adjustment
step size value, using the reference model.

We have proposed a neural tuner [6, 7], which is able to solve the problem in question
and does not need mentioned models. It combines expert systems and neural networks.
A rule base defines moments when to train the network online and calculates the learning
rate. But a method is needed to check whether this learning rate is not too high to make
the control system unstable.
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2 Definition of the Tuner and Problem Statement

The DC drive is in operation at the moment. Its control system consists of two loops:
for armature current (IA) and speed (n). The current parameters of both speed and arma‐
ture current controllers are known. They have been calculated for one of the functioning
modes, but are not optimal for all other ones. The speed setpoint is changed like a ramp
with known intensity. The required transient quality indexes (overshoot etc.) are also
known for both loops. The mechanics and the armature winding change their parameters.
The task is to keep required transient quality.

The neural tuners operate as follows. Each of them contains a rule base to (1) define
moments when to train a neural network online, (2) calculate a learning rate. Rules for
both tuners are shown in [6, 7]. The neural networks structures are calculated using the
method described in [6]: for the armature current loop it is 5-14-2 (output neurons
calculate proportional KP and integral KI controller gains), for the speed loop it is 2-7-1
(output neuron calculates KP). The initial state for both these networks is set using
extreme learning machine [8] allowing to form KP, KI values, which have been used
before tuners installation, at networks outputs. Then the tuners are trained online using
the backpropagation method [9]. The task is to calculate the upper bound for the output
neurons learning rates 𝜂(2)1 , 𝜂(2)2  to keep the control system stable. The learning rate for

the hidden layer is constant (10−4). Tuners are called every Δt seconds [10].

3 Stability of the Control System

Having analyzed researches on the matter of the systems with intelligent controllers and
tuners development [11, 12], Lyapunov’s second method is chosen for the system in
question. The main state variable for both control loops is the error (e), which is the
difference between the setpoint r(t) and the plant (the mechanics, the armature winding)
output y(t). According to [9], the neuron calculating KP is trained in proportion to the
speed of e change: e1(t) = e(t) − e(t − Δt), whereas the neuron calculating KI is trained
in proportion to e value: e2(t) = e(t). So Lyapunov’s function (1) is proposed.

V(E) =
1
2

Nouput∑

i=1

e2
i
(t). (1)

Noutput is the network outputs number. V(E) derivative is calculated as (2) using (3).

ΔV =
1
Δt

Nouput∑

i=1

Δei(t) ⋅ ei(t) +
1

2Δt

Nouput∑

i=1

Δe2
i
(t). (2)
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⎧
⎪
⎨
⎪⎩

e1(t) = Δe(t) = (r(t) − y(t)) − (r(t − Δt) − y(t − Δt))

e2(t) = e(t) = r(t) − y(t)

Δe1(t) = r(t) − 2r(t − Δt) + r(t − 2Δt) − y(t) + 2y(t − Δt) − y(t − 2Δt)

Δe2(t) = r(t) − y(t) − r(t − Δt) + y(t − Δt).

(3)

Let’s substitute ei(t) and Δei(t) in (2) with (3). The equation for the PI-controller is
(4). Such equation has also been obtained for the P-controller. ΔV should be lower than
zero to follow the sustainability sufficient condition. It can be calculated at every moment
of the system functioning. This approach is used to calculate the learning rate upper
bound 𝜂(2)

k max

 (k = 1, 2).

ΔV(t) = [6y2(t) + y(t)(−12r(t) + 14r(t − Δt) − 4r(t − 2Δt) − 14y(t − Δt)

+ 4y(t − 2Δt)) + 9y2(t − Δt) + y(t − Δt)(14r(t) − 18r(t − Δt) + 6r(t − 2Δt)

− 6y(t − 2Δt)) + y2(t − 2Δt) + y(t − 2Δt)(−4r(t) + 4r(t − Δt)) + 6r2(t) + r(t)

⋅ (−14r(t − Δt) + 4r(t − 2Δt)) + 9r2(t − Δt) − 6r(t − Δt)r(t − 2Δt) + r2(t − 2Δt)] ≤ 0.

(4)

4 Upper Bound of Learning Rate Calculation

Let ΔV has been calculated for present moment of the system functioning for all control
loops. If it is negative, then the control loop is stable and the controller parameters can
be made both higher or lower. If it is not negative, then the controller parameters can be
made lower only to increase the system stability. In both cases the desired plant output
yst(t) value, where ΔV would be negative, should be calculated for the current moment.
In order to do that, inequality (4) should be solved, considering y(t) as a variable. If a
range of yst is found, then a certain yst is chosen depending on the sign of ΔV, whether
the previous setpoint value r_old is higher or lower than the current one r(t) and whether
KP or KI is going to be made higher or lower (see Fig. 1).

Let’s consider how to calculate 𝜂(2)
k max

. The found yst value allows to calculate changes
of the control action u(t) value, see the expression (5). Then maximal value of KP and
KI correction can be calculated using (6) (dt is the controller functioning sampling time).

Δu(t) = KP ⋅

(
e(t) −est(t)

)
= KP ⋅

(
r(t) −y(t) −r(t) + yst(t)

)
= KP ⋅

(
yst(t) −y(t)

)
. (5)

{
ΔK1 = ΔKP ≤ Δu(t)∕e(t)

ΔK2 = ΔKI ≤ Δu(t)∕(e(t) ⋅ Δt∕dt). (6)

Then, using the backpropagation method, the mathematical model and the fact
that a linear activation function is used in the output layer of both tuners neural
networks, the Eq. (7) is obtained for the learning rate upper bound calculation. Nhidden

is the number of the neurons in the hidden layer. o(1)
j

 is the jth hidden neuron output.
Then, if |𝜂(2)

k
| < |𝜂(2)

k max

|, then 𝜂(2)
k

 is used for training, otherwise 𝜂(2)
k

 = 𝜂(2)
k max

.
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𝜂
(2)
k max =

ΔKk

e
(2)
k

(
Nhidden∑

j=1

((
O

(1)
j

)2
)
+ 1

) , (k = 1, 2).
(7)

5 Experimental Results

Experiments have been conducted using a two-high rolling mill 1000 mathematical
model (Fig. 2). Initial values for controllers were calculated according to: (1) symmet‐
rical optimum for the armature current loop, (2) technical optimum for the speed loop.

The speed setpoint (setpoint block in Fig. 2) was changed as follows:
0 rpm → 60 rpm → 0 → −60 rpm. The main requirement for the speed loop is to keep
0.35–0.55% overshoot σ. Ksf = 0.637, Kcf = 9.407·10−4, KA = 41.7, TE = 0.036 s,
TM = 4798 s, KP = 0.489, KP sp = 1.745, KI = 13.649.

As for the armature current loop, the main requirement was to keep 3% overshoot
σcurr. There were two experiments. Only one tuner was used during each experiment.

As for the first one, the armature winding parameters drift was modeled. The arma‐
ture winding gain KA and time constant TE were changed in the range 0.8–1.2 from their
nominal values. The results are depicted in Fig. 3. Figure 3h shows a certain range of
time from Fig. 3a to demonstrate several transients. All moments when |𝜂(2)1 | and |𝜂(2)2 |
equal to nil were deleted from Fig. 3d and e. As a result, Fig. 3i and j were obtained. It
can be concluded that almost at every moment absolute value of the learning rate upper

start

ΔV ≥ 0yes no

Is KP or KI  to be 
decreased

yes

Calculate ΔV

no

Inequality ΔV ≤ 0 solving 
considering y(t) as variable,
discriminant D calculation

D < 0yes

Control system is 
unstable. Tuning is 

to be turned off.
The controller is 

given initial 
parameters values

no

D = 0 no

Root yst 
calculation

yes

Two roots ymin and
ymax calculation

|y-ymin|<|y-
ymax|

yst = ymin

yes no

yst = ymax
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calculation

Two roots ymin and
ymax calculation

Is KP or KI  to 
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no

yes
yst = (ymax - ymin )/2
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yst = ymin

yes no

yst = ymax

Return yst

stop

Fig. 1. Algorithm to calculate yst
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bound |𝜂(2)
k max

| was higher than the absolute value of the learning rate obtained from the
triggered rule |𝜂(2)

k
| (k = 1, 2). When |𝜂(2)

k max

| < |𝜂(2)
k

|, 𝜂(2)
k max

 was used as a learning rate.
Comparing to an ordinary PI-controller, the tuner allowed to reduce the rolling mill
energy consumption by 1.5%.

Fig. 3. Modeling results for armature winding parameters drift (IA is the armature current, KP and
KI are the armature current controller parameters, KA is the armature winding gain, TE is the
armature winding time constant, |𝜂(2)1 | and |𝜂(2)2 | are absolute values of output neurons learning rate,
|𝜂(2)

1max
| and |𝜂(2)

2max
| are absolute values of upper bound of output neurons learning rate)

As for the second one, the mechanics parameters drift was modeled. The mechanics
time constant TM was changed in the range 0.5–1.5 from its nominal value. The obtained
results were quite similar to the ones shown in Fig. 3, so the same conclusion as for

Fig. 2. Two-high rolling mill DC drive model (Ksf and Kcf are the speed and the armature current
feedback parameter, KA is the armature winding gain, TE is the armature winding time constant,
TM is the mechanics time constant, KP and KI are the current controller parameters, KP sp is the
speed controller parameter, e is error, neuC_P and neuC_PI are neural tuners.)
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Fig. 3 can be made. The tuner allowed to reduce the plant energy consumption by 2%
comparing to conventional P-controller.

6 Conclusion

The method to calculate the upper bound of the learning rate for the neural tuner allowed
to ensure the sufficient sustainability condition fulfillment for all conducted experiments.
There were no cases of the algorithm branch execution, which was responsible for tuning
stoppage. The DC drive energy consumption was reduced by 1.5–2%. Taking these into
account, it can be concluded that proposed method is reliable.
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Abstract. The article provides the results of application of artificial neural
networks for diagnosis of the condition of electrical mining machinery as well as
the description of data collection and processing of intelligent system structure
and a condition of components of mechatronic systems analysis algorithms using
neural networks. Information is provided on practical implementation of algo‐
rithms in information and diagnostic systems of career excavators developed by
Joint Power Co. Ltd., Moscow.
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1 Introduction

The most important factor in the development of economy in modern conditions is to
accelerate the solution of actual problems of increase of the efficiency of material, energy
and information resources in various sectors of the economy. Modern technical means
of measurement allow to control many process parameters during operation of machi‐
nery and equipment, to convert and transfer data, etc. [1, 2]. However, increasing the
amount of data essentially complicates its analysis by a human. Therefore, it is important
to establish automatic mining systems that provide continuous monitoring of the equip‐
ment during its life cycle, identifying deviations in the early stages of defects, forecasting
of service life, the accumulation of information on the work and malfunction etc. [3].

In severe conditions all components of mining and metallurgical machinery are
subject to intensive external influences, resulting in accelerated wear [4]. The immobi‐
lization time in case of failure of components is accompanied by great economic losses
related mainly to underproduction. The repair and maintenance of excavators now
accounts for 30% of the cost of mineral extraction; more than 20% of the downtime
associated with the repairs, about 40% of unproductive ineffective work. The process of
the repairs have low level of mechanization, more than 90% of repairs are performed
without prior analysis of equipment defects using nondestructive testing methods.
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A study of emergency downtime of the excavators of “Kuzbassrazrezugol” has
shown that the main causes of malfunction are mechanical failure (60%) and defects of
electrical machinery (18%). Detailed failure analysis of career excavator is given in [5].
The increase in resource is a major reserve to save money, materials, energy and labor
costs.

Operational control and continuous assessment of a residual resource significantly
improve the efficiency of the equipment. In addition, failures of electrical and mechan‐
ical equipment may create risks to life and health of personnel. Continuous monitoring,
intelligent diagnosis and evaluation of the resource allow for recovery and repair of
equipment depending on its condition and reduce, thus, risks.

Organization of intellectual ventures in mining industry is a promising development
trend. “Intellectual career” is a technology of future that implements robotic mining.
Various companies are actively working on the use of new information technologies,
intelligent control, monitoring and diagnostics on their machines. Since 2005, the overall
technology of the P&H company (a division of Joy Global Inc.) is based on system
Centurion [6] for managing and collecting data. Hardware and software components of
this system are implemented using neural networks and specifically designed to create
a highly efficient and closely linked network of data control, management and transfer.

The system allows to provide a high-tech access and control of drive system, to
minimize the cycle time, to analyze the productivity of the excavator, to control opera‐
tor’s actions, as well as partially automate control of the excavator, which leads to
significant increase in machine performance.

A promising direction in intelligent diagnostics of components of mining machines
is the use of neural networks [7–9]. Problems of diagnostics are reduced to choice of
informative parameters, organization of data collection system architecture, synthesis
of network, definition of its parameters and its training.

In this paper are examined the results of research and simulation of intelligent diag‐
nostic system of mechatronic complex of career excavator components.

2 The Organization of the Intelligent Diagnostics of Mechatronic
Complex Components

Intelligent excavator is a machine with a high level of organization of management
processes, monitoring and diagnostics, efficient human-to-machine and communication
interfaces, adaptive to changes depending on the mining conditions and harmonious
with the systems of power supplying, transportation and automated enterprise manage‐
ment [10].

For monitoring and subsequent analysis of work of excavator’s mechatronic complex
and its subsystems throughout the life cycle there was developed hardware and software
complex “Electronic engineer”, providing the following key functions:

• data collection from all components of the mechatronic complex;
• logging of the life cycle for mechatronic complex;
• data integrity checking;
• data analysis in real time using source-based data processing algorithms, including:
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– evaluation of the efficiency of the driver, the transport and organization of mining
works;

– estimation of condition and resource of components of excavator mechatronic
complex;

– evaluation of the external environment (power lines, ambient temperature, power
quality, condition of bottom, etc.)

• visualization of data on a local operator’s panel as well as on an external device (e.g.,
computer) within Internet connection;

• communication of excavator mechatronic complex with machines and staff of mining
enterprises and design organizations.

The scheme of algorithm of software operation of the system is shown in Fig. 1. Data
logging is carried out directly from local information and diagnostic modules of exca‐
vator, the connection between them and APCS level computer is carried out according
to the CAN Protocol.

The data may be stored in computer memory or on a dedicated server, and in the
simplest case, the recording and storage of data may be performed using the recorder to
a flash-card.

Checking the data integrity is carried out automatically at the network level of inter‐
action of APCS and local subsystems, however, depending on the particular equipment,
the possibility of data verification can be implemented on the application level.

The system “Electronic engineer” contains three subsystems of data processing
which perform:

• assessment of the effectiveness of mechatronic complex of career excavator;
• assessment of equipment of mechatronic complex of excavator;
• evaluation of components resource of mechatronic complex of excavator.

3 Neural Network for Data Processing

Mechatronic system of career excavators consist of a standard set of components, power
transformers, semiconductor converters (active rectifiers, inverters, etc.), AC or DC
motors, switchgear, cables and controls.

Each component has its own properties regarding performance and occurrence of
malfunctions and therefore requires its own set of state variables that characterize its
work. Application of neural networks for diagnostic information processing uses current
information about the device and provides parallel data processing.

Neural analyzer is built on the topology of “recurrent dual-layer perceptron”
performing clustering of the input data.

There are two ways of clustering data, the first involves the assessment of mecha‐
tronic system as a whole, using 3 neurons in the output layer corresponding to normal,
acceptable and emergency operating modes.

The second method involves a more in-depth data analysis, which first identifies a
faulty component with a mechatronic complex, and then determining its condition, the
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number of neurons involved in the analysis process, is determined by the total number
of possible states of the equipment.

Signals of neural analyzers of mechatronic complex components of the excavator
go to the output neural analyzer (Fig. 2). The output neural analyzer evaluates the current
state of the equipment and, in the case of malfunction, alerts.

Creating neural networks is performed in Matlab using “nftool”. Then neural
network is trained and then tested on a data set that is different from that with which the
training has been carried out. It is necessary to exclude the existence of “memory effect”.

Trained and tested neural network is saved in a separate file. This file is used in real-
time simulation. Matlab also supports the ability to use built neural networks in third-
party applications.

Let’s examine in more detail the structure of a neural network, analyzing the state
of twin-engine electric drive of career excavator.

Fig. 1. Operation scheme of hardware-software complex “Electronic engineer”
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The inputs (receptors) of neural network receive the normalized values of currents
and voltages (total of 4 inputs, input number is designated as i), hence xi, j is the state of
the i-th receptor at time j (memory depth of perceptron – n).

Next, the signals go to an internal (associative) layer of neural network, where
summation of signals is performed taking into account weighting coefficients ai … ei,
obtained during the network training.

The activation function of the associative layer in this example is linear and the
internal feedback is absent (this, in the absence of the need to study the complex depend‐
encies of the signals, can significantly improve the performance of the network).

External (reactive) layer of the neural network consists of three neurons, respectively
for normal, acceptable and emergency modes. Activation functions of responsive
neurons constitute relay elements. Weight coefficients of output layer in this case is
fi … hi.

The signals of local neural analyzers of career excavator mechatronic complex go
to the output neural analyzer, its neural network structure is characterized that it uses an
internal feedback. For the output neural analyzer the equation for ym is as follows:

ym =
∑

i=1..N

ai,1xi,1 + ai,2xi,2 +…+ ai,nxi,n +
∑

i=1..K

bi.1yi,1 + bi.2yi,2 +…+ bi.nyi,n,

where ai, j and bi, j are a weight coefficients, N is a total number of receptors, K is a total
number of hidden neurons, xi, j is a value on input of the i-th receptor at the time j, yi, j is
a value at output of the i-th neuron of hidden layer at time j, n is a memory depth of
perceptron.

