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Preface

In 1991, my newly formed research group at Berkeley was working intensely in
the area of continuum-level constitutive relationships that could be obtained
in a deductive manner from microstructural information through the methods
of homogenization theory. Of particular interest was the application of such
methods to structural problems in the blossoming field of micromechanical
devices. In this context it was becoming evident that we needed to learn to
navigate through the continuum/discrete interface.

Such were the circumstances when Viadimir Granik came to visit us at
Berkeley for the first time. It is probably not surprising that we received
with great enthusiasm his offer to join forces and develop a mechanics of
solid structures that would be based on a discrete representation of matter.
Vladimir had established the foundations for such an endeavor with his work
at Moscow University in the late 1970s.

Since that first meeting, and with ever-increasing enthusiasm, it has
been a great privilege for me to collaborate with Vladimir. We first applied
the formalism of what has become known as “doublet mechanics” to the
microstructure-based theory of failure of solids and worked on the paral-
lels and differences between the doublet approach and homogenization, to-
gether with Kevin Mon and Derek Hansford. Plane elastodynamics followed
after Francesco Maddalena had proposed doublet viscoelesticity. The consti-
tutive relationships in doublet mechanics were laid on a firm thermodynami-
cal foundation through the work of Kevin Mon, while Miqin Zhang analyzed
free boundary effects on multi-scale plane elastic waves in discrete domains.
Joseph Nadeau and Amir Nashat made important contributions to plane elas-
tostatics by establishing the doublet mechanical equivalent of the Airy’s stress
function method and obtaining the associated Green’s function for isotropic
domains.

The latter works are contained in this monograph, which was conceived
so that a fairly complete, fully updated reference could be made available to
researchers operating at the discrete/continuum interface. It is hoped that
the methods of doublet mechanics will prove useful for further investigations
in the many fields in which this interface is unavoidable. Among these are
the science and technology of micromechanical devices, and of nanotubes,
as discussed in Chap. 10 by Nasreen Chopra and Alex Zettl, as well as the



VIl Preface

mechanics of particulate and granular assemblies, the mechanics of soils and
rocks, seismology, and the structure-property relationships of proteins, as
discussed later in this book.

I wish to express my most heartfelt gratitude to all those who have con-
tributed chapters to this volume. Special thanks to my co-editors Vladimir
Granik, Ali Imam, and Joseph Nadeau for their careful planning and atten-
tive review and integration of the contents. Further thanks to Joseph Nadeau
for the vast majority of the technical aspects of the editorial work, and to
Erin Cassidy for her assistance in this effort.

Finally, my warmest appreciation to Vladimir Granik, a great scientist—
an even greater man.

Berkeley, CA Mauro Ferrari
September 1996
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1. Introduction to Doublet Mechanics

M. Ferrari, V. T. Granik and A.Imam

1.1 Basic Concepts and Domains of Application

The mechanics of solids may be broadly divided into two major branches that
differ on whether the underlying mass distribution is assumed to be discrete
or continuous. Discrete models quite obviously reflect the nature of solids
at the angstrom scale and may be supplemented with extremely detailed
information on the interaction kinetics to yield predictive capabilities of ex-
traordinary accuracy. continuum mechanics, on the other hand, is commonly
based on the identification of actual media with regions of Euclidean space. In
this domain, continuum mechanics has yielded results of exceptional beauty
and very high practical value as a foundation for a multitude of engineering
structural theories and computational schemes.

The most striking successes of discrete models have perhaps been reached
under two very stringent conditions: the regularity of the underlying dis-
crete assembly, forming a translational periodic arrangement or lattice; and
the boundlessness of the material domain of interest. Thus, the dynamics of
infinite single crystals of any material symmetry are very well understood.
Considerable advances have been recorded in the mechanical modeling of
individual defects in essentially infinite crystalline structures, such as point
defects or dislocations. The interactions of pairs of defects have been suc-
cessfully studied—with periodic arrays of defects—with the assumption of
no interaction with real boundaries.

Yet the goal of employing discrete-based formalisms for the modeling of
actual large-scale objects (say micron-sized or above) or structures of techno-
logical interest has been elusive. Actually, it has not been pursued by many
in the scientific community, probably in view of the enormity of the compu-
tational resources required and the difficulty or impossibility to obtain the
discrete-level or microstructural information required to implement a discrete
model.

Of course, for very many situations of technological or engineering inter-
est, there is no need whatsoever for a model based on the discrete nature of
matter at the angstrom scale. Thus, continuum theories and their structural
or computational derivatives have successfully answered many of the com-
munity’s demands. However, the continuum approach certainly suffers from
some fairly severe limitations of its own. In primis, in its most successful
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variant, due essentially to Cauchy, continuum mechanics is a non-scale the-
ory, meaning that scaling effects cannot be accounted for. Of course, starting
essentially in the 1960s, various elegant approaches such as those by Mindlin
and Eringen have been proposed in order to inject scale- and microstructure-
accounting features into the continuum framework. Yet it may be said that
these generalized continuum mechanical theories have also imported analyti-
cal and computational difficulties that have discouraged their implementation
outside of specialized academic circles.

Furthermore, all continuum theories are essentially deductive in nature:
continuum-level governing variables are introduced, of both the kinetic and
the kinematic types, and are then somehow identified with the physical re-
ality to which they are designed to apply. Among such variables are the
microstrains and microstresses of the micropolar approach and the director
vectors of the directed-media approach to microstructural mechanics. Addi-
tional complications arise in conjunction with the model identification step of
the micromechanical continuum approach: for instance, it is essentially impos-
sible to relate quantities as basic as the Young’s modulus or the yield stress
of a polyphase, amorphous, or polycrystalline material to the microstruc-
tural properties of the material, be these the discrete-level or the phase-level
physical properties, the properties of grain or phase boundaries, or the phase
concentrations, orientation parameters, and other distributional data.

The great beauty of the continuum approach is, of course, that all of this
micro-level information is very frequently irrelevant and may be bypassed
altogether by identifying properties such as Young’s modulus and yield stress
directly from macroscopic experiments.

Yet there is a multitude of problems, of both academic and technological
interest, which involve physical domains that are too irregular for applica-
tion of continuum theories and yet too large, or again irregular, for modeling
via the discrete approach. In a first approximation, these problems are de-
fined by the fact that their material “microstructural” level is of dimensions
comparable to the overall structural dimensions.