During studies of neural analyzers varied the following parameters: voltage of power
line feeding the excavator (±20% of nominal), temperature of power transformer of

Fig. 2. Structure of neural analyzer of twin-engine electric drive
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drives and its windings (±40% of nominal), resistance of rotor windings of DC electric
drives (20% of nominal).

Additionally, were simulated situations in which fired protection (current and
temperature circuit breakers).

A total of 50 experiments were carried out. In 45 experiments, neural analyzer
assessed adequately the condition of components of mechatronic complex (normal,
overload or accident), 4 experiments presented false-positive failure result and 1 false-
negative normal result.

4 Practical Implementation of Algorithms in the Diagnostic System

The developed algorithms of state estimation of components of mechatronic systems:
circuit breakers [11], transformers [12], motors [13] used in information-diagnostic
system of career excavator developed by the Joint Power Co. Ltd. [14].

Operational data are received from the information-diagnostic system and converted
according to special algorithms for easy perception and efficient analysis of emergency
situations, monitoring of equipment condition, parameters of power network.

Data is displayed on the monitor and stored on the server. Important information for
operation evaluation is stored in software modules and processed to analyze the work
efficiency of the excavator and to assess its reliability.

During the work is provided logging of: basic processes, changes of equipment
condition, malfunctions protocols etc. Data is stored at the server and transmitted to the
center. The retention period of records depends on type of process and type of equipment.

5 Conclusion

The increase in life of machines and equipment in the mining and metallurgical indus‐
tries is achieved through continuous monitoring and forecasting during operation.
Operational control and continuous assessment of a residual resource significantly
improve the efficiency of the equipment.

Intelligent systems for diagnostics of electric drives and equipment provide mini‐
mizing cycle time, control of excavator productivity, effective protection, monitoring
actions of the operator, and allow to partially automate the management process, which
leads to increased productivity.

Information systems provide:

• full control of all main operating parameters, pressures, condition of equipment
components;

• analysis and presentation in a convenient form of data on main technological param‐
eters of equipment operation.

Monitoring data on excavator operation are transmitted via Internet to central server
and accessible anywhere in the world.
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Abstract. In this paper we consider the automatic emotions recognition
problem, especially the case of digital audio signal processing. We consider and
verify an straight forward approach in which the classification of a sound
fragment is reduced to the problem of image recognition. The waveform and
spectrogram are used as a visual representation of the image. The computational
experiment was done based on Radvess open dataset including 8 different
emotions: “neutral”, “calm”, “happy,” “sad,” “angry,” “scared”, “disgust”,
“surprised”. Our best accuracy result 71% was produced by combination
“melspectrogram + convolution neural network VGG-16”.

Keywords: Deep learning � Classification � Convolutional neural networks �
Audio recognition � Emotion recognition � Speech recognition

1 Introduction

Human emotion recognition in the flow of multimedia data is an actual and actively
developed field of computer science. The emotion classification problem has great
potential for use in many applied industries, such as robotics, tracking systems and
other systems with interactive user interaction. Solving of this problem allows to
receive users feedback in a natural way, it does not require any additional users actions,
simplifying and accelerating the interaction between computer and a person.

2 Materials and Methods

The classification problem can be considered as a constructing task of a function y:
X ! Y, where X- is the set of various descriptions of objects, Y - is the finite class set.
Thus, there is an unknown target dependence mapping y, whose values are known only
at the objects of the finite training sample Xm = {(x1,y1), …, (xm,ym)}. It is required to
construct an algorithm A:X ! Y, which is able to categorize an arbitrary object
x ∊ X. For images the desired map y is y:Rn ! Y, where n is the total number of pixels
of the image. In case of audio signal recognition n is the number of samples in the
recognition window (Fig. 1).
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There are two basic emotion theories: discrete theory [6], which is based on existence
of universal basic emotions, they can differ in the number and types of basic emotions;
the spatial theory assumes that emotions are decomposed into basis, thus the emotion can
be represented as a point in the vector space [7, 8]. There are six basic emotions: neutral,
angry, happy, sad and surprised. In this paper we adhere the discrete theory [6].

Previously, a number of methods have been proposed for classifying human
emotions in audio, images [11, 12] or video sequence. Most of methods employ feature
selection. That means those algorithms calculate the set of features which has vector
representation (feature vector) and the classification is performed based on this vector.

For example, as a feature of image can be used a sign of presence of a smile on a
face, the position and the shape of the mouth, the breadth of the eyes or the angle of the
eyebrows In audio signal it is necessary to estimate the level of energy, the average
level, the variance, the change in the height of the voice.

In this paper, we being inspired by the latest advances in computer vision and
image recognition have set a goal to verify the approach in which classification of
audio signal is reduced to the image recognition problem.

Nowadays, many problems related to sound processing have been successfully
solved. There are many algorithms for working with sound files and many methods for
its classification, which have various accuracy. Nevertheless, comparison of sound
classification algorithms is subjectively, because experiments were conducted on dif-
ferent datasets and with different recognition problems.

The basic technique for processing audio signal is a fast Fourier transformation [5].
For example, the popular algorithms of J. Haitsma [3] and A. Wang [2] are both based
on the analysis of time-frequency features obtained using Fourier window transfor-
mation. So, the first stage of these algorithms is preprocessing which builds a spec-
trogram of sound using a fast Fourier transform. Further, the J. Haitsma algorithm
calculates the total energy in the subband for each time instant. The time distribution of
energy is coded by function

Fðn;mÞ ¼ 1 if Eðn;mÞ � Eðn;mþ 1Þ � ðEðn� 1;mÞ � Eðn� 1;mþ 1ÞÞ[ 0
0 if Eðn;mÞ � Eðn;mþ 1Þ � ðEðn� 1;mÞ � Eðn� 1;mþ 1ÞÞ� 0

�

where E(n, m) – is energy of n frame in subrange m (Fig. 2).

Spectrogram Calculation of the energy 
distribution over the ranges

Coding of energy distribution

Fig. 1. Illustration of the stages of J. Haitsma algorithm
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The algorithm A. Wang exploits another approach to recognition. It is based on the
searching for the amplitude peaks of the spectrogram and matching them into pairs
(constellations).

The main drawback of this algorithm is that it is rather complicated because peaks
must be resistant to sound distortions. This complexity is well described in articles [6,
14]. Therefore, it is necessary to choose a large number of peaks throughout the entire
area of the spectrogram. Each peak of the spectrogram in this algorithm is a point of the
local maximum of energy. Usually, the number of peaks is determined for one frame.
Using these limitations, it is possible to obtain peaks with the maximum probability of
survival. Then the peaks are matching into pairs, so that each peak is connected to one
or more peaks which are to the right of the time axis. This makes it possible to

accelerate the algorithm by the following coefficient: K � 2ðn1�n2Þ
F2 , where n1 is number of

bits required to encode one peak, n2 is number of bits required to encode pairs of peaks,
F is branching factor.

This reduces the probability of collisions when hashing pairs of peaks. The prob-
ability can be approximately estimated as p � [1 – 1 – pF], where p is the probability
of survival of the spectrogram peak. As a result, the signal is specified by hash-pairs
and codes of their displacements along the time axis.

The amount of memory used (in bits) to encode one pair estimation is:

n ¼ log2
Fstw
2

� �� �
þ log2

Dta
Dtw

� �� �
þ log2ð2DfatwÞ� ½;

where Fs – frequency of signal sampling, is the size of the window used to build the
spectrogram, Dtw – a step of the window used to build the spectrogram, Dta; Dfa – the
maximum permissible distances along the time axis and the frequency axis between the
peaks in the pair, ][- rounding up.

Both algorithms performed well on the recognizing music tracks problem on the
presented fragment with accuracy about 75% accuracy. Moreover, these methods of
extracting features are used in the mobile application Yandex.Music [1] in the
“Recognition” section and in the well-known mobile application “Shazam”, which
searches for music piece from the recorded fragment.

Spectrogram Search for peaks Combining peaks into pairs

Fig. 2. illustrates the main stages of the algorithm A. Wang.
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3 Examined Approach

Based on the fact that for today convolutional networks make it possible to get classifiers
with accuracy of more than 99% for a large number of tasks and on different data sets, in
this paper we examine the “straightforward” approach. It consists of reducing an audio
classification problem to image recognition. There are many ways to represent the audio
signal as a picture. In the simplest case, we can use an oscillogram (Fig. 3) directly as
input image. Its explicitly depicts a sequence of values of the voltage levels sampled at
identical small time intervals across the membrane of the microphone. In wav format this
sequence of voltage levels is stored as a sequence of double-byte or three-byte integers
corresponding to different 65,535 or 32 million values of voltage levels. However, if it is
necessary to distinguish such signal characteristics as changing the pitch of the sound,
the oscillogram is not a good visual representation of the audio signal. Therefore as a
visual representation, we decide to use a spectrogram, which allows for experience
musicians to see the structure of the music without addition processing.

As the training sample we took an open and labeled “RAVDESS” dataset [9],
which includes records of 24 actors depicting 8 emotions: neutral, calm, happy, sad,
angry, fearful, disgust” and “Surprised” (96 copies for “neutral”, 120 for “surprised”
and for 192 copies for the rest of emotions). Python, Numpy, Librosa were used as the
basic tools for processing and analyzing sound files, Matplotlib was used to plot the
graphs and was used for audios preprocessing.

Fig. 3. On the left there is an oscillogram - a sequence of levels corresponding to the values of
the voltage levels on the microphone membrane of the phrase «Kids are taking by the door» told
by the actor with the emotion of happiness. On the right there is its spectrogram.

Fig. 4. VGG-11 architecture

Fig. 5. VGG-16 architecture
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The first stage of the experiment is the preprocessing of the audio file. At first, all
the audio files were aligned by length. On this stage, by passing a sequence of
membrane position levels to the input of the standard classifiers from the Sklearn
library (Random Forsest, SVM, Adaboost), it is possible to achieve an accuracy of up
to 30% with crossvalidation. From one point of view, the accuracy of 30% in this case
is surprisingly large, and we were not expect that on such unprepared data, the clas-
sifiers will show accuracy more than a random choice corresponding to an accuracy of
12.5% for 8 classes.

At the next step, we scaled the signal by the volume; applied the lowpass and
highpass filters to cut out the frequencies between 30 Zh and 2700 Zh because it is
more suitable for human speech. Also we used the Voisssssce Activity Detection
algorithm [17] to clean the voice. Then we applied the fast Fourier transform for each
audio file and got spectrograms of sound. These spectrograms were used as images
passing to the input to the image classifier. Here we used the VGG-11 convolutional
neural network [4, 11] as the image classifier because it has relatively simple archi-
tecture and as a result has a fast speed rate. We used Keras library to construct the
network architecture.

On the training stage, the classifier got an accuracy of about 98% on the training set
and about 64% on the test set. The training set and test set did not overlap. It’s were
formed by choosing uniformly at random from the entire dataset and uniformly across
all classes. 70% of the data set was used as a training set and 30% as a test set. The
dependence of classification accuracy on the number of epochs in the learning process
of the VGG-11 network with spectrograms is shown in Fig. 6a.

Changing network model from VGG11 to VGG16 and using melspectrograms [13,
14] (Fig. 4) instead of spectrograms (Fig. 5) gave us 71% accuracy on the test set and
nearly 100% on training set. Mel scale is a perceptual scale of pitches judged by
listeners to be equal in distance from one another, so mel and Hertz depends like
logarithmic function:

m ¼ 2595 log10 1þ h
700

� �
¼ 1127 ln 1þ h

700

� �
;

where m is mel and h is hertz. That is why it is more suitable for our problem. The
dependence of classification accuracy on the number of epochs in the learning process
of the VGG-16 network with melspectrograms is shown in Fig. 6b.

The confusion matrixes (Table 1) illustrate the errors between different classes. The
rows of the table correspond to the correct classes and the columns correspond to the
results of our model. Surprisingly that classification of a neutral emotion has small
error. The model has done only eight mistakes with a calm emotion, which is very
similar to the neutral, Unfortunately the model has some difficulties to separate happy
and angry emotions. Most likely the reason for this is that they are the most strongest
emotion and as a result their spectrograms are slightly similar, for example, both has
many red color.
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Fig. 6. Dependence of classification accuracy on the number of epochs in the learning process
of the (a) VGG-11 network with spectrograms and (b) VGG-16 network with melspectrograms.

122 A.S. Popova et al.



4 Conclusions and Directions for Further Work

In this paper we proposed and verified an approach for classifying of human emotions
in a sound fragment. A numerical experiment was performed using a convolutional
neural network VGG-16 on preprocessed data. This experiment has shown not bad
result - classification accuracy of 71% instead of 12.5% accuracy for random choice.
This can be considered as a good result for the algorithm which does not use the
extraction of complex audio-specific features which emotions of a particular type has.

In future we plan to use melspectrogram coefficients [15, 16] (Fig. 7).
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Abstract. This paper proposes a model of perception that allows animals to
classify objects in the environment. We consider the transformation of semantic
information in the four blocks of the model that imitate the mechanism of
operation of sensory systems. Receptors convert external influences into stimuli
that are transformed into sensations in accordance with the law of requisite
variety via the data randomizing. Perception is formed by the generalization of
all sensations, as well as the corresponding information accumulated by the
animal. To find appropriate prototypes of objects forming classes, there is a
compression of the processed information. This process is modeled via the
creation of granules containing objects with close values for every feature.
Granulation allows us to find the most probable class of the object corre-
sponding to the average frequency value of its features. Algorithms for object
classification on basis of the model and the invariant paradigm are identical and
posses the simplicity and versatility at a high accuracy of the solution.

Keywords: Classification � Information granules � Perception model � Agent

1 Introduction

The existence of an animal requires the operation of its sensory systems, which con-
tinuously process the signals of the external world and form the animal’s view of the
environment. With this knowledge, the animal can classify objects in the environment
to take timely behavioral decisions. There are many examples where an animal solves
such problems much more efficiently than the most advanced technical systems that
rely on modern methods of machine learning.

Currently, extensive research is being conducted on the processing of information
in the animal’s nervous system at the molecular and cellular levels [1]. The first
direction of research is based on the Hodgkin–Huxley model, describing the physical
and chemical processes in neurons. The other one is built on the McCulloch-Pitts
formal neuron model, which reflects the structure of the nervous system. Note that in all
studies, processes of nervous system interaction are considered outside any connection
with the content of processed information.

This paper is devoted to the development of a perception model that is designed to
solve a typical classification problem. Here, the particularity noted above plays an
important role. The processes arising in nervous system are generated by the impact of
objects from the external world on the receptors of numerous animal sensory systems,
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which are transformed into nerve impulses. After multiple transformations in neuronal
circuits, they enter the brain, where at first created sensations, and then perception as an
integral image of the environment [2, 3].

For an animal, it is important to distinguish those states of the environment that
have the same properties in relation to its vital activity and correspond to a certain
behavioral reaction [4]. The animal compares its perception of new impacts from the
environmental with pre-existing options to choose a behavioral solution. From the
standpoint of cognitive psychology, the animal performs of a prototype search [5, 6].

Therefore, the information processing is considered herein at a “rough” macro-
scopic, level rather than at the molecular or cellular level. The process model consists
of several blocks with different functions of intelligent agents. To determine these
functions, an approach was used that is common in physics: “guess the patterns” of
processes, by comparing the known research data [7].

2 Theoretical Problems

2.1 Statement of the Problem

The purpose of this study is to develop a model of an animal’s perception that is
capable of solving the following classification problem:

Let X ¼ xs s 2 ð1;MsÞjf g be the set of real objects consisting of the training samples
ð1� s� tÞ and the control samples (t + 1 � s � Ms) described by the feature vectors
qs ¼ ðqs1; . . .; qsMkÞT , Q be the data matrix of the combined sample, and xi be the list of
the numbers of the training sample objects of class i 2 ð1;MiÞ. Assume that the features
may be quantitative, nominal, ordinal, or mixed types; there are no missing data; the
classes are disjoint. The goal is to find a rule for classifying the objects of the training
sample and to assess its applicability to the objects of the control sample.

We assume that each feature is perceived by a certain sensory system, its receptors
transform the feature qsk into a stimulus qsk. Then, the analogue of the data vector q

s is
the stimulus vector qs. The training sample corresponds to the accumulated experience
of the animal, and the objects of the control sample correspond to the new environ-
mental objects, which are subject to classification.

Consider the model of the information perception process, which consists of four
blocks in which the following transformations are consistently performed: the evalu-
ation of stimuli, their transformation into sensations, the compression of information
and the definition of an object’s class.

2.2 Initial Stages of Information Transformation

The evaluation block describes the operation of receptors (receptor fields) by the
transformation of objects xs into stimulus vectors qs, the value of which is described in
the corresponding latent language. It is shown below that the solution of the problem is
determined by the frequency of features. Because these frequencies do not depend on
the method used to identify the values of features (in absolute value, number or using
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any other scale), we can convert their reference frame to use any type of features,
including mixed features.

In particular, for a non-quantitative feature, we should establish a partial-order
relationship based on the set of options for its values under the arbitrary rule of their
numbering. The changed value qsk will be equal to the number of corresponding options
for the sequence numbers 1; 2; . . .. Let us assume that any such transformations of
non-quantitative features are already incorporated into the matrix Q.

In the second block, the stimulus vectors qs ¼ ðqs1; . . .; qsMkÞT are transformed into
vectors of sensations cs ¼ ðcs1; . . .; csMkÞT , where ck is the sensation that reflects the
individual properties of objects and phenomena, that affect the receptors of the kth
sensory system. Here, the nervous system provides some mapping R : qs ! cs, under
which the matrix Q ! C.

The physical realization of this mapping occurs by transmitting information along
the nerve pathways from receptors to brain. It is accompanied by numerous transfor-
mations of information, which acquire a random character already when the physical
stimulus is transformed into an electrical signal due to the peculiarities of threshold
sensitivity of receptors. Therefore, the relationship between the magnitude of stimulus
and sensation, which is measured on a latent scale, can only be approximate.

The streams of information reaching the brain, «with a minimum degree of accu-
racy» correspond to the initial information [10]. The sensory system can consider all of
the errors arising from this transformation at the subsequent stages of perception.

At the same time, according to the law of requisite variety, the nervous system must
be able to differentiate as many variants of the state of the environment as possible [8].
If each object will create unrepeatable sensations, then this requirement will be ful-
filled. According to the above considerations, we assume that the function R leads to a
randomization for which csk ¼ qsk þ avs at all k and s, where v is a random variable
uniformly distributed on the interval 0; 1½ � and a � 0 is a constant [9].

2.3 Compression of Information by Granulation

Further processing of sensory information is characterized by greater complexity of
ongoing processes involved in creating a perception. It reflects the image of objects in the
environment as a whole on the basis all sensations and all the sensory information already
accumulated by the animals. In different parts of the brain, neurons are grouped into
internally integrated ensembles of local neural networks from various sensory systems.

To ensure the storage of information and accelerate behavioral solutions, the
information is compressed. The compression is accompanied by the elimination of
redundant neurons and neural connections. As a result, a picture of the excited neurons
arises that corresponds to the image of a particular object. The brain correlates this
image with a collection of images that are stored in memory and the organism has
previously met, and it decides which class the object corresponds to.

The idea of information compression is implemented in the third block of the model
by structuring information on sensations. For this purpose, we divide the multidi-
mensional space of sensations into Mk is dimensional parallelepipeds with the same
relative edge length for each sensation. Then, we proceed to measure sensations in
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integers, called sensation levels, and we will be able to estimate the frequencies of
objects falling into each of these parallelepipeds.

We introduce the vector of sensation levels ds ¼ dsk ¼ m 1�m� nj� �
, where n > 1

is an integer. To calculate dsk , we arrange the objects s in the order of non-decreasing
values of csk, and divide the range of values into n equal intervals. All objects falling
into the interval ½m;mþ 1Þ have dsk ¼ m. As a result, we find the matrix of sensation
levels D of size Ms�n.

Let Z ¼ Zk;m denote the set whose elements for each k are lists of the objects Zk;m
for which dsk ¼ m. These elements group objects belonging to the ordered pairs k;mf g
and play the role of data granules. We introduce the analogous notation ~Z and ~Zk;m for
the objects of the training sample s 2 ð1; tÞ. We partition the lists ~Zk;m into lists of
objects of individual classes ~Zi

k;m, which we call information granules of class i.

Consider properties of the information granule ~Zi
k;m. For any k, the sumPn

m¼1 l
i
k;m ¼ Ni, where lik;m is the length of granule and Ni is the number of objects

class i in the training sample. Since some intervals may be “empty”, then 0� lik;m �Ni.
Then, the frequency of ordered pairs k, m for any object s 2 xi is gik;m ¼ lik;m=Ni. Thus,
data compression is accomplished by granulation, which allows separate objects to
have frequency features gik;m.

Let us pay attention to one more important feature of granulation. From the above
dependences it follows that the value of m depends on the entire set of features values
and is found with a random error. Therefore, the range of corresponding stimulus
values qk will have fuzzy, soft boundaries that will move along with the changes of n,
combining different objects into a single granule. Nevertheless, we can assume that the
granulation divides the objects according to the semantic content of the information.
For example, objects could be grouped by a range of weight values or by color.

2.4 Classification of Objects as a Prototype Search

The effect of granulation manifests itself in the last block, since object classes can be
determined using the simplest formulas of total probability. Observe that the estimate
of probability pðs 2 xi dsk ¼ m

�� Þ ¼ gik;m. For objects of the list xi, the event of occur-
rence of the vector ds consists of a complete group of independent events ds1; . . .; d

s
Mk.

Therefore, the evaluation of probability of this event is

pðs 2 xi d ¼ dsj Þ ¼ 1
Mk

XMk

k¼1
pðs ¼ xi d

s
k ¼ m

�� Þ ð1Þ

Obviously, this estimate is the average over all k the frequency gik;m, which depends
on i. Its maximum determines the calculated class of an object s:

IðsÞ ¼ arg max1� i�Mipðs 2 xi d ¼ dsj Þ ð2Þ
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Formulas (1) and (2) are obtained on the basis of probability theory. However,
these same dependences follow from the theory of prototypes of cognitive psychology,
according to which the object class is determined by the frequency of the most frequent
combinations of features [5]. We can assume that these formulas determine the class of
an object, not as a result of calculations, but by comparing the variants of images that
differ in the average frequency of the features. Such an interpretation is consistent with
modern ideas about the mechanisms of brain.

On the other hand, these formulas take into account cases where the probability
density may be continuous for individual features of objects, but the density of objects
and the conditional probability densities of features may have discontinuities. There-
fore, unpredictable errors that arise when using Bayesian formulas in other methods,
which are also based on probability theory, are excluded here.

According to (2), the class that is assigned to the object depends on the frequency
gik;m, which serves as an objective measure of the belonging of an object from the set X
to a certain class pertaining to each sensation. Therefore, to classify the objects of the
control sample, we need to use the values gik;m for the corresponding pairs of the
training sample objects.

The set gik;m
n o

reflects the accumulated experience of the animal, which jointly

characterizes the learning sample and the xi lists. This set represents the memory of the
model in a condensed form. Note that gik;m gives a point estimate of the corresponding
probability. However, its reliability depends on the interval estimation, which, in turn,
depends on the length of sample.

3 Properties of the Model

It is important to note that the entire set of the above dependencies fully corresponds to
the algorithm, regardless of object classification paradigm used [11, 12], and differs
only in interpretation. Thus, the proposed model of perception is an instrument for the
solution to problem of classification. However, we can use the results of research on the
application of new paradigm.

The ratio of I(s) and is determines the accuracy of training for the objects of the
training sample and the accuracy of classification for the objects of the control sample.
These characteristics depend on the design parameters a and n. The issues of verifi-
cation and the selection of design parameters to ensure high accuracy of the solution,
the influence of the relative sizes of the training and control samples, and the results of
solving problems from the UCI repository are discussed in detail in [11].

Therefore, we confine ourselves to proving that training can be error-free for any data,
because this result contradicts the established ideas about the possibilities of training.

Consider the granule ~Zi
k;m, which contains the object s for some k and i. Let the

object w also belong to this granule. Then, the following inequality holds
0� cwk � csk

�� ��� cmax
k � cmin

k

� �
=ðn� 1Þ, where cmax

k and cmin
k are, respectively, the

maximum and minimum sensation values ck. As, n ! 1 the above parallelepipeds are
tightened to a point. From this relation, it follows that cwk ¼ csk. In addition, the matrix
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D becomes a sparse matrix, because objects can fall into no more than in t from an
infinite number of intervals.

As noted above, if a[ 0, then all values ck of will be different. Then, w ¼ s and
gik;m ¼ 1 for all k. Hence it follows that the learning will be without error, since I

(s) = is. If a ¼ 0, then the granules ~Zi
k;m may include an object whose number w is

randomly changed for each k. Here, any relation between the average values gik;m of
objects w and s is possible. Therefore, there is a risk of error. To eliminate the error, it is
sufficient to take a > 0.

4 Conclusion

In this paper, a model of perception is proposed. An application of the model provides a
solution to the problem of classification. The model describes the processes in sensory
systems to find a prototype of an object class in the accumulated information of an
animal regarding descriptions of objects by their features.

When processing information in the model, three principles are consistently used:

(1) Maximum increase in the variability of data.
(2) Compression of information by splitting it into information granules.
(3) Separation of objects into classes according to the mean frequency of features of

prototypes.

It is established that the developed model and the invariant paradigm of solving the
classification problem use a single algorithm for computations. This conclusion points
to the biological roots of the paradigm and indicates the plausibility of model. It gives
the key to understanding the reasons for the universality and simplicity of the algorithm
and the high accuracy of the results based on this paradigm.
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Abstract. We propose an approach to use the features formed by a convolu-
tional neural network (CNN) trained on big data for classification of elec-
troencephalograms (EEG) in the eye-brain-computer interface (EBCI) working
on short (500 ms) gaze fixations. The multidimensional EEG signals are rep-
resented as 3D-images that makes possible to apply them to CNN input. The
features for EEG classifier are selected from first fully connected CNN layer’s
outputs. It is shown that most of them are useless for classification but at the
same time, there were a relatively small number of CNN-features with a good
separating ability. Their use together with the EEG amplitude features improved
the sensitivity of a linear binary classifier applied to an EEG dataset obtained in
an EBCI experiment (when participants played a specially designed game
EyeLines) by more than 30% at a fixed specificity of 90%. The obtained result
demonstrates the efficiency of the features formed by the CNN trained on big
data even with respect to the essentially different classification task.

Keywords: Convolutional neural network � AlexNet � EEG �
Eye-brain-computer interface � Binary classification

1 Introduction

The eye-brain-computer interface (EBCI) is a communication system in which brain
bio-potentials (EEG) and eye-tracking data are jointly used to control technical devices.
In the EBCI systems control is actually performed by means of a gaze, while the EEG
data are used to solve the so-called “Midas touch problem” [1]. The essence of this
problem is that spontaneous gaze fixation or gaze gestures cannot be suppressed by the
user and can lead to issuing control commands even in the absence of any intention.

The EBCI working on short (500 ms) gaze fixations was proposed in [2]. The
interface was tested using data collected when participants played a specially designed
game EyeLines. In this game, a move was made by “clicking” on the button, selecting
the ball in one of the cells of the game board and moving it to a free cell, all by means
of gaze fixations only.

The principal part of any BCI is EEG feature extraction and algorithms for their
classification [3]. The key problem remains the choice of features for the classifier,
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which provide the required class separability: in other words, there is no answer on how
to select best features for a particular BCI.

A promising area in the feature engineering for classification is the automatic
generation of features by means of learning on experimental data without the teacher
(so-called feature learning). One of the models implementing this approach is the
Convolutional Neural Networks (CNN) [4].

Convolutional neural networks have shown their effectiveness in solving classifi-
cation problems in various applications including detection objects in images, speech
and text recognition [5, 6]. Convolutional neural networks were also applied to the
classification of EEG signals [7–9]. In this work, an approach to use the features
generated by a CNN trained on big data is proposed to classify the EEG data in EBCI.

2 Problem Statement

We consider a set of L-channel EEG data which consists of N signals with the same
number of time samples T divided into two classes: target and non-target. Target
signals are related to the mental intention of the subject to perform the action and
non-target signals are intention-free. Each EEG signal is represented as a matrix of
dimension L*T.

To evaluate the quality of binary classification we will use the sensitivity (i.e. true
positive rate) corresponding to the fixed (for example, 90%) specificity (i.e. true
negative rate). High requirement for the classifier’s specificity is motivated by a typ-
ically observed lower tolerance of the users to the EBCI false activations (false posi-
tives) than to the misses of response (false negatives, i.e. interface inactivity under the
presence of mental intention to perform the action).

For successful classification of certain data, effective algorithms should be chosen
or designed for creating feature vectors and for classifier training. As the classifier, we
will use a shrinkage LDA classifier [10]. This type of classifier demonstrated best
results among the linear classifiers with the feature vector constructed from the EEG
amplitudes smoothed in time with a fixed time step and window. The results of the use
of this classifier for the EBCI data were presented in [2].

In this paper, we aimed to improve the sensitivity of the linear shrinkage classifier
by using the EEG features formed by a convolutional neural network.

3 Representation of the EEG Signals as Images

The use of convolutional neural networks for classification is possible in one of three
ways: building a new model, retraining the already trained model and using network
features with an arbitrary classifier. Since the available training sample size in BCI
tasks are typically very small, it was decided to use a fully connected layer’s outputs of
the CNN trained on big data followed by training of a linear classifier that has higher
robustness compared to a CNN classifier.

As the trained CNN, the AlexNet network was chosen [11]. This network is trained
on the images from the ImageNet database used in the Large-Scale Visual Recognition
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Challenge (ILSVRC) [12] containing over a million images assigned to one of the 1000
classes. Thus, the trained network is able to construct a rich representation for a wide
range of images.

The network consists of 25 layers, including 5 convolution layers of different
depths, layers of ReLU-neurons, as well as normalization, pooling and dropout layers,
two fully connected layers and the network’s output layer. The size of the network’s
input image is 227*227*3 (3 is the number of color channels). The dimension of the
fully connected layers is 4096.

To use the AlexNet network it is necessary to convert the available raw data to the
input network format, i.e. to represent them as images of dimension 227*227*3. Many
methods for encoding time series as an image can be proposed [13]. In this paper, the
EEG signal X of dimension L*T is encoded to the required image format using the
following algorithm.

1. Preprocessing of the EEG signals
To eliminate artifacts related to eye movement, fragments of the EEG data (sam-

pling frequency of 500 Hz) starting 200 ms after the gaze fixation’s start were only
considered. The right border of the fragment was selected at 500 ms. Each fragment
was corrected to the baseline calculated in the interval (200; 300) ms. A simple moving
average smoothing with a 50 ms window and 20 ms time step was then applied, thus,
the preprocessed EEG signal consisted of average amplitudes in the time windows
200–250, 220–270,…, 440–490 ms (total T = 13). The data used in this work were
collected in the Department of Neurocognitive Technologies, National Research Center
“Kurchatov Institute” (Moscow, Russia) in the experiment described in [2].

2. Reordering the EEG channels
The CNN trained on image data assume the two-dimensional convolution, so it is

desirable that adjacent pixels of the input image correspond to adjacent EEG ampli-
tudes both in time and space, i.e. through the channels. In this case, the result of
convolution is a weighted average of EEG amplitudes in a compact space-time domain.
Temporal adjacency is obtained in a natural way while the spatial adjacency requires
reordering of the EEG channels, so that adjacent EEG channels correspond to adjacent
pixels in the image.

Since only L = 13 fixed channels located in the parietal and occipital areas were
used in this study, the reordering was carried out manually. The following order of the
channels was defined:

PO7, P3, PO3, O1, Oz, POz, P1, Pz, P2, PO4, O2, PO8, P4.
In the case of larger number of channels, efficient algorithms can be proposed for

mapping 2D-data to one-dimensional space (for example, based on Kohonen
self-organizing maps [14]).

3.Resizing the L*T matrix to the required dimension using bicubic interpolation.
4. Duplicating the image into three color channels.
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4 Quality of Features Generated by the Convolutional Neural
Network

The CNN features were composed from the outputs of the network’s first fully con-
nected layer of dimension 4096. Using data from one participant, the ROC curve for
the threshold binary classifier applied separately to each CNN feature was obtained and
the AUC (Area Under Curve) was calculated. It was found that AUC �0.5 for most of
the features, showing their actual uselessness for classification, at least separately from
the others. The histograms in Fig. 1 show that the CNN-features were worse on
average than the EEG amplitude features. At the same time, there were a relatively
small number of CNN-features with a good separating ability.

Figure 2a shows the dependence of the specificity and sensitivity of the shrinkage
linear classifier on the number of the CNN features (in decreasing order of AUC value).
Performance measure were averaged over test results obtained with 5-fold
cross-validation. The graphs show that the increase in the number of features leads to
weak increase of the classifier’s sensitivity, which reached a maximum value of 27%.

Thus, the use of only CNN features for classification did not allow us to outperform
the results achieved in [2]. However, these features could be used together with the
EEG amplitude features.

Figure 2b presents the same dependencies but with the EEG amplitude features
used as the classifier’s input in addition to the amplitude features. Graphs reveal that
the CNN features, taken in number of approximately 30 to 50, increase the sensitivity
up to 40% with almost unchanged specificity about 90%. Further increase of the
number of added CNN features did not lead to any substantial increase of sensitivity
(not shown in the graph).

The Table 1 shows the classification results in the space of L*T = 169 amplitude
features and 50 CNN-features (total 219 features) in comparison with the results
obtained in [2] where the classifier was trained only on the EEG amplitude features (in
parentheses). The values are presented in the form m ± r, where m and r are the mean
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and standard deviations on test samples, respectively, calculated from the results of
fivefold cross-validation. Training and testing of the classifier was carried out for each
of the 8 subjects separately. The target EEG signals correspond to the mental intention
to click on the screen button using a gaze fixation in the game EyeLines [2].

5 Conclusions

The use of CNN-features made it possible to increase the sensitivity of the shrinkage
linear classifier of EEG signals used in the EBCI by more than a third, from 31% to
43%, with almost unchanged specificity 90%. The obtained result demonstrates the
efficiency of the features formed by the convolutional neural network trained on big
data even with respect to the essentially different classification task.

Table 1. The classification results

Subject Test on fixations with 500 ms threshold
Specificity Sensitivity

1 0,83 ± 0,18 (0,87 ± 0,13) 0,51 ± 0,20 (0,23 ± 0,17)
2 0,91 ± 0,12 (0,85 ± 0,10) 0,40 ± 0,20 (0,29 ± 0,22)
3 0,83 ± 0,16 (0,84 ± 0,09) 0,51 ± 0,25 (0,51 ± 0,24)
4 0,88 ± 0,08 (0,92 ± 0,12) 0,43 ± 0,20 (0,29 ± 0,21)
5 0,85 ± 0,10 (0,83 ± 0,14) 0,62 ± 0,15 (0,38 ± 0,11)
6 0,91 ± 0,04 (0,87 ± 0,09) 0,35 ± 0,19 (0,23 ± 0,06)
7 0,96 ± 0,04 (0,93 ± 0,05) 0,18 ± 0,09 (0,15 ± 0,09)
8 0,92 ± 0,06 (0,86 ± 0,11) 0,44 ± 0,22 (0,43 ± 0,18)
Mean 0,89 (0,87) 0,43 (0,31)
Std. 0,11 (0,11) 0,22 (0,20)
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amplitude features. For each mean value, a 90%-confidence interval is shown
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Abstract. We propose a new approach to building multilayer neural network
models of real objects. It is based on the method of constructing approximate
layered solutions for ordinary differential equations (ODEs), which has been
successfully applied by the authors earlier. The essence of this method lies in the
modification of known numerical methods for solving ODEs and their appli-
cation to an interval of variable length. Classical methods give as a result a table
of numbers; our methods provide approximate solutions as functions. This
allows refining the model as new information becomes available. In accordance
with the proposed concept of building models of complex objects or processes,
this method is used by the authors to build a neural network model of a freely
sagging real thread. We obtained measurements by conducting experiments with
a real hemp rope. Initially, we constructed a rough rope model as a system of
ODEs. It turned out that the selection of unknown parameters of this model does
not allow capturing the experimental data with acceptable accuracy. Then three
approximate functional solutions were built with the use of the authors’ method.
The selection of the same parameters for two solutions allowed us obtaining the
approximations, corresponding to experimental data with accuracy close to the
measurement error. Our approach illustrates a new paradigm for mathematical
modeling. From our point of view, boundary value problems, experimental data,
etc. are considered as raw material for the construction of a mathematical model
which accuracy and complexity are adequate to baseline data.