Problems of this nature arise in several, quite diverse disciplines. Micro-
electro-mechanical systems (MEMS), typically exhibiting dimensions in the
micron-to-millimeter range, exhibit structural responses of strikingly different
quality with respect to conventional engineering beams and plates, of which
they are, after all, just a scaled-down version. The difference resides essen-
tially in the fact that their constituent grains are also typically in the micron
range and are thus comparable to typical cross-sectional dimensions. Along
similar lines, buckeyballs and nanotubes are structural entities in their own
right, yet they may not be modeled as conventional engineering structures in
view of their evident discrete nature. The problem of protein unfolding, with
the associated loss of protein function, is of essential mechanical nature. Yet
it can not be addressed by a continuum model as a typical protein consists
of a limited number of polypeptide chains. In geomechanics and seismology,
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great attention is dedicated to the so-called “granular” or “particulate” me-
dia, including sands and rock assemblies. Neglecting the discrete nature of
these, as is done by resorting to a continuum model, results in paradexical sit-
uations. This is exemplified by the so-called Flamant paradox (see Sect. 1.2)
and the fact that most of seismology refers to non-scale elastic models of wave
propagations. These models predict non-dispersive plane and surface waves,
despite uniform experimental evidence to the contrary. In biomechanics, it
is recognized that most biological structures present a multi-scale nature
that may not be neglected. Among the outstanding examples of “granular”
biological structures are the tissue of the heart and cancellous bone. Soft-
tissue metastatic regions essentially present themselves as biphase assemblies
of neoplastic cell clusters within a much softer interstitium. Modeling such
regions as homogeneous continua leads to the neglecting of most significant
phenomena, such as the rise of fluid pressure in the diseased region. This is
known as the onset of “oncotic pressure” and is arguably the most impor-
tant factor governing the penetration of chemotherapeutic agents within the
cancer region.

The objective of this brief introduction is not a comprehensive listing of
disciplines and problems for which a model bridging the discrete and the
continuum approaches may be beneficial. Nor is it to review, critique, or
compare the features of solid mechanics of the discrete and continuum type.
The objective here is just to furnish motivation and interest in support of
efforts in the development and application of models that would not be in
contradiction with the great achievements in the fields of discrete and con-
tinuum mechanics, but which could contribute to bridging the gap between
the two.

This monograph is dedicated to an effort of this type, and, in particular,
to the theory of doublet mechanics (DM), which inherits its name from the
fact that its “building block” is a pair of geometric points (nodes) at a fi-
nite distance, or a “doublet.” In this sense, a doublet is to doublet mechanics
what the “differential volume element” is to continuum mechanics. It is hoped
that the material presented in this monograph will help establish that dou-
blet mechanics is in full agreement with its two “boundary conditions,” i.e.
continuum mechanics on one extreme and lattice dynamics on the other. At
the same time, it will be demonstrated that the theory is of truly multi-scale
nature and may thus be employed for successfully addressing problems and
resolving modeling paradoxes in very different disciplines, among which are
those alluded to above. Finally, arguments will be presented to support the
claims that microstructural identification in doublet mechanics is a realistic,
and sometimes simple, objective.

Based on the original developments by Granik (1978), the theory of dou-
blet mechanics was presented in a form that essentially referred to its linearly
elastostatic geomechanical applications by Granik and Ferrari (1993). It was
then extended to cover other domains of interest, including elastodynam-



4 1. Introduction (M. Ferrari, V. T. Granik and A. I'mam)

ics, viscoelasticity, failure theories, homogenization, and thermomechanics.
An accounting of the state of doublet mechanics prior to this monograph is
given in the next section, and an overview of the contents of the monograph
is then provided in Sect. 1.3.

While a comprehensive review of the fundamental structure and equations
of doublet mechanics is given in Sect. 1.4, at this point the basic concepts
are summarized for the convenience of the reader.

1.1.1 Microstructure

In doublet mechanics, solids are represented as arrays of points or nodes at
finite distances. Any pair of such nodes is termed a doublet. A bundle at a
reference node is a collection of doublets involving the reference node. It must
be clarified that the choice of what doublets will constitute a bundle is left
open at the outset and may be different in different applications. Similarly, it
is not necessary for the nodes to be periodically located, so as to form a lattice,
even though it may be convenient to assume so for certain applications. If this
assumption is introduced, then the bundle is typically chosen to correspond
to the motif that generates the periodic structure. Other choices of bundles
may reflect assumptions on the kinetics of doublet interaction. Thus, bundles
may comprise all of the doublets (apart from symmetry) that interact with
a given node. These may be the nearest neighbors, or may be defined by an
assigned radius of influence, so that only the nodes with internodal distance
less than such a radius will interact with the reference node.

If the choice is made that the nodes be located as to reproduce one of
the fourteen Bravais lattices, then the typical bundle will consist of n basic
(lattice) vectors, where n = m/2 is the valence of the lattice, and m is the
coordination number of the array, i.e., the number of closest lattice points to
any given lattice point. In such a setting, the internodal distances coincide
with the lattice constants.

1.1.2 Interpretation

In the papers published prior to this monograph, the material model under-
lying doublet mechanics is a regular array of equal-sized elastic spheres of
diameter d, the centers of which form a space Bravais lattice. This corre-
sponds to the granular, or sphere-packing interpretation of doublet mechan-
ics. The granular viewpoint offers ease of visualization, and on this basis it is
frequently employed in the narrative of this monograph, and in particular in
Sect. 1.4. Care must be exercised, however, not to confuse the visualization
aid, that is the granular interpretation in this case, with the actual theory,
which does not necessarily require such an interpretive aid.

Within this interpretation, which may be called granular DM, the follow-
ing definitions are introduced:
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The particle A is in contact with B, if the doublet length 7, is equal to
the true diameter of the sphere denoted by d. Such an a-doublet is called
a contact doublet, the a-direction being the contact direction. There may be
5 (0 < s < n) contact directions in which all particles are in contact, and the
underlying granule array may be called a regular s-contact n-valence array
H,,. If the contact number s = n, then the array H,, becomes a regular
completely contact array Hy, = H,, or a regular n-valence packing, where all
the adjacent particles are in contact with each other.

There are four regular packings (Deresiewicz 1958): H; (simple cubic),
Hj (cubical-tetrahedral), H; (tetragonal-sphenoidal), and Hg (face-centered,
or pyramidal). If the particle array Hsy, is not a packing, then in addition to
the packings mentioned above, there may be other regular structures simi-
lar to the crystal ones: simple tetragonal, orthorhombic face-centered, simple
orthorhombic, etc. (Cottrell 1964). In these cases, the particles interact in
the n — s non-contact directions owing to intermediate substances (compli-
ant inclusions) or spatial electrostatic forces binding atoms and molecules in
crystals.