Keywords: Ordinary differential equation (ODE) � Boundary value problem �
Approximate solution � Multi-layered solution � Mathematical model �
Semi-empirical model � Neural network � Experimental data � Refinement of the
model

1 Introduction

It is often impossible when modeling real objects quite accurately describe what
happens in physical processes. As a result, an arbitrarily accurate solution of differential
equations (which are considered as mathematical models of the mentioned physical
processes) does not allow building an adequate mathematical model of the investigated
object. In these circumstances, it is reasonable to clarify the object model based on the
observation data above it.

© Springer International Publishing AG 2018
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Refinement both the physics models and the corresponding models in the form of
differential equations is a challenging task.

We propose another approach consisting of two stages. In the first step, we con-
struct an approximate solution of the considered differential equations in the form of
the function for which the task parameters are the input variables. In the second stage,
this function is refined according to observations, the refinement process can continue
as new data arrives.

Our approach differs from that of [1–3]; using our semi-empirical model (e.g.
neural network model) we replace not a part of the system, which is difficult to simulate
by differential equations, but the entire system, including differential equations. This
approach is preferred in situations when the accuracy of the description of an object
using differential equations is low.

In the paper, this approach is illustrated by the task of calculating sag line of hemp
rope (thread) which is hard to solve by standard methods. It is possible to act similarly
in many other practically interesting problems.

2 Semi-empirical Model of a Sagging Thread. Methods

We consider hanging freely an inextensible thread of length l, fixed at their ends at the
same level. The experiment shows that in the case of strong sagging the conventional
model of sagging in a catenary bad describes the experimental data.

In order to determine the line of sagging with account for the bending stiffness, we
use the ordinary differential equation

d2h
ds2

¼ mg
EJ

0:5� s=lð Þ cos hþ A
EJ

sin h ð1Þ

with boundary conditions: hð0Þ ¼ 0, hðlÞ ¼ 0, and the system of equations

dx
ds ¼ cos h;
dy
ds ¼ sin h:

�
ð2Þ

Here, E is the Young modulus of the rope material, J is the moment of inertia of the
cross-section, L is the distance between supports, s is the length of the portion of the
curve, h is the tangent angle measured from the direction of the horizontal x-axis
counterclockwise, A and B = mg/2 are the reaction forces of the supports, q = mg/l is
the distributed load caused by the weight of the thread, m is the weight of the thread,
and g is the magnitude of the gravitational acceleration.

Let us make the change of the variable t ¼ 2s=l� 1. In this case the Eq. (1) takes
the form

d2h
dt2

¼ �a t cos hþ b sin h ð3Þ
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Constants – a and b parameters – are unknown and to be determined from
experimental data.

The Eq. (3) is supplemented with the boundary conditions hð0Þ ¼ hð1Þ ¼ 0.
The consideration of this issue based on our neural network approach [4–9] is the

main content of the article.
The study of the behavior of solutions of the Eq. (3) showed that the desired shape

of the thread cannot be obtained.
Further, some options of multi-layered approach for constructing approximate

solutions of ordinary differential equations (ODEs) are used [10–15]. The application
of the explicit methods to the given task does not lead to the construction of the
solution which accurately fits the experimental data. We will apply to the task the
implicit Euler method with one step. To do this, we transform the ODE (3) to the
system of ODEs

dh
dt

¼ /;

d/
dt

¼ �a t cos hþ b sin h:

8><
>:

The implicit Euler method with one step for this system has the form

h ¼ h0 þ t/;

/ ¼ /0 � a t2 cos hþ b t sin h;

(

where h0 ¼ hð0Þ ¼ 0; /0 ¼ /ð0Þ.
The result is h ¼ t/0 � a t3 cos hþ b t2 sin h. Accounting for the boundary condi-

tion hð1Þ ¼ 0 gives /0 ¼ a, where for the angle we obtain the equation

h ¼ t að1� t2Þ cos hþ b t2 sin h: ð4Þ

The equations for the curve coordinates will be received by integrating (2) using the
Simpson method

xðs; a; bÞ ¼ s
6m

1þ cos hðs; a; bÞþ 4
Xm
i¼1

cos h
s
2m

2i� 1ð Þ; a; c
� �

þ 2
Xm�1

i¼1

cos h
s
m
i; a; b

� � !
;

yðs; a; bÞ ¼ s
6m

sin hðs; a; bÞþ 4
Xm
i¼1

sin h
s
2m

2i� 1ð Þ; a; c
� �

þ 2
Xm�1

i¼1

sin h
s
m
i; a; b

� � !
:
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We carry out the identification of the parameters a and b by the minimization of the
error functional which contains the observation data fxi; yigMi¼1

J ¼
XM
i¼1

ðxðsi; a; bÞ � xiÞ2 þ
XM
i¼1

ðyðsi; a; bÞ � yiÞ2: ð5Þ

For this we use an approximate solution of the Eq. (4) constructed in one of three
ways.

In the first method we use the approximate equalities cos h � 1; sin h � h. Thus,

from (4) we obtain h1ðt; a; bÞ ¼ t að1�t2Þ
1�b t2 .

In the second method, we use the approximate equalities cos h � 1� h2=2;

sin h � h. Thus, from the Eq. (4), we obtain h2ðt; a; bÞ ¼ 2h1ðt;a;bÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h21ðt;a;bÞ

p .

The third method consists of two stages. In the first stage, the Eq. (4) is solved
using a neural network. For this purpose the equation is rewritten into the form
h ¼ a cos hþ b sin h, and the neural network h3ða; bÞ is selected by RProp method of
minimizing a sequence of functionalsPm1

i¼1
ðh3ðai; biÞ � ai cos h3ðai; biÞ � bi sin h3ðai; biÞÞ2.

Trial points are regenerated as uniformly distributed on the set 0; 10½ � � 0; 1½ �
through several steps of the minimizing process (in the experiment, every 5 steps).

We have tested different types of neural networks, but the best result was
demonstrated by perceptron with one hidden layer and activation functions
tanh aia½ � tanh bi b� dið Þ½ �.

In the second stage, the parameters a and b are chosen by the minimization of the
functional (5).

3 Calculation

Below in Fig. 1 we show (due to symmetry) the experimental points and the right half
of the graph for the sag curve of the rope as the resulting application of each of the
three methods used.

It should be noted that, despite the general conformity of the curve, the errors in the
first method remain too large. In the case of the second method, the shape of the curve,
in accordance with the results of the experiment, is significantly better. In the case of
the third method, the correspondence of the calculated sag curve of the thread to the
results of the experiment was even better. We have got the best result in the second
stage of the third method when first we used the neural network with 6 neurons in the
form

� 0:451 tanh ½0:1a� tanh ½1:4ð�1:16þbÞ� þ 0:356 tanh ½1:58a� tanh½0:413ð�0:61þ bÞ�
þ 0:092 tanh ½3:67a� tanh ½1:28ð�0:52þ bÞ� þ 0:26 tanh ½7:33a� tanh ½1:013ð�0:22þ bÞ�
� 0:199 tanh ½0:649a� tanh ½2:73ð�0:16þbÞ� þ 1:344 tanh ½0:824a� tanh ½1:59ð0:948þ bÞ�:
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4 Conclusions

The construction of a mathematical model of an object or process is related, as a rule, to
the approximate solution of differential equations with inaccurately specified coeffi-
cients for heterogeneous data, which can include experimental data. In a good situation
(when the equations are chosen well), clarifying the solution of the problem leads to
both the reduction of the error of satisfying the equation and the reduction of the error
of satisfying the data of measurements. However, if we have not the most successful
choice of equations, it is possible to improve the model due to the selection of
adjustable parameters to meet the experimental data. This was the case in our model
problem. The increase in the number of neurons can improve the accuracy of the
solution of the Eq. (4), which, apparently, is not the best way to describe the sagging of
the real thread (hemp rope). In this case, the accordance of the solution to the exper-
imental data worsens. This is due both to the approximate compliance of Eq. (1) with
the modeled thread and to the inexact transition from the Eq. (1) to (4) because of an
insufficient number of layers in the multi-layered approach. The reasonability of
increasing the number of layers is questionable due to the inaccuracy of the Eq. (4).

Fig. 1. The right half of the graph of the line fxðs; a; bÞ; yðs; a; bÞg in the case of (a) the first,
(b) the second, (c) the third method and the experimental points.
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Abstract. In the framework of a simple analytical model, we quanti-
tatively validate the statement that the “color world” is amenable to
much more accurate and faster segmentation than the “gray world”.
That results in significant facilitating conditions required for originating
indispensable pop-out effect, and, probably, forms the basis of various
cognitive phenomena connected with the color vision. Besides, we show
that the known (from optics) Rayleigh criterion for separability of two
gray objects is considerably softened for objects of different colors.

Keywords: Pop-out effect · Luminance and color contrast

1 Introduction

Fast analysis of complex images requires high-speed separation of an object from
the background that is based on registering important variations of some physical
characteristics of the image under jumping from the object to the background
(and vice versa), that is the local contrast of this parameter while going over the
object boundary [1]. Such feature may be the image color, the size or the form
of its details, etc.

As a rule, any of those characteristics could be described by some associ-
ated physical parameters: for example, the color – by the wavelength (or the
set of wavelengths), the form – by the sum of geometrical characteristics, such
as the curvature, tilt, symmetry and so on [2]. In any case, the occurrence of
image parts, where the value of that parameter deeply differs from its value in
the adjacent parts of the image, is the necessary condition for the fast and reli-
able (“automatic”) separating the object [3–5]. It is the essence of the so called
“pop-out effect”, when the perceptually “evident” region (or the image detail)
is readily and spontaneously separated at a glance.

If figure features are not unique, there is no easy separation of the object.
Some threshold, characteristic for every feature, is likely exists whose exceedance
is required for actuating the pop-out effect. For instance, color or geometrical
difference between specific stimulus and distractors needs to be strong enough [3],
and if there are diverse differences, the strongest one comes into action [6,7].

c© Springer International Publishing AG 2018
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In some works, attempts have been undertaken to control the efficiency of the
visual searching by varying degree of the difference between the stimulus and
distractors [8].

The ability to orientate in a complicated exterior situation is of important
biological significance, because it provides possibility for a human being and
many animals to exist successfully within a fast-changing surrounding. One of
challenges in this path is the segmentation of the visual field into the background
and the foreground. We do not know in details how the human’s (or animal’s)
brain makes that. Possibly, some mechanisms of the spatial (binocular) vision
and various mechanisms of the color vision play considerable role in that oper-
ation. In the same time, there are various computer programs that have been
developed for solving that problem (see [9], for example) and base on distin-
guishing boundaries of some image parts [10] (so called the process of the image
segmentation). However, for effective action those programs frequently need of
some “pointings” from a human.

In the present work, we do not set a goal to investigate psycho-physiological
mechanisms of binocular and color vision. The analytic model, which we present,
is only aimed to phenomenological (but analytical!) consideration of the above-
mentioned pop-out effect in observing two-dimensional images.

To this end, one should define what is the “background”. The difficulty is that
there are situations, when the background could not be unambiguously deter-
mined because the result depends on the context. As a rule, the background keeps
less details than the foreground which is just somebody (something) showing up.
This “something” differs from the background by relative abundance of details,
and, particularly, by abundance of boundaries between regions with distinguish-
ing physical parameters (color, form, etc.). At each point of such a boundary, the
absolute value of the gradient gi = |Δpi/Δn| of a given parameter pi along the
normal to the boundary takes much bigger value than in other points.1 Averag-
ing the gradient value over the region on the order of the mean object size, we
discover that the average value 〈gi〉 is relatively high in that image part, where
we see a lot of details, and is low where the number of details is smallish.

Thus, the pop-out effect consist of following basic stages: (i) foreground, (ii)
producing the map for the relevant physical parameter with the smeared (devoid
of details) background,2 and (ii) registering the only locus of activation on that
map and perception of the stimulus.

All specified processes are based on the parallel data processing, and provide
the principal speed of the pop-out effect.

2 Contrast of a Color Image

Proceed now to quantitative analysing the contrast of color images by the exam-
ple of the problem concerning distinguishing (fixing the location) the boundary
1 In the above relation, Δn is some finite length along the normal to the boundary,

which is small when compared to the object size.
2 In computer image recognition, that process is termed as pre-processing and is used

to reduce a noise by means of its averaging with some filter.
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between stripes of different colors. It is the extension of Rayleigh resolution limit
for two close light spots of identical colors. In the framework of our model, we rely
from the assumption that luminance and color characteristics do not mix with
each other (that is, we do not take into account that, for example, mixing oppo-
nent colors could eliminate chromaticity with conserving non-zero luminance,
etc.) [11]. These two local, depending on coordinates, image features could be
associated with two separate, mutually not depending, parameters (kind of the
amplitude and the phase of the wave function in quantum mechanics). Let the
image be planar and two-colored (that is, the picture radiates or reflects the light
of two, subjectively strongly differing, wavelengths) and let that image presents
a set of smeared, parallel to each other, stripes of two different colors (red and
yellow – to be definite). For the sequel, it is very convenient to consider a given
image to be consisting of a number red (r) and yellow (y) points whose densities
arise the subjective color sensation.

For two colors considered, one could introduce two local complex parame-
ters Ar(r)eiϕr and Ay(r)eiϕy depending of coordinates r. Here, Ar(r), Ay(r) are
spatial dependencies of mean amplitudes of the waves’ field intensities for each
of two light waves (defined, for instance, by densities of color points within the
bitmap image), and ϕr, ϕy are color phases of those two waves (i is the imag-
inary unit).3 Those phases are, in fact, “codes” of mixed colors – conditional
parameters that, in the framework of the simple suggested model, possess fol-
lowing properties: (1) they do not depend on light intensities of chosen colors but
depend on their wavelengths only, (2) complex color parameters of each small
region of two-colored raster image are additive (generalized Abny law of lumi-
nance additivity) [11], and the resulting complex parameter A(r)eiϕ(r), including
the summary color amplitude (luminance) A(r) and the summary color phase
eiϕ(r), is determined according to the relationship (being based on rules of com-
plex numbers’ or vectors’ addition)

A(r)eiϕ(r) = Ar(r)eiϕr + Ay(r)eiϕy , (1)

where ϕr, ϕy are phases of red and yellow colors. That leads to

A(r)=
√

A2
r(r)+ A2

y(r)+ 2Ar(r)Ay(r) cos Δϕ, ϕ(r)= ϕr +arcsin

[
Ay(r)

A(r)
sin Δϕ

]
, (2)

where Δϕ = ϕy −ϕr. As one could expect, ϕ = ϕr at Ay = 0 and ϕ = ϕr +Δϕ =
ϕy at Ar = 0. In the general case, (Ar, Ay �= 0) one has ϕr < ϕ < ϕy, that
corresponds to the second Grassmann law – mixing two colors results in the
color lying (on the color ring) between mixed colors.
3 We restrict ourselves to the case of two-color images, to which the plain (two-

dimensional) space of color tones corresponds. Such a space could be described by
the combination of two complex numbers. Within that space, any color, represented
by the sum of yellow and red colors of varied intensities, is displayed as the point
on the color plane with zero contribution of the blue color. Considering three-color
(and, hence, three-dimensional) space would result in the significant complicating
the model.



150 E. Meilikov and R. Farzetdinova

In the theory of the color vision, the polar angle of the color ring (measured
in radians or degrees) is the analog of the color phase ϕ, so that in the course
of numerical calculations one should proceed from the consistency between the
color phase and the light wave length λ. Though that consistency is subjective,
the required empiric correspondence ϕ(λ) is known [11]. That relation based on
the traditional view of the color ring, where the angle interval from 0 to 360◦

corresponds to te visible spectrum. According to that scheme, the color phase
rises monotonously with transition from the blue color to the red one (that is,
with increasing the wave length), and the red color is supposed to relate with the
polar angle ϕr = 2π. However, it is clear that the specific phase value ϕr could be
chosen arbitrary, basing on considerations of convenience or tradition only. For
instance, in physical optics the wave phase is proportional not to the wavelength,
but to some conversed value, the so called wave number k ∝ 1/λ, and so it falls
down with passing from the blue color to the red one. Thus, below we accept
ϕr = 0, and the empirical dependence ϕ(λ) [11] has been reconstructed using
the simple linear substitution ϕ → 2π − ϕ.

Such a reconstructed dependence ϕ(λ) is shown in Fig. 1. It has the two-
step form with parts of the most pronounced change being centered near wave
lengths of λ1 ≈ 485 (blue color) and λ2 ≈ 580 nm (yellow color), and each of
those sections have the width 2 δλ = 20 nm. That empirical dependence is well
approximated by the sum of two sigmoid functions:

ϕ(λ) =

(
π − 1

2

){
2 − 1

1 + exp [− (λ − λ1) /δλ]
− 1

1 + exp [− (λ − λ2) /δλ]

}
(3)

Three plateaus of that dependence correspond to basic colors of the RGB-
model (red, green, and blue). Within those plateaus, color sensations are stable –
they do not depend (over a wide range) on the wave length, and are based on
the properties of corresponding visual sensors (cone cells, reacting on these three
colors.) Why those plateaus are needed? Possible answer is related the volatility
of natural illumination which depends on the sun angle and the atmosphere

Fig. 1. Empirical function ϕ(λ). Points are experimental data [17], solid line is the
fitting function (3).
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state (clear, rain, fog). With cloudy weather, the light is more cold – the color
temperature shifts to the blue (short-wave length) spectrum part. With bright
sun, colors are more warm – it contains more red and yellow rays. Three plateaus
provide stability of visual sensations: within the broad range of conditions, red
berries stay red, green grass stays green and so on, that assists in foraging.

According to Fig. 1 (and Eq. (3)), the color phase of the red color equals
ϕr = 0, for the yellow light ϕy ≈ π/2, for the green light ϕg ≈ π, and for the
violet one ϕb ≈ 2π. That coding style is, really, neither more nor less than the
analytic version of the known color space DKL [12,13], where the color is coded
by one of the color space angle (changing from 0 to 2π).

For simplicity, we consider below the image of two colors – red and yellow,
for which ϕr = 0, Δϕ = ϕy − ϕr = π/2. In that case, Eq. (2) takes the simpler
form4:

A(r) =
√

A2
r(r) + A2

y(r), ϕ(r) = arcsin
[

Ay(r)
Ar(r) + Ay(r)

]
. (4)

The first of these relations corresponds to the Abby law of luminance additiv-
ity [11], and the second one, as required, leads to ϕ = 0 at Ay = 0 (the red color
only) and ϕ = π/2 at Ar = 0 (the yellow color only).

Thus, two spatial functions are associated with color picture: the color ampli-
tude A(r) and the color phase ϕ(r). Subjective perception of a picture is attained
by registering variations of those functions and, mostly, that one whose relative
variations are bigger.

In this regard, let us discuss two examples. The first one is the periodical
structure of alternating (along x-axis) parallel red and yellow stripes with unit
distance between their centers. Each stripe is smeared due to decaying its local
luminance out of the center by the Gauss law (centers’ coordinates are xn = 2n,
n = 0,±1,±2, . . . – red stripes, xn = 2n + 1, n = 0,±1,±2, . . . – yellow stripes):

Ar(x − xn), Ay(x − xn) = Fn(x), Fn(x) = A0 exp
[
− (x − xn)2

2σ2

]
, (5)

where A0 is the light intensity in stripes’ centers, and σ is the effective width
of smeared color stripes. According to Eq. (4) color amplitude and phase in any
point x of the line, perpendicular to stripes, equal

A(x) =
√

Â2
r(x) + Â2

y(x), ϕ(x) = arcsin

[
Ây(x)

Âr(x) + Ây(x)

]
, (6)

4 Simpler forms of Eq. (4) comparing to original relations (2) is the result of the above-
made “involuntary” choice of color phases leading to ϕy ≈ π/2. One could verify that
all conclusions about the contrast of color images remain valid with some another
choice of the dependency ϕ(λ). This is due to the fact that actual are not numerical
values of colors phases, but gradient of the phase along the direction of its steepest
variation which is the relative characteristics, analogical to the image contrast (to
the map of phase variation, in the case considered).
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where

Âr(x) = A0

∞∑
n=−∞

F2n(x), Ây(x) = A0

∞∑
n=−∞

F2n+1(x), (7)

Which of two functions A(x), ϕ(x) varies stronger? Answer to this ques-
tion depends on the degree of smearing the stripes which is defined by the
σ-parameter value. Corresponding dependencies A(x) and ϕ(x) are presented
in Fig. 2 for different values σ = 0.2, 0.5, 0.75, 1. If stripes have sharp edges
(σ � 1), then A(x) varies in the range from 0 up to 1 (see Eq. (5)), and ϕ(x)
– from 0 to π/2 (see Eq. (6)), that is, in fact, near equally. Under essential but
moderate stripe smearing (σ � 1), the relative variation of A(x) amounts a few
percents merely, while the phase ϕ(x) continues to vary by two-three times. And
at last, with the very strong stripe smearing (σ � 1), when they are significantly
overlayed, color parameters do not practically depend on coordinates and the
picture represents the faint, nearly uniform, background where one could not
discriminate some details.

Fig. 2. Spatial dependencies of light intensity A(x) and color phase ϕ(x) for a system
of alternating by color (red and green) smeared parallel stripes with various smearing
parameters σ (the width of the Gauss smearing).

The quantitative characteristics of the picture visibility is the coefficient of
modulation (or the contrast)of some or other parameter defined by the relations
VA = (Amax−Amin)/(Amax+Amin) or Vϕ = (ϕmax−ϕmin)/(ϕmax+ϕmin), where
indexes min and max are assigned to the minimum and maximum values of a
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given parameter (in our case – to the light intensity A and color phase ϕ). As
could be seen from Fig. 3, with the moderate smearing of stripes (σ = 0.3−0.7),
the contrast of the color phase is by an order of magnitude higher than the
intensity contrast. Does it mean that the image visibility and the pop-out effect
are associated namely with the color (not luminous) contrast? Generally – not,
if corresponding thresholds of perception are also differ strongly (if, for instance,
the threshold contrast of luminance is on the order of value lower than that
for the color contrast, then differences of coefficients VA and Vϕ are cancelled
and the intensity reception becomes to be no less important than the color one).
The answer to the question could be provided by experiments.

Fig. 3. Luminance VA and color Vϕ contrasts for a system of alternating by color (red
and green) smeared parallel stripes with various smearing parameters σ. Shadowed is
the diapason of σ/D-values, where the color contrast is higher on the order of value
than that of luminance. (D is the distance between stripe centers, σ is the width of
the Gauss smearing.)

It is known that human eye is able to differentiate luminance gradations (to
have the contrast sensibility) of about 1% [14], that corresponds to the thresh-
old coefficient of the luminance modulation δVA/VA ∼ 10−2. Analogically, eye
discriminates colors, corresponding to the difference in radiation wavelengths of
1–5 nm [15] (spectral sensibility). That corresponds to the threshold coefficient
of the color modulation δVϕ/Vϕ ∼ (0.1 − 0.5) · 10−2 � δVA/VA.

Specified threshold sensitivities for varying luminance or color relate to ideal
conditions of observation. Real thresholds are higher by the order of value but
remain to be alike: δVA/VA ≈ δVϕ/Vϕ ∼ 0.1. That allows to conclude that
with moderate stripe smearing the picture is percepted more reliably (and as
a result – faster) via variations of the color phase (that is, by color variations)
and not through the light intensity variations. For example, separating green
stripes on the red background is realized more reliably and faster than separat-
ing bright-red stripes on the light-red background. That conclusion is validated
by experimentally determined functions of the contrast sensitivity which relate to
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registering modulated by color (red/green or blue/yellow) lattices of the constant
luminance [16,17]. Experiments show that for spatial frequencies lower than
∼0.2 period/grad (till physiological limitations are not important) the contrast
sensibility for observing color (chromatic) lattice excels (up to five times with
the spatial frequency of about 0.07 period/grad) the one for the luminance
(intensity) lattice. That result is in full agreement with the above-cited con-
clusion about the higher contrast of chromatic image.

3 Color Analog of Rayleigh Criterion

The next example is the color analog of the Rayleigh criterion [18], which in its
classic “gray” variant defines the resolution of human eye for observing a pair
of spatially close and smeared light sources of identical luminance and color. In
that case, according to Rayleigh, the sources are discriminated as separate ones,
if the luminance contrast VA = [Amax −A(0)]/Amax is not lower than ∼0.2 (here
A(0), Amax are the light intensity in the image center and maximum intensity,
correspondingly). For smeared stripes, such a luminance contrast appears under
condition σ � 0.7D, where D is the distance between stripe centers.

In the “color” variant (two stripes of different color, smeared by Gauss), it
is convenient to define the contrast of color phase Vϕ by the relation

Vϕ =
∣∣∣∣
ϕ(D/2) − ϕ(−D/2)
ϕ(D/2) + ϕ(−D/2)

∣∣∣∣ , (8)

where ϕ(±D/2) is the color phase in centres of both (smeared) stripes. In that
case, as could be seen in Fig. 4, with decreasing the distance between stripes the
color contrast of the boundary drops much slower than the luminance contrast.
Fixing the color change on the smeared boundary between stripes is possible and

Fig. 4. Luminance VA and color Vϕ contrasts for two smeared parallel stripes of red and
green color as a function of the ratio σ/D. (D is the distance between stripe centers,
σ is the width of the Gauss smearing.) Arrow corresponds to the Rayleigh criterion.
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reliable even in the case when the luminance contrast is not enough to detect
the boundary.

That conclusion corresponds to the statement that “color world” is amenable
to faster and more accurate segmentation than “gray world”. Therein, even those
boundaries are resolved which could not be distinguished in gray world according
to Rayleigh criterion.

4 Conclusion

In this work, the attempt has been done to ground quantitatively (in the frame-
work of a simple analytic model) the observation that “color world” is amenable
to faster and more accurate segmentation than “gray world”. That results in
significant facilitating conditions required for originating indispensable pop-out
effect, and, probably, forms the basis of various cognitive phenomena connected
with the color vision.

Besides, we show that the known (from optics) Rayleigh criterion for separa-
bility of two gray objects is considerably softened for objects of different colors.
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Abstract. We analyzed behavior of cortical alpha and beta oscillations during
preparation of self-paced finger movement. Magnetic field patterns around the
head were complex during rhythmic events, implying several simultaneously
active sources. Oscillations in the cortical sites separated by a few centimeters
were highly synchronized. The instants of the maximum amplitude for sharp
peaks generated in different locations match each other with millisecond preci‐
sion. During long trains of oscillations field patterns changed with each new cycle,
which means that each time a new combination of cortical sites was activated.
We conjecture that the trains of alpha and beta oscillations maintain proper level
of synchronization between distant neural populations in the brain. They organize
a pool of neurons needed to support normal performance of the cortex executing
the task.

Keywords: MEG · Self-initiated movement · Single-trial response · Alpha and
beta oscillations · Multiple sources

1 Introduction

The historical view of (EEG/MEG)-measured alpha rhythms (~10 Hz) as a “resting” or
“idle” brain state is being challenged by evidence that they are actively and topograph‐
ically deployed to gate information processing. They can be beneficial to attentional
regulation across neocortical areas [1–3]. A number of studies point at the active role
of alpha oscillations in the process of selective attention which filters out distractive
information [4, 5]. Beta oscillations (~20 Hz) are believed to take part in sensory-motor
transmission and to be related to anticipation of an impending event [6]. Alpha and beta
rhythms are usually considered separately, since under many experimental conditions
they are recorded in different cortical areas. Alpha-rhythm is usually dominant in the
visual occipital cortex, beta-rhythm in the sensory-motor parietal areas. Alpha-rhythm
in the occipital areas has maximum amplitude when the eyes are closed and becomes
blocked when the subject opens the eyes. MEG measurements of spontaneous activity
during motor tasks are usually made with eyes open and both alpha and beta components
are present in the same somatosensory area [7, 8]. Our experiments show that during
the preparation of a voluntary movement alpha and beta oscillations are densely inter‐
spersed in the same cortical sites. In our view they support selective attention state
preceding arrival of internal stimuli.

© Springer International Publishing AG 2018
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2 Materials and Methods

Eight right-handed volunteers 22–31 years old took part in the study. None of the partic‐
ipants had known neurological or psychiatric disorders. The study was approved by the
local ethics committee of the Moscow University of Psychology and Education and was
conducted following the ethical principles regarding human experimentation (Helsinki
Declaration). The subjects were instructed to make quick index finger extensions at their
own will, keeping the finger in the up position for some time and then moving it back
into the original position. Magnetic brain responses were recorded using a helmet-
shaped whole-head MEG system (Elekta Neuromag, 306 channels) at the Moscow
University of Psychology and Education. During the measurement, the participants were
sitting in a lighted magnetically shielded room with eyes open. The MEG signals were
recorded with a sampling rate of 1000 Hz and native hardware filters with bandpass 0.1–
300 Hz. The main stages of our data acquisition analysis procedures are described in the
publications [9–11].

3 Results

We measured magnetic field over the whole head when subjects were performing repet‐
itive self-paced finger movement. During the session, the subjects were always ready to
make self-paced finger movement either up or down. They were instructed to avoid
automatic movements and to choose waiting time before the movement in each trial
separately. Under this condition, rhythmic events in both alpha and beta frequency
ranges were consistently observed. Scrutiny of individual records shows that the alpha
and beta rhythmic events do not overlap, but follow each other, often being concatenated
[11]. MEG measurements under somewhat different conditions, reported in [12], showed
that mu-alpha or mu-beta events were nonoverlapping for roughly 50% of their respec‐
tive durations in single trials. We looked for common features in the observed alpha and
beta processes by comparing maps of the measured magnetic field, calculated using
Brainstorm software [13]. Field maps for alpha and beta events (trains of oscillations)
usually displayed complex structure, often difficult to interpret. This is due to simulta‐
neous activity of many cortical sources, most of which are traditionally considered as
noise. For high amplitude events the patterns often displayed regular structure, examples
are shown in Fig. 1. They are quite different from the dipolar patterns routinely used in
MEG studies for localization of the active area in the brain. The field distributions shown
in Fig. 1 are not exceptions - similar combinations occur permanently. Dipolar patterns
are rare. Field patterns shown in Fig. 1 and many similar ones imply a small number of
active sources in the brain, which cooperate to produce these distributions of the
magnetic field. We record our signals in the wide frequency band 0.1–300 Hz, so the
shape of the signals is not distorted. Traces often look like triangles with sharp corner
reiterating with alpha or beta frequency. Sometimes just single triangular peaks are
observed.

158 V.L. Vvedensky



Fig. 1. Single trial magnetic signals in different sensors during a second before right index finger
movement. The spatial patterns of the magnetic field over the head are shown for the instants of
maximum amplitude of cortical oscillations (marked with open circles). Amplitude of the radial
component of the magnetic field is represented as isomagnetic chart with contour step 100 fT.
Numbers indicate positions of the sensors over the head. Bandwidth 0.1–300 Hz. A - Peak in the
alpha train of oscillations, preceding the movement for 100 ms. Subject 1. B - Peak in the beta
train, preceding the movement for 720 ms. Subject 2.

The map at the instant, when the field value reaches the top of the peak, reveals
extremely sharp synchronization of several neural populations in the cortex located few
centimeters apart. In these regions the growth of electric polarization in large groups of
neurons reaches the top value simultaneously with millisecond precision. At this point
polarization build-up in several cortical pools of neurons abruptly turns into a fall. This
instant is the most appropriate for the generation of neuronal spikes travelling coherently
into other cortical areas [14]. A certain group of neurons can receive simultaneous inputs
from clearly distinct neural populations, which can recruit this group into a common
pool. Recordings of local potentials, using electrodes implanted into basal ganglia in
alert patients during functional neurosurgery for Parkinson’s disease, show that behav‐
ioral events can be reflected in momentary changes in the degree of synchronization
between neuronal elements [15]. This momentary synchronization is different from the
synchronization of rhythmic events extended in time for several oscillations. Wavelet
analysis is the standard tool for the MEG study of the synchrony in the cortex. This
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method implies similar behavior of the cortical ensembles of neurons during each oscil‐
lation through the whole width of the wavelet, typically 4–7 periods long. In contrast,
we analyzed each single oscillation and see that field patterns vary substantially from
cycle to cycle, as shown in Fig. 2.

Fig. 2. Single-channel MEG signal over right parieto-occipital part of the head during time
interval before right index finger moved up in the end of the record. This is one of many rhythmic
events with large amplitude during the session. Isomagnetic charts for 15 subsequent peaks of
oscillations in the alpha frequency range are plotted. The maps correspond to the instants of
maximum amplitude. Top view on the flattened helmet is shown, nose up. Considerable variations
of the pattern complexity and the changes of the direction of maximum gradient in every cycle
are evident.

Orientation of the cortical source, providing maximum contribution into the field
pattern, changes from cycle to cycle and contributions from other sources appear and
disappear in different cycles in a seemingly irregular way. Averaging across the whole
long spindle of oscillations would produce rather neat picture with a dipolar source in
the right parieto-occipital area, in spite of variations in different cycles. The cortical
process during alpha spindle looks like a sequence of fireworks volleys, where each
cycle is an individual pattern with few active spots in different cortical sites. High
amplitude spindle of alpha peaks is a regular chain of individual events. The area of the
cortex active during each peak can be quite small, as show studies with cortical electrode
arrays 1 cm large [16]. Larger intracranial electrode arrays, covering several centimeters
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of cortical surface, reveal multiple cortical spikes scattered over the cortex of patients
with excessively synchronized epileptic activity [17]. The trains of alpha and beta oscil‐
lations in healthy subjects can maintain proper level of synchronization between distant
neural populations in the brain needed to support normal performance of the cortex
executing the task.

4 Conclusions

Alpha and beta rhythmic events in the brain, observed when the subject is ready to
perform intended action display sharp synchronization between several cortical sites
few centimeters apart.
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Abstract. The paper analyzes the processes of self-organization in the economic
system that consists of investors and producers. There is intensive information
exchange between investors and producers in the considered community. The
model that describes the economic processes has been developed. The model
proposes a specific mechanism of distribution of investors capital between
producers. The model considers the interaction mechanism between investors and
producers in a decentralized economic system. The main element of the interac‐
tion is the iterative process. In this process, each investor takes into account the
contributions of other investors into producers. The model is investigated by
means of the computer simulation, which demonstrates the effectiveness of the
considered mechanism.