It should be noted that doublet micromechanics, as presented in Granik
and Ferrari (1993), is valid for all the regular arrays H,, whether s = n or
s # n, if the forces of particle interactions are of a short-distance character.
Contact forces such as friction represent a particular case of such interactions.

The granular or sphere-packing interpretation of doublet mechanics is
convenient, but by no means necessary. While the validity of doublet mechan-
ics is apparent a priori for materials that exhibit a macroscopically evident
granular lattice structure, it must be remarked that recent results—especially
those concerning failure theories (see Sect. 1.3)—have established a posteri-
ori its effectiveness for macroscopically continuous media. This suggests that
doublet mechanics be interpreted as a general model, the validity of which
is to be verified for specific material classes, much in analogy with what is
current practice with continuum mechanics (CM). An interpretive aid in this
context is the standpoint that the nodes of doublet mechanics actually be
averages or representations of the complexity of actual particle or molecular
interactions—a concept that is strongly related to the Clausius interpreta-
tion of the “molecular theory of elasticity” (see Todhunter (1886, Article No.
1400)).

It is now recalled that any arbitrary spatial distribution of points can be
associated with a three-dimensional covering, consisting of the Voronoi cells
including said points. The Voronoi cells for the Bravais lattices are regular
polyhedra and are known as “Fedorov polyhedra.” There are only five differ-
ent Fedorov polyhedra (parallelohedra) for all of the Bravais lattices. On these
premises, a different perspective on doublet mechanics may be constructed:
doublet mechanics actually models solids as (space-filling) assemblies of Fe-
dorov polyhedra. This corresponds to a representation of solid matter as a
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particulate assembly and gives rise to the so-called particulate interpretation
of doublet mechanics.

1.1.3 Deformation

In doublet mechanics each lattice node is assumed endowed with a rotation
and translation vector with increment vectors that may be expanded in a
convergent Taylor series about the lattice nodal point. The order M at which
the series is truncated defines the degree of approximation employed. The
approximate theory with M = 1 does not contain any information on particle
sizes or internodal distances and will be termed nonscale. Approximations
with M > 1 include dependences on internodal distances.

In doublet mechanics nodes in any doublet may alter their axial distance,
may rotate with respect to their common axis, and may relatively displace
normally to their axis. Thus, doublet- or micro-strains of the longitudinal,
torsional, and shear type are possible. Of these, the axial and torsional ones
are scalars (not components of a tensor!), and the latter is a vector. Simple
geometry permits the expressing of the microstrains via the displacement and
rotation vectors and their derivatives.

Most importantly, the expressions relating microstrains to the displace-
ment and rotation vectors also contain the lattice geometry and the internodal
distances or particle dimensions. Based on this, doublet mechanics develops
into a fully multi-scale theory. The first scale-related question that doublet
mechanics helps answer is the following: under what ratios of the particle
dimension to wavelength of the deformation is the use of the non-scale {con-
tinuum) kinematics justified? Granik and Ferrari (1993) have shown that the
elongation microstrains can be determined with an error of 5% in the non-
scale approximation (i.e., for the cited Taylor series truncated at M = 1)
if the characteristic size D of the considered body domain is 27 times the
particle diameter d. By contrast, for D = 5d, and D = 2.5d, the scale ap-
proximations corresponding to M = 2 and M = 3 are required to achieve the
same lever of exactness. This proves that problems related to small body mi-
crodomains (stress concentration, propagation of waves of short wavelength,
etc.) must be considered in the context of the novel micromechanical theory
using the higher approximations.

1.1.4 Equilibrium

Microstresses of the axial, torsional, and shear type are introduced in doublet
mechanics as energy conjugates of the corresponding microstrains. Energy
methods are then employed to derive the microstress equations of conserva-
tion of linear and angular momenta. Most importantly, the natural boundary
conditions descending from equilibrium in the integral energy formulation
dictate the relationships between the microstresses and the macro- (or con-
tinuum level) stresses and stress couples. Macrostresses are expressed in terms
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of the microstresses, the lattice geometry, and the typical internodal distance
with the desired degree of approximation.

On this basis, it will be demonstrated in Sect. 1.4 that the macrostre-
sses are symmetric in a nonpolar medium with infinitesimal particles and
are generally asymmetric for polar media. In addition to these physically
expected results, doublet mechanics yields a novelty: the macrostresses are
generally asymmetric, even in a nonpolar medium, if the scaling effects are
not disregarded.

The relations between the micro- and the macro-stresses are employed to
determine the macrostress equations of motion. In the non-scale, first approx-
imation, these reduce to the classical ones for both the nonpolar (Cauchy) and
the polar (Cosserat) media. In the higher approzimations, allowing for scal-
tng effects, the equations of equilibrium have no counterpart in the standard
mechanics of classical or microstructured continua. For physical situations in
which the nonscale theory is inappropriate (say, granular media traversed by
high to medium relative frequency waves, in the sense specified above), even
the use of polar continuum mechanics will yield erroneous results.

1.2 Previous Results in Doublet Mechanics

1.2.1 A Lesson Learned from Elastostatics

In Granik (1978) and Granik and Ferrari (1993), the fundamental system of
equations, also to be presented in Sect. 1.4, was supplemented by linear elas-
tic, homogeneous constitutive equations relating the microstresses to the mi-
crostrains. For the sake of illustration, the simplest variant of the doublet me-
chanical counterpart to the celebrated Flamant’s problem was also addressed,
whereby an isotropic, linear elastic semiplane was subjected to a point load
on its free boundary. The nonscale variant of the problem was considered, un-
der quasistatic, isothermal conditions, and with no body forces acting. Only
longitudinal (nonpolar) and local interactions between the nodes were con-
sidered, corresponding to a medium that is characterized by one constitutive
microconstant only.

Despite its simplicity, this problem yielded some qualitative results that
were helpful in establishing the relationship between doublet mechanics and
continuum mechanics: the microstresses were obtained in closed form and
were found to be tensile in certain regions, even under a compressive load.
It is recalled that the continuum-mechanical Flamant solution yields stresses
that are compressive everywhere, in contrast with abundant experimental
evidence reporting tensile openings in elastic granular media subjected to
compressive boundary loads. Thus, doublet mechanical analysis of Flamant’s
problem provided a resolution of this conflicting state of affairs known as
“Flamant’s paradox.”
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The equilibrium relationships were then employed, to compute the macro-
(continuum-level) stresses starting from the microstresses and the microstruc-
tural geometry. This yielded what was perhaps the most interesting conclu-
sion; the continuum-level stresses were found to correspond exactly to Fla-
mant’s!