Keywords: Investors · Producers · Decentralized system · Competition · Self-
organization · Collective behavior

1 Introduction

Competition is an important element of the economic systems. Is cooperation possible
in competitive societies? Based on game theory and computer simulation, Robert
Axelrod demonstrated the advantages of cooperation for two players [1]. Forms of
aggressive and constructive competition between individuals within an agent-oriented
approach were also analyzed in [2]. In the current paper, we design and investigate the
model of the economic system with a soft constructive competition. The prototype of
our model is the works of Belgian researchers [3, 4]; their systems have used agents-
messengers to optimize a production hall’s operation and routing car traffic in a city.

In our model, the economic system is the community of producers and investors.
The producers and investors compete with each others. Nevertheless, the information
about capitals, profits, and intentions of community members is open within the
community. In particular, investors inform producers about their intention to invest the
certain values of capital into the separate producers. The information exchange ensures
the possibility to create a decentralized system of interaction within the community of
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investors and producers. The iterative process is an important element of the model.
This iterative process helps each investor to take into account the intentions of other
investors. The model describes an effective interaction of investors and producers in
the economic community. This effective interaction was demonstrated by means of
computer simulation.

2 Description of the Model

2.1 General Scheme of the Model

We consider a community of N investors and M producers; each of them has a certain
capital Kinv and Kpro. The investors and producers operate in the transparent economic
system, i.e. they provide the information about their current capital and profit to the
entire community. There are periods of operation of the community. For example, a
period can be equal to one year. Further, T is a time period number.

At the beginning of each T period, a particular investor makes an investment into m
producers. At the end of the period, every investor has to decide: how much capital
should be invested into one or another producer in the next period. In order to take into
account the intentions of all investors, we introduce an iterative process, which is
described below.

The i-th producer has its own initial capital Ci0 before the period T. The producer
obtains some additional capital from investors. The whole capital of the producer i is:

Ci = Ci0 +
∑N

j=1
Ci j, (1)

where Cij is the capital invested into the i-th producer by the j-th investor at the beginning
of the period T.

We believe that the dependence of the producer profit Ri on its current capital Ci has
the form:

Ri

(
Ci

)
= kiF

(
Ci

)
, (2)

where the coefficient ki characterizes the efficiency of the i-th producer. The values ki
vary randomly at the end of each period. The function F(x) is the same for all producers.
In the current work, we believe that the function F(x) has the form:

F(x) =

{
ax, if ax ≤ Th

Th, if ax > Th
, (3)

where Th is the threshold of the function F(x).
At the end of the period T, the producer returns the invested capital to its investors.

In addition, the producer pays off a part of its profit to the investors. The j-th investor
receives the profit part that is proportional to the investment made into this producer:
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Ri j = krepayRi(Ci)
Ci j

∑N

l=1 Cil

, (4)

where Ci is the current capital of the i-th producer, krepay is the parameter determining
the part of the profit that is transferred to investors, 0 < krepay < 1. The producer itself
gets the remaining part of the profit:

R∗

i
= (1 − krepay)Ri(Ci). (5)

Each investor has the following agents-messengers: the searching agents and the
intention agents; these agents are used for information exchange within the community.

2.2 Description of the Iterative Process

At the first iteration, the investor sends the searching agents to all producers in order to
determine the current capital of each producer. At the first iteration, the investor does
not take into account the intentions of other investors to invest some capitals into
producers. The investors estimate the values Aij, which characterize the profit expected
from the i-th producer in the next period T. These values Aij are:

Ai j = kdistRi j = kdistkrepaykiF(C
′

i0)
Ci j

∑N

l=1 Cil

, (6)

where Cil is the capital invested into the i-th producer by the l-th investor, C′

i0 is the
expected initial capital of the i-th producer at the beginning of the next period, kdist = ktested

or kuntested (ktested > kuntested). The positive parameters ktested, kuntested indicate the level of
the confidence of the investor for the considered producer; this level of confidence is
ktested and kuntested for the tested and untested producers, respectively. At computer simu‐
lation, we set: ktested = 1, kuntested = 0.5.

Then the j-th investor ranks all producers in accordance with the values Aij and
chooses the m most profitable producers with the large values Aij. After this, the j-th
investor forms the intention to distribute its total capital Kinv j among the chosen
producers proportionally to the values Aij. Namely, the j-th investor intends to invest the
capital Cij into the i-th producer:

Cij = Kinv j

Ai j

∑M

i=1 Ai j

. (7)

At the second iteration, each investor uses the intention agents to inform the selected
producers about these values Cij. Using this data, the producers evaluate their new
expected capitals C′

i0 in accordance with the expression (1).
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Then the investors again send searching agents to all producers and estimate the new
capitals of producers and the sums 

∑N

l=1 Cil, taking into account the intentions of other
investors. Profits of investors are evaluated by the expression (6), which already takes
into account the intentions of all investors. Any investor ranks the producers and chooses
the m most profitable producers again. After this, the investors estimate new planned
values Cij according to the expressions (6), (7). Once again, investors send intention
agents to inform the producers about the planned capital investment values.

After a sufficiently large number of such iterations, the investors do the final decision
about the investments for the next period T. Final capital investments are equal to the
values Cij obtained by the investors at the last iteration.

At the end of each period T, the capitals of producers are reduced to take into account
the amortization processes: Kpro(T + 1) = kamr Kpro(T), where kamr is the amortization
factor (0 < kamr ≤ 1). The capitals of investors are reduced similarly (further, corre‐
sponding indicators are called inflation factors for convenience): Kinv(T + 1) = kinf
Kinv(T), where kinf is the inflation factor (0 < kinf ≤ 1).

3 Results of Computer Simulation

The described model was investigated by means of computer simulation. The simulation
parameters were as follows:

– the total number of periods of considered processes: NT = 100 or 500,
– the number of iterations in each period: kiter = 1,…,50,
– the maximal thresholds of capitals of investors or producers (exceeding these thresh‐

olds leads to the reduplication of the investor or producer): Thmax_inv = 1,
Thmax_pro = 1,

– the minimal thresholds of capitals of investors or producers (if the capital falls below
these thresholds, then the corresponding investor or producer dies): Thmin_inv = 0.01,
Thmin_pro = 0.01,

– the maximal number of producers and investors: Npro_max = 100, Ninv_max = 100,
– the initial number of producers and investors: Npro_initial = 2 or 100, Ninv_initial = 50 or

100,
– the maximal number of producers m, in which the investor can invest its capital,

usually m = 2 or 100,
– the part of the profit that is transferred to investors: krepay = 0.6,
– the characteristic variation of the coefficients ki: ∆k = 0.01,
– the parameters of function F(x): a = 0.1, Th = 100.

The initial values ki were uniformly distributed in the interval [0,1].

The Specifics of the Iterative Process. In order to demonstrate the specifics of the itera‐
tive process clearly, we consider the results for the case of 2 producers and 50 investors.
We assume that initial capitals of both producers are equal to 0.25 units. The production
efficiencies ki of the first and the second producers are equal to 0.5 and 0.9, respectively.
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The first producer is tested (kdist = 1), and the second producer is untested (kdist = 0.5).
Figure 1 presents the simulation results for the investor with the number one.

a) T = 1 b) T = 2

c) T = 10 d) T = 75

1-st producer 2-nd producer

Fig. 1. The dependence of first investor contributions on the number of iteration at different
periods T

The results characterize the following. At T = 1, when the more efficient second
producer has not been tested, the investor from iteration to iteration increases the contri‐
bution to the first producer, despite its smaller efficiency (Fig. 1a). In the next period
T = 2, the investor prefers the second more efficient producer (already tested), and the
contribution to the first producer is gradually reduced (Fig. 1b). During the next periods,
the investor contributes almost the entire capital into the second efficient producer
(Fig. 1c). The investor makes such choice as long as the function F(x) for the second
producer does not reach the limit Th (see the expression (3)). After that, the investor
begins to make a contribution to the first producer (Fig. 1d). Thus, it is beneficial to
investors to make contributions into perspective producers, namely, into such producers,
whose profits will grow with increase of their capital. The iterations play the important
role in these processes of adjustment of contributions.

The Effectiveness of Iterative Evaluations for the Case N = M = 100. In order to
show that investors are more successful, if they take into account the intentions of other
investors, we simulate the processes without the iterative estimates (kiter = 1) and with
iterations (kiter = 50). We consider two cases: (1) without amortization and inflation and
(2) with amortization and inflation. Figure 2 demonstrates that the iterations increase
the capital of both investors and producers. Without amortization and inflation, the iter‐
ations increase the capital of the community by 10% (Fig. 2a). In the case of amortization
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and inflation, the effect is more significant, the iterations increase the capital of producers
and investors by 41–43% (Fig. 2b).

a) without amortization and inflation (kamr = 1, kinf = 1)

b) with amortization and inflation (kamr = 0.9; kinf  = 0.95) 

Fig. 2. Influence of iterative evaluations. The dependence of the total capital of the producers
and investors on period T

4 Conclusion

Thus, the processes of self-organization in the community of producers and investors
have been analyzed. Original features of the current model are the following: (1) the
cooperation between investors and producers, (2) the openness of information about the
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current capitals and effectiveness of the producers and about the intentions of investors
to invest capitals into different producers, (3) the iterative process of the formation of
capital investments. The most important result of the model is the development of the
new method for profitable capital investments. It is beneficial to investors to make
contributions into perspective producers, namely, into such producers, whose profits
will grow with increase of their capital.
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Abstract. Autonomic nervous system is the main way for the brain–body coor‐
dination, of which mode can be evaluated by dynamics of heart rate variability
(HRV). HRV analysis is used for evaluation of different psychological states
(stress, arousal, cognitive control etc.), which can be considered as characteristics
of behavior that formed at different stages of ontogeny. We investigated whether
HRV differs between the early-formed (less differentiated) behavior and the later-
formed (more differentiated) behavior. Heart rate was recorded in 33 healthy
subjects (mathematical specialists). Participants performed two tests which
included sentences with mathematical terms and sentences with common current
used words. They had to add one missing word in each sentence. Sample entropy
as a measure quantifying the complexity of time series was used to analyze HRV.
Complexity of heart rate was significantly higher in the mathematical test
performance when participants actualized the later-formed behavior.

Keywords: Autonomic nervous system · Complexity of heart rate · Different
stages of ontogeny · Behavioral complexity · Sample entropy

1 Introduction

Physiological supporting of behavior includes activation of different linked neurons
groups and optimization of physiological processes. As a rule traditionally in the
conserved approach internal bodily states are ignored in the searching of the neural basis
of behavior. Such mental functions as perceptions, thoughts, feelings etc. are for the
most part considered in isolation from the physiological state of the body. A mechanistic
understanding of distinct interoceptive pathways, which can influence brain functions,
leads to the impossibility of considering the behavior at the whole organism level [1].
Therefore the current main task is forming of the system approach for describing of
behavior from psychophysiology perspective.

Autonomic nervous system takes part in subserving of behavior. Studies of auto‐
nomic psychophysiology are beginning to have a big part in the current field of neuro‐
science. As an example, the fundamental association between bodily changes and
emotions was founded by James and Lange at 19 century. Since that time a lot off studies
with electrical stimulation in animals have demonstrated the coupling of visceral
responses to cortical regions, which include cingulate, insular [2], visual [3] and
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somatosensory [4] regions. It means that not only the nucleus of the solitary tract,
ventrolateral medulla, parabrachial nucleus and hypothalamus but also many cortex
regions take part in the brain–body cooperation (processing of visceral information).
Experimental researches into the mechanisms through which visceral afferent informa‐
tion is represented within the brain haven’t shown clearly how visceral signals shape
human behavior yet. The majority of visceral signals that shape behavior are unnoticed
despite there is anatomical and experimental information about the representation and
influence of the visceral state in brain processes.

In this way describing principles through which human behavior and experience is
coloured by internal bodily signals Benarroch [5] showed the central autonomic network
(CAN), which included different structures of the central and the autonomic nervous
system. The main statement of the theory is the CAN is an integral component of an
internal regulation system through which the brain controls visceromotor, neuroendo‐
crine, pain, and behavioral responses essential for survival (for goal-directed behavior
supporting).

Heart rate variability can be considered as a tool for measurement of autonomic
nervous system activity. Heart rate variability (HRV) is the variation over time of heart
beat intervals (the periods between consecutive heartbeats), which depends on such
physiological processes as autonomic neural regulation, thermoregulation, breathing
etc. [6]. HRV is thought to reflect the heart's ability to adapt to changing behaviour and
can be considered as an indicator of central-peripheral neural feedback and central
nervous system – autonomic nervous system integration. Therefore HRV was used in
the current study as a noninvasive tool for assessing the activities of the autonomic
nervous system.

It is shown that HRV associated with a diverse range of processes, including affective
and attention regulation, cognitive functions (such as working memory, sustained atten‐
tion, behavioral inhibition, general mental flexibility) [7]. These processes can be
considered as characteristics of behavior formed at different stages of ontogeny.

From the system-evolutionary theory [8] perspective, a new behavior is sub-served
by co-activation of specialized neurons groups that had emerged in learning. The result
of learning is a functional system that is a set of brain and body elements activity for
providing efficient interaction with the environment [9]. Formation of new systems
during development results in growing complexity and differentiation of organism–
environment relations. They are becoming more detailed and specific. Consequently,
the structure of behavior becomes more complex and differentiated during development
[10]. In this way ontogenetic development can be considered as the process of increasing
differentiation along with the number of learnt behavioral functional systems [11].

Therefore we investigated whether HRV in the early-formed behavior (“old”) differs
from HRV in the later-formed (“new”) behavior. Basing on the fact that usually “old”
behavior is less complicated than “new” behavior [12] we hypothesized that heart rate
complexity would be higher at “new” behavior performing.
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2 Materials and Methods

The experiment was approved by the Ethics Committee of the Institute of Psychology
of Russian Academy of Science. Prior to the experiment, all subjects signed an informed
consent form stating that participation was voluntary and that they could withdraw from
the study at any moment.

Thirty-three healthy subjects (28 men, median = 27.78 years, range 23–37 years)
participated.

Participants did not suffer from any self-reported respiratory, cardiac diseases,
epilepsy, psychiatric disorder, or any minor or major illness. All participants were
professional mathematicians and had work experience (Median = 4.84 years).

The linguistic task was used for modeling behaviors formed at different stages of
ontogeny because language acquisition, as part of individual development, can be
considered as learning to achieve adaptive results [13, 14].

The experimental task was to add one missing word in the sentence. The sentences
(N = 64) were divided into 2 groups by age of acquisition of words. The first group of
sentences (N = 32) included sentences with mathematical terms. Subjects had known
these terms from University studying (from the age of 18–19 years). The example is “A
normal is a vector that is perpendicular to a given object”. These sentences included
later-acquired words and made actual a “new” behavior. The second group of sentences
(N = 32) included sentences with commonly used words. Subjects had known these
words from childhood (from the age of 5–6 years). The example is “Plasticine is a
material for modeling figures”. These sentences included early-acquired words and
made actual an “old” behavior. The sentences in both groups were equal in the linguistic
estimations, such as the quantity of words, syllables, letters and Fog’s index.

The sentences were performed individually on a standard computer. The order of
sentences was random without repetition in each group.

The ECG was obtained using the wireless device HxM BT by Zephyr Technology
and the developed software complex. The plastic electrodes were filled with electrolyte
and placed on the thorax across the heart, they were located in I and II chest leads. Batch
data transmission from the sensor to the mobile device was done through the wireless
protocol Bluetooth. Realization of communication, data transmission and storage was
performed in the mobile device by the original software “HR-Reader” [15]. “HR-
Reader” program medium provided on-line visualization of the registered signal for the
record control. The signal was sampled at 400 Hz. The inter-beat intervals (IBI) were
extracted from ECG through the threshold algorithm.

The time domain indexes of HRV used in the analysis were the mean (HR, ms) and
standard deviation (SDNN, ms) of IBI. These indexes closely reflect all nervous regu‐
latory inputs to the heart.

For estimation of heart rate complexity we used the sample entropy (SampEn) as a
set of measures of system complexity reporting on similarity in time series. SampEn
was chosen because it is successfully applied to relatively short and noisy data and it is
largely independent of record length and displays relative consistency under circum‐
stances. SampEn (m, r, N) is precisely the negative natural logarithm of the conditional
probability that two sequences similar for m points remain similar at the next point,
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where self-matches are not included in calculating the probability [16]. The parameter
N is the length of the time series, m is the length of sequences to be compared; r is the
tolerance for accepting matches. Thus a low value of SampEn reflects a high degree of
regularity. SampEn is independent on the record length and displays relative consistency
under circumstances. The parameters m and r were fixed: m = 2, r = 0.5*SDNN.

We calculated HR, SDNN and SampEn for series of IBI individually during perform‐
ance of the task with mathematical words and the task with commonly used words.

Normality of variables was tested in Shapiro–Wilk’s test (W-test). HRV data of two
conditions (performing tasks with mathematical or commonly used words) were tested
in Wilcoxon signed-rank test. We used non-parametric test because the majority of
variables didn’t have the normal distribution. Statistical analyses for all measures were
accomplished with Statistica 10.

3 Results

We compared to time domain indexes (HR and SDNN) and non-linear index (SampEn)
of HRV between two periods: performing the task with mathematical words and
performing the task with commonly used words, using non-parametric Wilcoxon signed
rank test.

Values of heart rate (HR) and of the standard deviation of heart rate (SDNN) did not
significantly differ between two conditions (Tables 1 and 2).

Table 1. Description statistics (median, lower and upper quartiles) and the results of Shapiro–
Wilk’s test of HRV parameters in task performing with sentences with mathematical words (MW)
and sentences with commonly used words (CW).

Statistics SamEn
CW

SampEn
MW

SDNN
CW

SDNN
MW

HR
CW

HR
MW

Median 0.65 0.72 56.72 58.92 789.64 781.35
Lower
quartile

0.51 0.62 44.67 45.48 734.11 708.86

Upper
quartile

0.77 0.79 76.48 76.88 922.31 907.13

Median 0.65 0.72 56.72 58.92 789.64 781.35

Table 2. The distributions of the medians of HRV parameters in two types tasks performing were
compared using Wilcoxon signed-rank test.

Variables T Z p
SampEn 82.00 2.37 0.01*
SDNN 128.00 1.21 0.22
HR 132.00 0.65 0.49

*Significant level.
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Heart rate complexity (SampEn) was significantly higher in the performing the task
with mathematical terms than performing the task with commonly used words
(Tables 1 and 2).

4 Conclusion

The aim of the current study was to examine the relationship between the system
supporting of behavior and complexity of heart rate. It was shown that the early-formed
behavior, which realized less differentiated organism–environment relationships, was
corresponded with less complexity of heart rate than the latter-formed behavior, which
realized more differentiated organism–environment relations.

It was shown that neuronal subserving of the latter-formed behavior includes more
neuronal systems [17]. As an example, the acute effect of alcohol on the ERPs related
to the use of knowledge and experiences acquired at the early stages of individual
development was less than at the later stages [18]. Therefore we can suppose that during
later formed behavior the central-autonomic network has to realize more nonstationary
activity which demands many different changes in the activity of the heart and other
parts of the organism. It leads to lack of regularity of heart rate and to the increase of
complexity (Fig. 1).

Fig. 1. The correlation between complexity of heart rate and degree of differentiation of behaviors
formed at different stages of individual development. The small ovals depict functional systems
formed at different stages of individual development. Groups of ovals connected by the line
illustrate the combination of functional systems that provide realization of behavior: full line -
later-formed behavior, dashed line - early-formed behavior.

It is important that HR was the same in both conditions. It means that these different
modes of heart activity, which were seen in the results, cannot be explained through the
different intensity of cognitive load, which demands different quantity of internal
recourses during early- and latter-formed behaviors.

The main output of the study is that the system subserving of behavior is reflected
not only in the brain activity but also in the body activity. Functional systems, which
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subserve behavior, are not only neuron systems. They also include different parts of the
body, which change their activity in cooperation with the brain for an optimal achieve‐
ment of results.
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Abstract. We recorded the spontaneous background impulse activity in the
medullar and midbrain single auditory neurons of the paralyzed grass frog. This
activity was considered by us as a chaotic point process. For the analyses of
temporal changes of this process we used the approach based upon the recording
of the Hurst index. This approach was juxtaposed with the methods based on the
study of the dependence of Fano and Allan factors on the duration of the analyzed
interval. A comparative analysis of the Fano, Allan and Hurst indices by Kendall’s
rank correlation method have been made. We observed a close correlation of the
values of the Fano and Allan indices for the spontaneous activity of the same
neuron. Correlation of the Fano and Hurst indices was not so pronounced and did
not quite correspond to the properties of typical fractal point processes. It is
possible to formulate assumptions about the possibility and efficiency of using
Hurst index to analyze the sequence of pulsed discharges of a neuron. In most
cells, chaotic changes in impulse density were observed, which is indicative of
the trend behavior of neuron’s firing. Anti-trend behavior was not observed.

Keywords: Amphibians · Spontaneous activity · Fractal · Allan factor · Fano
factor · Hurst index

1 Introduction

The spontaneous (background) activity of auditory neurons generated in the absence of
controlled external sounds reveals many important properties of test cells, including
both dynamics of the recovery of excitability after generation of spike discharge, and
relatively slow changes of the firing density, that reflect important processes occurring
in brain neural networks. In the Russian Acoustics Institute the study of background
activity of frog auditory units had started a long time ago [1], and continues up to now.

During this period we have used several methods for analysis of the point process
of background neuronal firing, including fractal approach [2–5]. The results of the anal‐
ysis of spontaneous activity of the auditory neurons of the medulla oblongata of the frog
using the Fano and Allan factors were presented in 2009 [6, 7]. The use of these tech‐
niques has allowed us to arrive to a number of conclusions. For time intervals of less
than one second, the background activity of the majority of units could be adequately
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described as random process, although some neurons reveal a marked drop in the values
of the Fano and Allan factors. This effect is likely determined by the presence of the
accumulating refractory. However, for the duration of the periods longer than one
second, most neurons demonstrated the power function growth of the Fano factor values,
indicating chaotic and fractal properties of the investigated process. The growth of Allan
factor values usually occur only at longer duration of the analyzed periods.

This report presents the results of processing of the spontaneous firing in medullar
neurons of the frog using Hurst index, which was initially introduced for the analysis of
changes of the Nile’s water level [4]. Later it was used for the analysis of a variety of
processes, both natural and social. We compare results obtained by Hurst index with the
results of analysis of neuronal activity using the Fano and Allan factors [6, 7].

2 Methods

2.1 Electrophysiological Recording of the Background Firing

The raw data on the impulse activity of single neurons in the medulla oblongata were
obtained in electrophysiological experiments on amphibians (immobilized frogs - Rana
t temporaria). Extracellular recordings were carried out in the dorsal medulla nucleus
using glass electrodes filled by NaCl with resistance of 2–10 mgOm and an amplifier
with high input impedance. During the operation complied with the requirements of
humanitarian treatment of animals we have used MS222 or cold anesthesia. During
recordings the frog was placed in a soundproofed booth with minimum ambient noise.
Registration was carried out in the dorsal medullar nucleus whose neurons receive inputs
from auditory nerve fibers. Identified spike pulses were converted via Schmitt trigger
into standard electric pulses stored in the memory of a personal computer. Time of
occurrence of each spike was recorded with a precision of 0.5 ms. Experimental methods
were described in detail previously [6, 8].

2.2 Data Processing

We used the standard formula for the calculations of the functions characterizing the
dependence of Fano and Allan factors on the interval duration.

Fano factor:
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Allan factor:
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i
(T)⟩ (2)

where T is duration of the time interval, N is the number of spikes in analyzed interval.
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The values of exponents of these functions in the intervals where they were close to
a straight line in the double logarithmic coordinates are called here Fano (or Allan)
indexes. The intervals were considered suitable for indexes calculation, if they included
at least five points and the correlation coefficient of the dependence was greater than
0.9. Since such intervals were absent in some units, these factors was calculated not for
all investigated neurons.

Figure 1 shows examples of the dependences of the Fano factor values upon the
length of the analyzed intervals. The first of the illustrated neurons exhibits typical
behavior (Fig. 1a). However, in some cases, this dependence is almost absent for all
analyzed intervals (Fig. 1b).

0.001 0.01 0.1 1 10 100
interval duration,s

0.1

1

10

100

1000

rotcaf
onaF

0.001 0.01 0.1 1 10 100
interval duration,s

0.1

1

10

rotcaf
onaF

Fig. 1. Typical plots of the “power” (a) and “non-power” (b) behavior of the Fano factor in double
logarithmic coordinates.

The method of the Hurst index calculation, which we used in our study, was taken
from the paper [9].

The formula for computing the Hurst index:

H =

log
(

R

S

)

log
(1

2
n

) (3)

where: n is the number of measurements (members of the time series), S is the standard
deviation of a series of observations, and R is the difference between maximal and
minimal of the time series intervals.

In some papers, for the analysis of point temporal sequence several methods are
applied simultaneously to the analysis of fractal processes. For example, in the paper
[10] for a specific object - the sensor network router - the DFA method, correlation
analysis, Fano factor and Hurst index were applied.

In our study, we carried out a comparative analysis of the Hurst index with Fano and
Allan indexes for neurons, which gave information on all these factors. For the “case
table” thus formed, the Kendall rank correlation coefficient was calculated [11].

The values of the Kendall coefficient were calculated for a “complete” base of
neurons and for groups of neurons with a successively decreasing number of spikes. Our
purpose was to check the interrelations of the Hurst index with indexes of Fano and
Allan.
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Table 1 shows the results of the Hurst index calculation from the raw data. In the
majority of cases, the Hurst index significantly exceeds the value of 0.5, which is critical
for random behavior. There are several neurons for which the Hurst index is close to
0.5. We did not observed a single neuron with the Hurst index less than 0.5.

Table 1. Hurst index values

№ spikes N cells Mean Median Mode
All cases 60 0.7362 0.72 0.70
N ≥ 5000 29 0.7524 0.75 0.79 and 0.83
N ≤ 5000 31 0.7210 0.70 0.70
N ≤ 4000 24 0.7138 0.70 0.70
N ≤ 3000 18 0.7272 0.71 0.70 and 0.71
N ≤ 2000 7 0.7257 0.67 0.62

We analyzed the relationship between the Hurst, Allan and Fano indexes using
Kandall’s rank correlation coefficients (Tables 2 and 3). From the data in the Table 2,
we can conclude that there is a statistically significant correlation between Fano and
Allan indexes for all values of N (the number of spikes), since the value of significance
level (p) has always been less than 0.05.

Table 2. Kendall’s rank correlation coefficients between Fano and Allan indexes

N spikes N cells Kendall coefficient Significance
All cases 60 0.490 0.000
N ≥ 5000 29 0.575 0.000
N ≤ 5000 31 0.446 0.000
N ≤ 4000 24 0.352 0.002
N ≤ 3000 18 0.311 0.042
N ≤ 2000 7 0.524 0.004

Table 3. Kendall’s rank correlation (Krc) between the Hurst, Fano and Allan indexes

Number of spikes Number of cells Hurst index vs Fano factor Hurst index vs Allan factor
Krc p Krc p

All cases 60 0.408 0.000 0.344 0.000
N ≥ 5000 29 0.498 0.000 0.451 0.000
N ≤ 5000 31 0.346 0.010 0.287 0.027
N ≤ 4000 24 0.156 0.368 0.117 0.505
N ≤ 3000 18 0.265 0.134 0.114 0.564
N ≤ 2000 7 0.238 0.571 0.143 0.722

Table 3 shows the coefficients of the relationship between the Hurst index and the
Fano and Allan indexes. For the entire experimental base of 60 neurons, a statistically
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significant correlation was recorded. However, this dependence is fairly clear only when
the sample was very representative.

For N < 4000 values, we could not find statistically significant association. A graph‐
ical comparison of the Fano the Hurst indexes is given in Fig. 2. The linear approximation
was described by the formula H = 0.192 * F + 0.621 (dotted line). The theoretical line
H = 0.5 * F + 0.5 (solid line), which assumes a purely fractal nature of the processes is
also shown. Although the experimental data are in qualitative agreement with the theo‐
retical dependence, the relationship of these parameters is only qualitative.
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Fig. 2. The relationship between the Fano and the Hurst indexes.

In the paper [9] a modified Hurst index was introduced and a technique for classifying
time series as random or trend/anti-trend for time series with N ≤ 5000 was developed
(based on the author’s calculations using pseudorandom data). This approach, in prin‐
ciple, allows us to follow the dynamic behavior of the Hurst index on individual succes‐
sive segments of the process. Preliminary results suggest that the behavior of the process
describing the spontaneous activity of the auditory neurons of the frog’s medulla can
spontaneously vary from trend to random and backward.

3 Conclusion

A comparative analysis of the relationships between Fano, Allan and Hurst indexes using
the Kendall correlation coefficient demonstrates that all these parameters can be used
for statistical description of spontaneous neuronal activity. However, a statistically
significant relationship between the Hurst index, on the one hand, and the of Fano and
Allan indexes, on the other, was found only for representative samples (with a number
of spikes N > 4000).
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Abstract. Synapse, as it is known, consists of presynaptic and postsynaptic
parts. In many brain cells, particularly in the cortex and the hippocampus, a
postsynaptic part presents a small membrane protrusion on the surface of the
dendrite - a dendritic spine. The dendritic spine is partly an isolated structure,
but it is associated functionally with other spines of dendritic shaft as well as
through the vesicular system with the soma of neuron. The main task of the
spine interactome is not only to receive a signal from a presynaptic cell, but also
to react to it by opening/closing the ion channels, thus ensuring its transmission
to the axon. The interactome of spine is primarily a detector of environmental
signals and through the remodeling of the system of its macro-complexes it
recognizes and remembers the pattern of the signal.

Keywords: Pyramidal neuron � Synapse � Interactome � Modulation � AMPA
– and NMDA-type receptors

1 Introduction

A synapse is the place of the contact between neurons or between a neuron and a
signal-receiving effectors cell. It serves to transmit a nerve impulse between two cells,
and during the synaptic transmission, the amplitude and frequency of the signal can be
regulated. The interactome of dendritic spine (a set of all protein interactions with each
other) represents a dynamic multi-level and multi-component system.

The evolution of the brain correlates with complication of a molecular organization
of nerve cell [1–3]. The complexity of neuron organization allows considering it as the
organism in the organism. Sherrington [4] proposed the concept of the cell as an
organism in the organism. The nerve cell, like any living cell, implements a genetic
program providing one’s “demand/motivation” owing of metabolism. The neurons
cannot procure themselves metabolites from environment using own mobility as free
organisms. The neurons receive metabolites from the other cells and must integrate
with the cells of the organism in functional systems supporting their metabolism.

The perception–action cycle is a basic biological principle that governs the func-
tional relationships of the organism with its environment and guides the organism to its
goals [5, 6].
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In recent years, the paradigm of a distributed network of cortical memory has
emerged, and the concept of a memory network [7] which are the center of new
paradigms of the memory. A memory or an item of knowledge is defined by a pattern
of connections between neuron populations associated by experience and a neuron can
be part of many memory networks and, thus, element of knowledge [7]. The neuron is
also interacting with other neurons in the systems to provide the specific functions of
the brain. It is obvious that the activity of the neuron, as element of memory network,
as the systems of provision by metabolites is the actions that lead to the achievement of
the aim by function systems of cell or brain networks. The functional systems within a
neuron are the molecular networks which are compartments performing the specific
cellular function. The activity of the neuron entails changes in their connections with
other neurons as well in their molecular network.

Learning and memory are mediated by changes in the excitability of the cell and
modulations of synaptic transmission, usually it take place in protein system of the
postsynaptic (dendritic) part of a synapse. The hippocampus is a brain structure
involved in short-term memory and the phenomenon of long-term potentiation
(LTP) (increasing the efficiency of synaptic transmission after an intense and short-term
release of neurotransmitter) is the dominant cellular model of learning and memory [7].

The implementation of a neuron function depends on the actions of its numerous
molecular-effector systems. The generalization of the complex processes of emergence
synaptic memory that occur even in separate neuronal compartments without special
tools is a difficult, if at all possible, task. The technology which combines the creation
of a database with presentation them in the form of networks facilitates this process.
The protein-protein interaction network in dendritic spines of the hippocampal pyra-
midal neurons facilitates the synthesis of numerous experimental data in conceptual
knowledge about the principles and molecular mechanisms of operation the neurons.

The main purpose of this review is to reconstruct the action sequence of functional
(executive) systems of the neuron involved in synaptic modulations in the phases of
long-term potentiation.

2 The Own Goals of the Individual Neuron

The individual neuron of multi-cellular biological systems has cognitive functions.
Neurons isolated in vitro display the cognitive-like “behavior” - remembering and
recognizing signals, predicting the possible changes in the external environment, and
choosing the appropriate reaction to prevent their consequences [8]. For the neuron,
brain is its environment. The survival of the individual neuron is based on genetic
programs adapted to the conditions of environment by learning in the process of life.
Homeostasis is a major genetically predetermined program and it is maintained by
motivational subprograms. Evaluation and maintenance of energy resources (food
motivation), avoiding the adverse conditions (defensive motivation); the reparation of
damages, generation of new processes (information input) and algorithms of reactions
on the basis of association of signals, and prediction of future signals are the major
neuron subprograms [9–11]. Comparing the signals generated by an intracellular
molecular information system with data from memory (multi-level, distributed in each
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of these systems and in the genome) with the signals coming from the outside medium
(for the cell) leads to the classification of a certain degree of novelty of these signals. If
a signal is recognized, then the system predicting the consequences acts on the basis of
algorithms that genetically determined and gained during learning.

The molecular basis of this multilevel functional system is likely the intracellular
molecular assemblies, with the cytoskeleton acting as the substrate for associative
memory. The dipole system of the tubulin cytoskeleton and clusters of other polarized
proteins performs the pattern recognition [12–14], thereby controlling the effectors. The
activation of cellular effectors leads to the formation of a response to avoid or minimize
external influences by changes in both the intracellular system and the environment.
The processes causing the formation of intercellular connections and synaptic modu-
lations for a particular neuron are changes in the external environment.

The functional systems within a neuron are the molecular networks of compart-
ments performing specific cellular functions. The interaction of these systems leads to
the creation of new integrative properties (the so-called emergent-systemic properties
and functions), that are not the part of the individual components. These newly
emerged properties allow the nerve cells to function as the complex of molecular
information systems that underlie cognitive functions.

Nowadays the development of a network of executive systems that guides the
neuron to its numerous parallel goals is an urgent task. The modern level of conceptual
knowledge and considerable amount of experimental data does not allow creating the
complete network. The functional systems [7], the autonomous adaptive agents [15] are
circuits that the most comply with the experimental data. We developed a
structure-functional schema of a neuron as a system with elements of cognition
functions.

3 The Functional Systems of the Neuron Involved in Synaptic
Modulations in the Early Phase of LTP

Dendritic spines are the postsynaptic component of a synapse. These protrusions (less
than 1 µm3) originate from an axial dendrite. Networks of the dendritic spine proteins of
pyramidal neurons of the CA1 hippocampal region of rodent in the early phase of LTP
have been reconstructed using GeneNet computer system [16]. The protein-protein
interaction (PI1) network of dendritic spines is presented on the site (http://wwwmgs.
bionet.nsc.ru/mgs/gnw/genenet/viewer/Earlylong-termpotentiation.html).