While not unexpected in terms of the general field structure of the the-
ory, this provided a fairly immediate embodiment of a more general claim:
doublet mechanics is in full agreement with the predictions of continuum
mechanics, at least in the elastic domain, and yet there is significant, con-
ceptually important conclusions that can be reached by doublet mechanical
methods which are inaccessible by a continuum analysis.

The relationship between doublet and continuum mechanics requires a
much more in-depth analysis than a simple example such as Flamant’s may
provide. The reader interested in a comparison between doublet mechanics
and other field theories, such as continuum mechanics and lattice dynamics,
is referred to the chapter by V. T. Granik, Chap. 4 of this monograph.

For completeness, it must be mentioned that the solution to the Flamant
problem reported in Granik and Ferrari (1993) contained some algebraic er-
rors that did not affect the nature of the findings contained therein. The
correct solution is reported in the chapter by Nadeau, Nashat, and Ferrari,
Chap. 8 of this monograph, which is dedicated to fundamental problems in
doublet plane elastostatics.

1.2.2 Viscoelasticity

The general doublet mechanical linear viscoelastic constitutive relationships
were introduced by Maddalena and Ferrari (1995). These relationships re-
lated microstresses to microstrains and directly closed the system of micro-
level viscoelasticity equations. Constitutive expressions of the integral type
were considered, in accordance with the so-called principle of fading memory,
and micro-level quantities such as phase lag and loss modulus were identified.

Constitutive equations of the differential type were introduced in the same
study and some specific rheological models were analyzed. In particular, the
hypotheses of doublet interactions of the Maxwell (spring-dashpot in series)
and Kelvin-Voigt (spring-dashpot in parallel) type were investigated.

The macroscopic counterpart to these doublet-level constitutive laws were
then obtained by enforcing equilibrium requirements. It was determined that
materials that are Kelvin-Voigt at the doublet level also present a continuum-
level Kelvin-Voigt constitutive behavior. By contrast, it was only shown that
strong conditions on the geometry of the underlying lattice would assure that
doublet-level Maxwell materials would be of Maxwell type at the continuum
level.

Equilibrium again allowed the formulation of the most general continuum-
level viscoelastic constitutive relationship that is compatible with micro-level
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linear viscoelasticity. It was determined that such a macroconstitutive equa-
tion is characterized by the presence of projection tensors representing the
spatial arrangement of the doublet vectors. To emphasize an important point:
the continuum-level constitutive law was here derived exactly from a cer-
tain set of microstructural information. By contrast, typical continuum-level
theories of the viscoelasticity of granular media introduce the notion of a
constitutive “fabric tensor,” and then impose restrictions on its possible de-
pendences on the microstructural arrangements by means of conventional
thermomechanics.

In a comparative analysis of the two approaches, the cited continuum
fabric tensor viewpoint is perhaps found to be too general to be applica-
ble in practice, as it will usually require a very high number of independent
experiments in order to identify the multitude of physical constants it con-
tains. The doublet mechanical viewpoint offers the advantages of identifying
the possible form of the constitutive relationship and precisely indicating the
dependance of the constitutive laws on the micro-level geometry and consti-
tution. On the other hand, information on said micro-level quantities may be
in itself extremely hard to obtain, thus limiting at times the practicality of
the doublet approach as well.

Other results demonstrated in Maddalena and Ferrari (1995) include the
fact that dissipation and material stability depend on the geometrical orga-
nization of the grains, and not only on their physical interactions as may be
expected in a first approximation. Finally, the problem of the propagation of
shear waves in a viscoelastic semispace was solved.

1.2.3 Failure Analysis

As was emphasized above, in doublet mechanics the transition from the dou-
blet level to the continuum description is achieved in a natural manner via the
enforcement of equilibrium requirements. This affords the definition of phe-
nomenological variables such as the stresses in terms of basic microscopic
level quantities. By enforcing equilibrium it was also possible to identify
continuum-level elastic and viscoelastic constitutive tensors in terms of the
doublet-level physical properties and the node arrangement.

A novel direction was investigated by Ferrari and Granik (1994, 1995)
where the equilibrium-mediated micro-macro transition was employed in a
derivation of continuum-level failure criteria starting from microstructural
considerations.

The objective of these works was two-fold: to state and to characterize
microstress-based (doublet level) failure criteria and to compare these crite-
ria with their continuum-level counterparts. Of course, this comparison could
only be performed in cases where there is a one-to-one correspondence be-
tween the doublet mechanical and the continuum mechanical treatments. For
the case of interest this correspondence may be set up for conditions of plane
stress. Thus, the treatment in both cases was restricted to plane conditions.
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While on the topic of equivalence, a little digression is now proposed.
As stated above, it is always possible to obtain the continuum-level stresses
from the microstresses and microstructural information. However, it is not
generally possible to obtain microstresses and microgeometry from the ma-
crostresses alone. Herein lies the strength of the doublet mechanical approach:
additional, micro-level information is made available that cannot be reached
through conventional mechanics, while perfect harmony with the conventional
macro-level treatment is maintained. In this sense, the micro-level stresses
and deformations are the true fundamental variables of the theory. The con-
ventional stresses are then second-order, phenomenological variables that be-
come of importance only in the cases in which the underlying discrete nature
of the material is completely irrelevant.

From the perspective of the proposal of new failure criteria important
validating information could be gained from comparisons with the success-
fully established macro-level criteria such as Tresca’s and Mises’. Thus, in
Ferrari and Granik (1994), the first microstress-based criterion proposed was
a polynomial of the second degree. Axial interactions only were considered,
resulting in a three-parameter criterion, and an underlying hexagonal mi-
crostructure was assumed in order to ensure macroscopic in-plane nonscale
isotropy. The three parameters were fixed by imposing limiting states in shear
as well as tension and compression along two non-crystallographically equiv-
alent directions. A novel criterion resulted that was expressed in terms of the
axial microstresses.

The microstructural arrangement employed to derive this criterion was
chosen specifically so that the macroscopic-level counterpart could be de-
duced. Thus, the microstresses were expressed in terms of the macrostresses
and backsubstituted. The resulting, fully equivalent macrostress criterion was
then found to coincide exactly with the established Goldenblatt-Copnov cri-
terion for materials with different ultimate properties in tension and com-
pression. If the tensile and compressive strengths coincide, then the criterion
reduces to the von Mises plastification condition.

To the best of our knowledge, this was the first instance of a macroscopic
level failure criterion deduced analytically from microscopic conditions. This
may, in itself, be helpful as it offers insight on the assumptions implicitly
contained in the stated criterion and, thus, on it limits of validity. However,
the possible merits of the approach are not so much in its providing founda-
tions for established results, but rather for the added ability to obtain more
advanced, firmly founded failure criteria.

Thus, Ferrari and Granik (1994) introduced a new family of criteria based
on the limit microstress concept, corresponding to the postulation that the
limit macrostresses would be reached when all involved microstresses attain
their limit values. In Ferrari and Granik (1995) the polynomial microstress-
based failure criterion formulation was extended to third-degree polynomi-
als. Again, attention was restricted to nonpolar, nonscale in-plane isotropic
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conditions. The family of resulting criteria contained four dimensionless pa-
rameters, and thus permitted the exact representation of five independent,
macroscopic plane stress states. These were chosen to be uniaxial tension and
compression, pure shear, and equibiaxial tension and compression. The novel
criteria were shown to be successfully applicable to a variety of macroscop-
ically continuous solids, including cast iron and several alloys, as well as to
discontinua such as plain and short-steel-fiber reinforced concrete.

1.3 Overview of Contents

The governing equations expressing equilibrium and relating measures of de-
formation will be summarized in Sect. 1.4, following the developments orig-
inally presented in Granik (1978) and Granik and Ferrari (1993). Of course,
these equations do not by themselves establish a well-posed mathematical
problem and they need to be supplemented by constitutive equations ex-
pressing the physical properties of the media. A preliminary proposal for
linear elastic constitutive laws was offered in the cited works. Its simplest
subcase, corresponding to axial interactions only, was employed in all works
on doublet elasticity predating this monograph.

The next two chapters of this volume, coauthored by Mon and Ferrari, are
dedicated to establishing a firm foundation for the constitutive representa-
tion of elastic solids within the doublet mechanical framework. In particular,
Chap. 2 sets forth the thermomechanical governing equations together with
the methodology for employing them. The independent variables of the the-
ory are the node displacement and rotation fields and temperature.

Following the approach of Green and Naghdi (1977), an entropy balance
law is introduced, then reduced with the statement of local energy balance
and finally employed as an identity. This entails stringent restrictions on the
form of the possible constitutive dependences, and, in particular, rules out
certain functional dependencies for the various thermomechanical variables.
The energy-entropy balance-reduced elastic constitutive laws are further sim-
plified by imposing a statement of the Second Law as embodied by the Clau-
sius Inequality.

Rigid body motions for doublet mechanical assemblies are identified, and
it is postulated that all constitutive laws be properly invariant under ar-
bitrary rigid body motions superimposed on any given configuration. This
yields additional restrictions on the functional dependencies. The chapter
concludes with specification of the constitutive restrictions for the case of
physically linear elastic response, and the formulation of the most general
properly invariant and thermodynamically admissible micro-level linear elas-
tic constitutive relations.

The developments of Chap. 2 require that the materials considered consist
of a single component. It is recognized that a very wide variety of problems
exist for which such an assumption is not tenable. Among these are typical
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materials science scenarios involving diffusion, precipitation, and segrega-
tion phenomena. On this basis, Chap. 3 addresses the problem of the elastic
constitutive formulation for multi-component systems. The concept of mass
balance is formulated and the requirements of thermodynamical admissibil-
ity and proper invariance under superposed rigid body motion are imposed.
The treatment employs internal energy as thermodynamic potential, while in
Chap. 2 the potential of choice was Helmholtz free energy.

From the review presentations of Sects. 1.1 and 1.2 it may be argued
that doublet mechanics is in complete agreement with nonscale continuum
mechanics, but is intrinsically richer, in that it yields information that is not
accessible by conventional continuum mechanical means. In a much broader
sense, involving the full multi-scale nature of the theory, the comparison of
doublet mechanics with other approaches to the mechanics of solids is ad-
dressed by Granik in Chap. 4. It is recognized that the reader could have been
curious about such comparison at earlier portions of the monograph, yet it
is only at this point, after the development of fully invariant, admissible con-
stitutive laws, that the theory is completely established and the comparison
may be gainfully undertaken.

In particular, Chap. 4 briefly reviews some salient features of lattice dy-
namics, as well as continuum micromechanics or nonlocal continuum theories,
of both the differential and the integral type. A comparison of these theories
with doublet mechanics is then performed not only to address the formal
differences, but, also, and perhaps most importantly, to identify the domains
of application in which the use of doublet mechanics is expected to be ad-
vantageous.

In distinction to the first part of the monograph, Chaps. 5 through 10
are more applied in nature, in that they address the resolution of specific
problems, or the application of the doublet mechanical formalism to specific
disciplines.

In the first example of a fully multi-scale employment of doublet me-
chanics, the propagation of plane elastic waves is considered by Granik and
Ferrari in Chap. 5. Here, the three-dimensional field equations of doublet
elastodynamics are derived under some simplifying assumptions. The anal-
ysis is then focused on linear and planar arrangements, the latter with the
further restriction of continuum-level planar isotropy.

Dispersion relations are established that demonstrate the dispersivity and
retardation of both P- and S-waves at all scales other than those for which the
continuum approximation is valid. The compatibility of the doublet mechan-
ical analysis with lattice dynamics and continuum elasticity is demonstrated,
and applications to crystals, granular media, and seismological problems are
discussed.

The free-boundary reflection of plane waves in macroscopically isotropic
solids is then addressed in Chap. 6 by Zhang and Ferrari. The effects of a
typical microstructural dimensions on the reflection characteristics of P- and
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S-waves are established. In particular, the scale-dependence of the critical
angles of mode conversion, phase change and amplitude ratios are obtained.
Of particular interest is the discovery that mode conversion takes place at
different angles of incidence for materials with different microstructural di-
mensions (grain size). This may be employed as a basis for the determination
of the microstructural scale that characterizes any microstructured medium
of interest. Paralleling the previous chapters, the study by Zhang and Ferrari
concludes with the derivation of the classical reflection results of continuum
elastodynamics as a special non-scale case.

The analysis of elastodynamic phenomena is continued in Chap. 7 where
Granik develops a new theoretical approach to the study of multi-scale sur-
face waves in an elastic solid with cubic microstructure. A novel surface wave
is identified that exhibits microscopic dispersion over relatively short wave-
lengths. In a departure from the previous chapters, difference equations are
used in lieu of governing differential equations.