Network components and their relationships were developed by referring to the
published articles (PubMed) and databases (Swiss-Prot, EMBL, MGI, GeneCard, and
TRRD). In addition to the qualitative characteristics, such as presence or absence of
links between proteins, the system takes into account the nature of the regulatory
interactions between proteins, i.e., activation, inactivation, and enhancement or sup-
pression of the molecular interactions. PI1 network reflects the organization of the
system in one of the possible dendritic spine states. In constructing PI1 network, we
considered that a spine is a highly ordered structure with a specific horizontal and
vertical organization at all levels: the membrane (synaptic, perisinaptic extrasinaptic
zone); submembrane (cytoplasmic tails of receptors and submembrane proteins); and
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the cytoplasm (the nanodomains of proteins, the network of actin filaments, intracel-
lular stores of receptors, and other proteins).

Proteins that anchor the receptors and bind them to the cytoskeleton (scaffold
proteins), protein kinases, proteases, and GTPases form the postsynaptic density
(PSD) located under the synaptic membrane [17].

Glutamate receptors are receptor-channel complexes. The classification of these
receptors is based on their sensitivity to N-methyl-D-aspartate and (NMDA) and
a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA).

MDARs are directly anchored at the center of the PSD and AMPAR are anchored
through a family of stargazing proteins at the periphery [18, 19]. In PSDs, there are the
physical interactions between molecules and positioning the partner molecules in
complexes (macro-complex). AMPARs form a connection with 9 proteins in PSD, and
NMDARs form a connection with more than 450 proteins in PSD [20, 21].

The dendritic spine cytoskeleton comprises a polymeric (F-actin) and monomeric
(G-actin) actin, and F-actin is dominant.

Transduction of signals from receptors to the actin cytoskeleton is mediated by the
small GTPase family, protein regulators of small GTPases, kinases, phosphatases, and
numerous regulatory proteins that directly interact with G-actin and F-actin.

Small GTPases circulate between two their states: active - GTP-bound (guanine
triphosphate) and inactive - GDP-bound (guanine diphosphate). For example, our
network shows that the small GTPase Rac1 is activated by the GEF Tiam1Rac1 and
inactivated by the GAP MEGAP Rac1, and is indirectly regulated through SynGA-
PRas. Thus, PSD scaffold proteins are the original sites for the assembly of functional
nanodomains, providing a point of physical interaction between effectors, acceptors,
and their activators and inhibitors [22].

PI1 network of dendritic spines reflects the molecular executive systems, which
provides increasing the excitability of the cell after an intense and short-term release of
neurotransmitter. This pattern of glutamate receptor activation leads to the transition of
spine to the level, corresponding to more efficient synaptic transmission.

PI1 network of dendritic spines and the description of the processes that are ini-
tiated by activation of glutamate receptor reflects the ability of nanosized compartments
of the neuron to self-development (the transition to a new level of efficient synaptic
transmission) using only their own resources. However, for maintaining the new state
of spine resources from other compartments of the neuron are needed.

The synthesis of new proteins, occurring in the soma of the neuron, including
AMPA receptors [23] is necessary to maintain long-term LTP. LTP in hippocampus is
maintained for a long time, but not longer than 30–60 min if the synthesis of proteins is
blockaded. To maintain the LTP in this initial period a post-translational modification
of proteins and formation of protein-lipid vesicles in the vacuolar system [24] is
required more than the protein synthesis. Maintaining the new level of transfer is
accompanied by replacement of AMPA1/2 receptors on AMPA2/3 subtype [25]. The
molecular network (PI2), and. interactive map is presented on the site (http://wwwmgs.
bionet.nsc.ru/mgs/gnw/genenet/viewer/AMPA.html).

The basal stocks of AMPARs2/3 are in the vacuolar system, where they are
included in the vesicles and delivered to the spines. The movement of proteins between
compartments of vacuolar system (endoplasmic reticulum, Golgi apparatus, trans Golgi
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network, endosomes) and their delivery to the spine are mediated by small transport
vesicles, branching off from a donor compartment and then fuse with an acceptor
compartment [26]. The violation of vesicle assemblage induces a significant decline of
the synaptic transmission efficiency in the first 20 min [27].

Functional and structural plasticity induced by external influences may lead to the
synaptic activity shift to a non-physiological range. These mechanisms involved in
learning and memory are balanced by another distinct form of neuronal modulation -
homeostatic plasticity. One of the major cellular events underlying the expression of
homeostatic regulation is the alteration of AMPARs accumulation and thus, synaptic
strength [27]. These two forms of plasticity coexist to adapt to changing the external
environment while maintaining the balance of neural activity within a physiological
range. Neuronal networks use an array of homeostatic negative-feedback mechanisms
that allow neurons to assess their activity and adjust accordingly, to restrain their
activity within a physiological range [28, 29]. Different functional molecules and
signaling cascades are involved in the expression of homeostatic up- or down regu-
lation of synaptic activity and AMPAR expression.

4 Conclusion

Analysis of the cell as a functional system allows reconstructing the processes of the
origination of integrative properties associated with the concepts of cognition, the
functioning of neuron as the organism in the organism. PPI1, PPI2 net-works (fragment
of cell maps) reflect the molecular systems functioning that required for neuron
inclusion in the network of brain and maintenance of this communications with the
cells of the network. Simulation of complex systems is necessary, because a multi-
component molecular system of the nerve cell is perceived with difficulties without it.
PPI1, PPI2 networks represent the basic set of the molecules and its functional inter-
actions, which is required for translate the electrochemical signals into the following
processes: inclusion of a neuron in the brain networks, recognition of synaptic activity
patterns, converting the activation of glutamate receptors in changing the neurotrans-
mission. The dendritic spines are dynamic structures. GeneNet computer system can
reflect the organization of the protein-protein interaction networks in one of the pos-
sible states, because the temporal dynamics of the process can only be brought now in
the form of a script. Perhaps PPI1, PPI2 networks can become the fragments of the
complete electronic circuits of certain neuron type.
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Abstract. In epilepsy, the number of persistent sodium (NaP) channels
increases. To study their effects on neuronal excitability we applied
dynamic-clamp (DC). We have revealed that NaP current decreases rheobase,
promotes depolarization block (DB) and changes membrane potential between
spikes. Bifurcation analysis of a Hodgkin-Huxley-like neuron reveals that NaP
current shifts saddle-node and Hopf bifurcations which correspond to the
rheobase and DB, in agreement with experiments. By shifting DB, NaP current
can make an antiepileptic effect via excitatory neurons.

1 Introduction

Experimental data demonstrate that the expression of such ionic channels as potassium
IM [1], IA [2], IBK [3] and persistent sodium INaP [4–6] is changed in epilepsy. This
damage leads to development of chronic epilepsy. Agrawal et al. [5] have shown that in
pilocarpine model of epilepsy the expression of NaP channels increases. Here we test
whether this increase makes a compensatory effect or reverse. We suppose that such
effect might be provided by DB, the disruption of spike generation at too strong input
currents because of inactivation of sodium currents.

The main effects of NaP current have been revealed by Vervaeke et al. [7]. By
means of mathematical modeling and experiments in slices with DC, it has been found
that NaP channels decrease the gain of the rate-versus-current dependence, decrease the
rheobase, and improve regularity of spiking. The effect of NaP channels on DB has not
been considered, apparently due to technical limitations of the DC setup. According to
[8, 9], DB in pyramidal neurons could be one of the mechanisms of seizure cessation.
There are many factors affecting DB [9, 10]. Here we study the effects of NaP channels
on DB and other spiking characteristics by using DC and bifurcation analysis.
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2 Methods

2.1 Experiment

Spike trains from pyramidal cells in the entorhinal cortex slices (deep layers) of the rat
brain were recorded using the whole-cell patch-clamp technique in current-clamp and
DC modes, see details in [10, 11] with conventional extracellular and potassium-
gluconate-based pipette solutions. Hyperpolarizing and depolarizing current steps were
injected for 1.5 s. In the DC mode, the NaP current was simulated according to the
approximation from Vervaeke et al. [7]:

INaP ¼ gNaP ~m V � VNaPð Þ; d ~m
dt

¼ ~m1 � ~m
sNaP

; ~m1 ¼ 1þ exp
V � V1=2

Vslope

� �� ��1

; ð1Þ

where sNaP = 1 ms, VNaP = 30 mV, V1=2 = −51 mV, Vslope = −4.5 mV fit to experi-
mental data from [12]; gNaP is variable maximal conductance.

2.2 Analysis of Experimental Data

Input resistance (Rin) was estimated as the gain of a linear approximation of a
voltage-current relationship in the interval of injected currents from −60 to 0 pA. The
membrane time constant (sm) was estimated from the response to −20 pA current step
by an exponential fitting. The sag amplitude was measured from the response to −50
pA current step [13]. Other characteristics were: the spike threshold (Vth), defined as
the membrane potential at the point with dV/dt > 10 mV/ms; the spike amplitude
relative to the threshold level (RA); the spike half-width (HW) at the half-height; the
after-spike hyperpolarization (AHP) after the third spike; its latency since spike tAHP;
the reverse interspike intervals IF1 (between the first and second spikes), IF3/IF1

(relative third interval), and IFn/IF1 (relative last interval). Values of Vth, RA, HW were
averaged across spikes. The frequency-current dependence was characterized by the
gain (k), the rheobase, the current inducing maximal firing rate (Imax), and the limit
current of DB. The rheobase was estimated with a step 10 pA, whereas DB with a step
50 pA. The firing rate (FR) was averaged during last 0.5 s of the current step in order to
take into account only steady state regime. Comparison of the estimated parameters
between cells was performed for the traces with half-maximal firing rates. Software
programs were written in Wolfram Mathematica 10 and Delphi 7.

2.3 Hodgkin-Huxley-like Model of a Neuron

Bifurcation analysis was performed for a single compartment Hodgkin-Huxley-like
neuron that includes the transient sodium current INa, the NaP current INaP (Eq. 1), the
delayed rectifier potassium current IK , and the leak currents of sodium, potassium and
chloride ions. The model has been modified from [14] by assuming constant reversal
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potentials and adding the NaP current in the form of Eq. 1. The dynamics of the
membrane potential, V , is described by the equations:

C
dV
dt

¼ Iext � INa � IK � IL � INaP;

INa ¼ gNam
3h V � VNað Þ; IK ¼ gKn

4 V � VKð Þ;
IL ¼ gNaL V � VNað Þþ gKL V � VKð Þþ gClL V � VClð Þ;
dq
dt

¼ aqð1� qÞ � bqq; q ¼ m; h; n

ð2Þ

Here Iext is the external applied current; C is the membrane capacitance; Vj (j is
either Na, K or Cl) are the reversal potentials calculated from the Nernst equation
according to the composition of the perfusion and intracellular solutions used in our
experiment (see Sect. 2.1); gi are the maximal conductances, i = Na, K, NaL, KL, or
ClL. The equations of opening and closing rate constants of the ion channel state
transitions, taken from a pyramidal cell model [15]. The parameters were as follows:
C = 1 lF/cm2, VNa = 70 mV, VK = −105 mV, VCl = −67 mV, gNa = 30 mS/cm2,
gK = 25 mS/cm2, gNaL = 0.025 mS/cm2, gKL = 0.05 mS/cm2, gClL = 0.1 mS/cm2; gNaP
has been varied in numerical experiments. The bifurcation analysis has been performed
in Matlab (using MatCont-toolbox).

3 Results

3.1 Dynamic-Clamp Study of the Influence of NaP Current

The NaP current was simulated in the DC mode with the approximation by Eq. 1.
Figure 1 shows the effect of NaP current on the spike trains (A) and the
frequency-current relationship (B) for a representative neuron. INaP decreases the
rheobase (Rb) and the reversed first ISI, IF1; promotes DB, and increases the spike
frequency and the time parameter of AHP, tAHP.

A    B

Fig. 1. Effect of NaP current simulated in DC on spiking of a representative neuron (gNaP = 2
nS versus control, gNaP = 0). A. Responses to the current step Iext = 40 pA. B. Dependence of the
firing rate (FR) on the external current Iext.
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Electrophysiological characteristics of neuronal spiking responses (Sect. 2.2) have
been compared between groups of recordings in the control conditions (gNaP ¼ 0) and
in addition of artificial NaP current (gNaP ¼ 2 nS), using paired t-test (n = 6, p < 0.05).
The statistically significant effects are given in Table 1. Other parameters that were not
affected significantly are (mean ± SEM): Rin = 172 ± 39 MOm; sm = 20 ± 2 ms;
Imax = 550 ± 80 pA; k = 0.11 ± 0.02 Hz; TFS = 264 ± 50 ms; IFn/IF1 = 0.60 ±

0.11; RAm = 68 ± 2 mV; Vthm = −41 ± 1 mV; HWm = 1.1 ± 0.3 ms; AHP = 9.5
± 1.2 mV; Sag = 2.4 ± 0.5%; Vrest = −66 ± 2 mV. These results are consistent with
modeling and the experiments with DC from [7]. The decrease of the DB limit due to
NaP current is a novel observation. As noted in Sect. 1, DB may play a crucial role in
the cessation of seizure, thus the reported increase of NaP channel density [5] may be a
compensatory reaction of a neuron through promotion of DB.

The NaP current increases tAHP. This effect explains the discrepancy of the majority
of mathematical models of a single neuron with experiments. Typical experimental
spike trains show tAHP as large as 10�30 ms, whereas in models it is commonly less
than 5 ms. Because AHP is associated with the action of calcium-dependent potassium
currents, the discrepancy might be wrongly explained by inacurate approximation of
potassium channels or electrotonic effects. Alternatively, it may be caused by not
accounting of NaP currents.

3.2 Effect of Persistent-Sodium Current in a Modeled Neuron

Understanding of mechanisms of NaP channel influence on the rheobase and DB
implies understanding of the transitions from a steady state to oscillations and reverse,
correspondingly. Figure 2 demonstrates the spike trains and the frequency-current
relationships in control conditions and with persistent sodium current. In agreement
with experimental data (Fig. 1), the NaP current increases the spike frequency for
moderate injected currents (Fig. 2A), decreases the rheobase and the DB limit
(Fig. 2B). In the model, the frequency is much higher (Fig. 2A), and the repolarization
phase of spikes is also quite different, which might be caused by two major reasons:
(i) the slow currents providing spike adaptation are not taken into account in the
considered model taken from [14]; (ii) contribution of fast potassium channels into the
repolarization phase is overestimated, because of inaccuracy of Hodgkin-Huxley

Table 1. Effects of NaP current on neuronal firing characteristics

Parameter gNaP = 0 gNaP = 2 nS p-value

IF1, Hz 27 ± 3 21 ± 2 0.0186
Rb, pA 62 ± 21 23 ± 14 0.0282
DB, pA 650 ± 93 560 ± 110 0.0313
IF3/IF1 0.73 ± 0.09 0.95 ± 0.15 0.0499
tAHP, ms 12 ± 1 19 ± 2 0.0116

Values are means ± SEM. p-value characterizes
the paired t-test for n = 6, p < 0.05. gNaP = 2 nS.
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formalism applied for sodium channels (known as “window current” problem [16] that
exposes as a lack of pure sodium spikes in Hodgkin-Huxley model). Nevertheless, the
mentioned shortcomings of the model are result in quantitative but not qualitative
inconsistency with our experiments.

Bifurcation analysis performed for variable external current Iext (Fig. 3) has
revealed two bifurcations known to occur in such a model: the supercritical
Andronov-Hopf (H) and saddle-node on invariant circle (SN) bifurcations. In control
conditions with gNaP = 0 (Fig. 3A), the SN-bifurcation corresponds to the transition of
the system from silent to spiking state. The bifurcation occurs around Iext = 1.86
A/cm2. Between SN- and H- bifurcations, the spike amplitude decreases with Iext. The

A              B 

Fig. 2. Effect of NaP current in the model. A. Responses to the current step Iext = 1.86 lA/cm2

in control conditions and with additional INaP (gNaP = 0.2 mS/cm2). B. Dependence of spike
frequency (FR) on the external current Iext.

A B

C D

Fig. 3. Bifurcation analysis. A. Diagram for V as function of Iext in control and with additional
NaP current, gNaP = 0.2 mS/cm2. B. Solid line between SN and H is the limit cycle. C,
D. Two-parameter bifurcation diagrams (gNaP; Iext) at. SN- (C) and H- (D) bifurcations. The
domain of spiking is at right in C and left in D.
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H-bifurcation around Iext = 262 lA/cm2 corresponds to DB. With INaP (Fig. 2B,
gNaP = 0.2 mS/cm2), the SN-bifurcation occurs around Iext = 0.72 lA/cm2 and H does
around Iext = 244.72 lA/cm2. Again, in agreement with experiments (Sect. 3.1), NaP
current decreases the rheobase and the DB limit.

The two-parameter bifurcation diagrams shown in Fig. 3C reveals saturation for
large gNaP in the case of SN-bifurcation. Figure 3D shows that the DB limit decreases
with gNaP. Comparison of Fig. 3C with D reveals that the NaP current stronger affects
DB. Hence, the main effect of NaP curret is the narrowing of the range of the external
current that evokes firing.

4 Conclusion

In experiments with DC we have revealed some effects of NaP current on neuronal
excitability: decrease of the rheobase, promotion of DB, increase of spike frequency
and changes of the voltage profile between spikes. Mathematical modeling with a
Hodgkin-Huxley-like neuron has approved the effects qualitatively and revealed
quantitative discrepancies in the input-output functions. Bifurcation analysis has shown
that the range of the external current able to evoke spikes is limited by the saddle-node
and Hopf bifurcations. The NaP current shifts the bifurcations and narrows the range of
excitation. Related to excitatory neurons, the effects produce an antiepileptic effect.
Opposite, NaP current in inhibitory interneurons might produce a proepileptic effect.
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