Nadeau, Nashat and Ferrari discuss macroscopically isotropic, non-scale
plane elastostatics in Chap. 8. In this setting, a one-to-one correspondence
between the continuum and the doublet variables may be established which
permits the development of a technique whereby doublet mechanical solu-
tions may be automatically generated from their continuum counterparts.
By this method, micro-level stresses and deformations may be obtained di-
rectly from the wealth of established elasticity solutions. Thus, emphasis
in problem-solving is shifted to the determination of the appropriate mi-
crostructural model for the medium of interest. In this sense, the sometimes
formidable problems of mechanical analysis and microstructural identifica-
tion are decoupled. The method is based on a novel uniqueness result for
doublet elasticity.

In other developments in the chapter, a micro-stress function is intro-
duced, in analogy with Airy’s stress function in continuum elasticity. For
illustration, several fundamental problems in doublet elasticity are solved,
including Kelvin’s and the problem of stress concentrations due to a circular
hole.

Multi-scale doublet mechanical problems are amenable to a nested solu-
tion strategy whereby the nonscale solution is obtained first and then em-
ployed to generate a body-force-like term for the first-order scaling problem.
The procedure may be inductively continued to higher-order scaling problems
in a manner that is somewhat reminiscent of Signorini’s method in nonlinear
nonscale continuum elasticity. The described method of successive iterations
is presented for the first time in Chap. 9 by Ferrari and Imam. An interesting
result is that the nonscale solution of certain problems gives rise to a zero
forcing term on the higher order problems. In these cases the nonscale solu-
tion is the exact solution and it may be concluded that the problem itself has
a nonscale nature.
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As discussed in Sect. 1.3, doublet mechanical analysis has been applied to
crystalline solids, as well as granular, particulate, and composite media in the
past. An exciting novel vista on the applications of the method is offered in
Chap. 10 where Chopra and Zettl review the field of nanotubes. Nanotubes
are technological objects of extraordinary interest. They are particularly suit-
able for doublet mechanical analysis because their discrete nature is evident
at the structural scale and, as a result, they are not amenable to being mod-
eled as continuous media.

1.4 Microstructure, Measures of Deformations,
Field Equations

1.4.1 Kinematics

Microstucture. In this section, the fundamental equations of doublet me-
chanics are summarized. For ease of visualization, the granular interpretation
of doublet mechanics is employed, whereby a solid is viewed as an assembly
of equal spheres. The reader is reminded, however, that, as per the discus-
sion in Sect. 1.1, such an interpretation is not necessary. Solids in doublet
mechanics may equally well be modeled as space-filling assemblies of Fedorov
polehedra, or as collections of regularly or irregularly placed nodes located
at finite distances.

With this background, we consider a granular body as a spatial set H of
a large number NV of identical particles, viz., elastic spheres of diameter d.
The particles are either in contact with each other or separated by adhesive
layers.

To simplify the problem without losing its main features, we assume that
the set H, (the subscript o indicates the initial state of H) is regular: the
centers of the particles, or nodes, form a Bravais lattice I'.

A couple of adjacent particles A and B in H, represents a doublet (A4, B)
with the vector-axis {° emerging from the node a € A toward the node b € B
(Fig. 1.1). The respective unit vector is 7° = {°/n where n =| ¢° | denotes
the distance between a and b. If the particles are in contact then n = d.

Let V, denote the volume occupied by the set H,. At every doublet
(A, Bg) in V, we can attach an associated bundle T, (a) of m doublet axes
¢;, emerging from the node a € A toward all the adjacent nodes b, € B,
(see Fig. 1.1). Here a € {1,2,...,m}; m = 2n; and n is the valence of the
Bravais lattice.

For spherical particles whose nodes a € I” the valence n ranges from 3 to
6. In particular, simple cubic (s.c.) and face-centered cubic (f.c.c.) structures
have the valence n = 3 and n = 6, respectively (see Figs. 1.2 and 1.3). The
FCCS is also called pyramidal.

For Bravais lattices the bundle T),(a) admits a decomposition into two
disjoint subsets T;F(a) and T, (a) which are equivalent via the center of
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Fig. 1.1. Particle doublet (A, B,).

Fig. 1.2. Simple cubic structure (SCS).
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Fig. 1.3. Face-centered cubic structure (FCCS).

inversion operation at the node a € I'. In what follows it will suffice to
consider only one of these subsets T,(a). The structural homogeneity of the
lattice, for any fixed «, is represented by

2, To = constant VaeI. (1.1)

Here, and in what follows, Greek subscripts (e.g., , 3) take on values in the
range 1,...,n.

As the number of particles N = oo and their diameter d — 0, the volume
of the primitive cell around each node approaches the elementary differential
volume. This procedure allows one to replace summation over all the nodes
a € I' by integration over the volume V,. Thus, if some function ¢(a) =
Y o_; Fa(a) is defined on a doublet bundle T,(a), then the transition to a
continuous model is

Y o@=Y Y Fala)= [ 3 Falx)a¥, (1)
ael’ acl a=1 Vo a=1

where X is the position vector to the node a € I' in V. Since the valence n
of the Bravais lattice is constant we may interchange the summation and the
integration equations (1.2) to yield

YD Fula)= Z/V F.(x)dV. (1.3)

a€l a=1
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This identity forms the basis for the subsequent transition to the continuous
description of a discrete Bravais lattice I" in the volume V, occupied by the
granular body under consideration.

Microstrains. When a granular body undergoes deformation certain mi-
crostrains are developed in each of its doublets. We specify three of them:

— relative separation of the doublet nodes;
— rotation of the particles about the doublet axis;
— slipping of the particles past their point of contact.

The corresponding doublet microstrains are, respectively:

— elongation;
— torsion; and
— shear.

The above microstrains are induced by the translation of the nodes and
by the rotation of the particles in the granular body. It should be noted that
all these displacements are defined only at the nodes of a discrete Bravais
lattice. The transition to a continuous description of the above displacements
throughout the volume occupied by the granular body cannot be achieved
exactly because the continuous volume is not isomorphic to any multitude of
its points. Therefore, the problem of the transition to a continuum may be
solved only in an approximate manner.

Approximate methods for performing such a transition were devised
and applied to various microstructural models as reviewed, for example, by
Teodorescu and Soés (1973). In the present work, we use a novel approach
that is based on the following concept. We assume that the displacements
of the particles vary little at the lengths on the order of their separations
Na =| ¢ |- We then introduce two smooth mutually independent vector
fields of the translations u(X, t) and rotations ¢(X, t), where X is a position
vector of an arbitratry point in V, and ¢ is time. We assume that these two
vector fields coincide with the real translations and rotations of the granular
body particles at the node a € I', i.e., where X = x.

We also introduce two incremental vectors Au, and A¢,. The first of
these is defined as

Au, =u(x+¢2,t) —u(x,t). (1.4)

It represents an increment of the translation vector u in a transition from an
arbitrary node a € A to the adjacent node b, € B, (Fig. 1.4). The vector
Ay is defined analogously.

We assume that the above increment vectors may be expanded in a con-
vergent Taylor series in a neighborhood of an arbitrary node a € I" whose
position vector is x. Truncating this series at the M-th term we obtain

M

Auy = Zl (—’7;‘)—X(1—; - ) u(X,t) (whenX = x), (1.5)
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Na(1+ €0
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——— Va
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2,
a % o
L/

Na

Fig. 1.4. Translations of the doublet nodes a € A, by € Ba.

where ¥ is the gradient operator and the dot denotes the inner product. The
number M indicates the degree of approximation. The expansion for A¢, is
defined analogously.

Furthermore, we introduce a stationary orthogonal Cartesian frame of
reference z; with a basis e; (i = 1,2,3). In this reference frame the above
vectors and the operator 7 are expressed as

To=Toi€ u=uie; P=¢ie }

r=zle; R==z;¢; Y =e;8/0z; (1.6)

We adopt the convention that repeated Roman indices imply summation from
1 to 3. This convention does not apply to Greek subscripts.
In view of eqn. (1.6), the homogeneity condition takes the form

75; = constant, Vx € V.. (1.7)
In order to derive the basic kinematic relations for the three microstrains,
we consider an arbitrary doublet (A, B,) with axis ¢, in the initial region

Ve. In the deformed region V of the current configuration this axis is mapped
into the axis {, (see Fig. 1.4), where

Co = €3+ Dug. (1.8)
According to eqn. (1.8), the corresponding director 7 is
$a 1 ( o Aua)
Te = = T , 1.9
o Ca 1 + Ea 24 + r’a ( )

where (4 =| a |, and
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en= 2T (1.10)

Na
Equation (1.10) represents the unit micro-elongation or elongation micros-
train of an arbitrary doublet.

We assume that the relative displacements of the doublet nodes and the
elongation microstrains are small, i.e., | Au, |« 74 and €4 < 1, respectively.
The approximate relation

o A
€ = Lo e (1.11)
No
then follows. Substituting Au, from eqn. (1.5) into eqn. (1.11) and using
eqns. (1.6) and (1.7), we find

M
° (na)x_l ° ° OXu;
Q=TS Y O T | . (1.12)
3 =t X! aky aky 33«‘1:, ...a.’th J——

The equality ¢ = z° indicates that after differentiation, the continuous coor-
dinates zt,,..., Tk, have to be replaced by discrete coordinates of the Bra-
vais lattice nodes, i.e., zj ,... ,a:zx. Each subscript of the set kq,...,ky runs
through the integers 1,2, 3.

It should be noted that the elongation microstrain €, of the doublet
(A, B,) is caused by the motion of the node b, € B, away from node
a € A along the vector T,. Therefore, this microstrain can be conveniently
represented as €, = €4 To. In the above discussion, it was assumed that
| Au, |K 1o and €4 < 1. Thus the angle ¥, between the directors T, and
79, is small, i.e., Yo <« 1 (see Fig. 1.4). Hence 7, = 7, and we obtain the
equality

— o — o o — . -
€a = €aTg = €aTy; €f = €q4j €], (1.13)

where €,; = €, ng.
It follows from eqn. (1.12) that the first approximation (M = 1) for the
elongation microstrain has the form

€a = TaiTaj €ij lg=go » (1.14)
where
. 1 au,' au]'
51] = § (% + 5(17—,) (115)

are the components of the usual linear strain tensor. Expression (1.14) coin-
cides with the one obtained earlier for the simplest model of granular media
by Nikolaevskii and Afanasiev (1969).

Next, we examine the torsion microstrain. The torsion p, of the doublet
(A, B,) is caused by that part of the rotation vector increment A¢, which is
directed along the unit vector ¢ (Fig. 1.5). By analogy with the microstrain
of elongation, it then follows that
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Fig. 1.5. Rotation of the doublet particles A and B,.

T: : A¢a
Na

Substituting the expansion of A¢q, similar to eqn. (1.5), in eqn. (1.16) and
taking into account eqns. (1.6) and (1.7), we find

Ha = (1.16)

M
— (Ua)x-l o 6X¢i
Hao = Tgi xgl TTG’CI cen T;kx m . (117)

x lzg=z°
By analogy with eqn. (1.13), the torsion microstrain vector can be written as
Ba = PaTq = HaTgi€j = Haj€js (1.18)

where piaj = pa 75

Finally, we consider the shear microstrain. To this end, we note that the
nodes a and b, of an arbitrary doublet (A, B, ) have different displacements.
Therefore, the doublet axis ¢, rotates by the angle %,. Since, | Au, | 1,
it follows that | ¥, [« 1 (see Fig. 1.4). If the independent rotations ¢ of
the granular body particles were not permitted, i.e., ¢ = 0, the contact
points @’ € A and b, € B, (see Fig. 1.1) would remain in contact after the
deformation.

In the present theory such rotations are permitted. Owing to the indepen-
dent rotations, ¢ # 0, the doublet particles A and B, undergo, respectively,
rotations by the small angles

0o =¢—1a, 0,=0,+A00,. (1.19)
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Because of that the contact points move in opposite directions perpendicular
to 75. This leads to the shear of the doublet embodied in a shear microstrain.

The relative displacements of the contact points a’ and b), are represented
by the following cross products:

1 o_ L. °
Aw = anxca-—2(¢ tl)a)XCw

AW = =28, xCo=—o(b+ Dba—ta) X (5 (1.20)

We assume here that the angle ¢ is small so that | ¢ [« 1. The difference
between Aw' and Aw divided by 7, yields the shear microstrain vector

Yo =ba— ¢~ 5 Aga) X TE. (1.21)

Since Vg is the small angle between the vectors 75 and 7, (see Fig. 1.4),
the approximate relation

Yo = T:’y X Ta (122)

holds.

Substituting the expansion for A¢,, analogous to eqn. (1.5), along with
¢ and 1, from eqns. (1.6) and (1.22) into eqn. (1.21) and taking into account
eqns. (1.7) and (1.9), we obtain

o = Yot (1.23)

where
@i + - i ()" 72 Ta %95 o
. = = . —_ —_— e a..  a. T €ij
Yoi J 9 ~ Xy ak; aky Bwln .e .ail?kx 2=z ap “Up
M
o _o (nﬂ)x_l o o —-—-——axu ]
+ ((Sij — Tai Taj) XX_:I X! Taky -+ T""’x 8g;k1 .. .]szx z=(::24)

and where ¢;jp, is the permutation symbol and d;; is the Kronecker delta.

1.4.2 Microstresses, Equations of Motion, Boundary Conditions

We postulate the existence of the following internal generalized microstresses
associated with the internal generalized microstrains.

— The elongation microstresses p, associated with €,:

Pa = Pa To = Pa Tai ® = Pai &i. (1.25)
— The torsional microstresses m, associated with pe,:

My = My To = Mg Ta; € = Mg €. (1.26)
— The shear microstresses t, associated with vyq:

ty =taies. (1.27)
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If the strain energy per unit volume of the elastic granular medium is
denoted by W = W(eq, Lta,Yai), then the stress power P is given by

n
P=W-= Z (Do €0 + Mafia + tai Yai) - (1.28)

a=1

On the other hand, the time rate of change of W is

3W ow . ow .
W Z ( a Mo + % "Ya,) . (129)
Comparing eqns. (1.28) and (1.29) we find
ow ow ow
Pa = E, My = a“—a, tai = a’yai. (130)

We also define the functional
T

Liu,¢] = / / (W—/—) |af® ~F - u) dvdt
0o Jv 2

_/OT/S(T.HM - @) dsdt (1.31)

for the granular medium, where T and M are the force and couple vectors
per unit area of the surface S, respectively, F is the force per unit volume
and p is the density.

Taking the first variation of L yields

d
aL[u + Av, ¢ + A0]

, (1.32)
A=0

where v and 6 are arbitrary smooth functions with v(R,0) = v(R,T) = 0,

and setting it equal to zero and using eqn. (1.30), along with the definitions
of the microstrains, yield the following results in terms of the microstresses:

1) Conservation of linear momentum:
- OX(tai + Pai)
A Tok e Tak, - + Fi
;){Z ! "Xaxkl...axkx
O%u;
= p—, 1.33
p ot2 ( )

conservation of moment of momentum:

- na (]
Z (Guq taq + E ( 1)X ! ( ) akl Takx
a=1

X—

OX(mai — 2 Na €ijqTa;j ta )) —0

X
a.l'kl ‘e axkx

(1.34)
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2) Natural boundary conditions at the surface S
force boundary conditions:

M

= x-1 X=r(t . .
Nk, Z T;kr Z (_l)x—l (na) o 0 0 (tm +pu:)
a=1

r
ak e k
= x! r+1 X Ok, yy .- OTk,

= T;6p, (1.35)

couple boundary conditions:

- o Az x(na)x—l
Tk, E Tak, Z (=1 1
a=1 ’

x=r X

o
Tak,+1 e Takx

OX " (Mai = §7a Eijq Taj tag)
Oz Oz,
Here n denotes the outward unit normal to the surface S. The subscript

r=1,...,M—1if M >2,and r = 1if M = 1. However, r should be such
that r + 1 < x otherwise one has to take the product 75, ...T;kx =1

and to ignore the differential operator in egns. (1.35) and (1.36) so that

OXT(-) = (--9).
To clarify the indicial convention, let M = 3. Then the maximum value
of risr =M —1=2, and eqn. (1.35) gives

(a) forr=1:

X = — M;6b,. (1.36)

b1ttt X

n
) Na o a(tai +pai)
N, E Tak, [(tai + Pai) — o Taks T orn.
* 2

a=1

(M)’ o o M]:n (1.37)

+ = Tak, T
31 oks Taks 0z, 0T,

(b) forr=2:

n 2
) Na ° ot i+p i
Nk, § :Takg [ZC; (tai +pai) - ( 3’) Taks ( aal‘k i )] =0. (138)
a=1 ° : 3

1.4.3 Transition from Microstresses to Macrostresses

We represent the components of the surface force vector T and couple vector
M in the form

T; = Oking, M; = My ng, (1.39)

where o; and My; are components of the second order tensors of the force
macrostresses T and the couple macrostresses M, respectively. By comparing
eqn. (1.39) to eqns. (1.35) and (1.36), we easily find the natural connection
between the micro- and the macrostresses:
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M '70) o ox—1 tai + Poi
oM = Z o, Z 1)x+1( Ty e+ Tok, Ek(_a_m:ﬁ,@.m)

-1
M 7), o o
Mlgli) = E Tak; Z Al [ a>)<. Toky * +* Tarky

xax_l(mai 2’la€'JqT taq)]

Dz, ... Ozk (1.41)

X

The superscript M gives the level of the approximation at which the macro-
stresses are represented by the microstresses.

A brief digression is now undertaken in order to discuss the symmetry of
the macroscopic stress tensor accounting for its scale dependence. Toward this
objective a simplified system of equations is derived for the special case cor-
responding to the assumptions that p,; = 0, mq; = 0 (doublet-level nonpolar
medium) and t,; depend only on z3. Furthermore, a simplified underlying
microstructural geometry is assumed whereby 72, = 1ifa = ¢, 75, = 0
otherwise, and 7, = > 0 for a = 1,2,3.

With these assumptions, the equation of balance of linear momentum
(1.33) reduces to

t3i3 — gtai,as =0. (1.42)
These can be integrated to yield
tai = Ao + A; exp(kzs), (1.43)

where k = 2/n, and Ay and A; (i = 1,2,3) are arbitrary constants.
The equation of balance of angular momentum (1.34) reduces to
n 7
€ijqtiq = 5€isgtag3 + T €isgtagss = 0. (1.44)

These yield the conditions
to3 =132, liz=131, ti2=1a. (1.45)
On the basis of these results, it can be established that the macroscopic
stress tensor is asymmetric. For instance, provided Az # 0, it follows that

og) Ug) = gtsz,s = —'gAz exp(kz3) # 0. (1.46)

Thus, if scale effects are included, the macroscopic stress tensor need not be
symmetric—even for nonpolar media.

Let us return to eqns. (1.40) and (1.41) having another goal in mind.
By comparing these with eqns. (1.33) and (1.34), we find the macrostress
equations of motion for the volume V of the granular medium to be
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Baw) 0%u;
i ouj
a;i +Fi=p—— TR (1.47)
(M)
OM;; + €jik afk) =0. (1.48)
61:,

Taking into account eqns. (1.40) and (1.41), we can represent the bound-
ary conditions (1.35) and (1.36) for the macrostresses on the surface S of the
granular body as

Ti=00"n;,  Mj=M"n. (1.49)

In the first approximation (M = 1) eqns. (1.47) and (1.48) describe
the motion of Cosserat’s continuum with asymmetric force macrostresses
(Cosserat and Cosserat 1909). Under some conditions (see, below, Sect. 4.3.2
the couple macrostresses M;; vanish. The relations (1.48) then bring about
symmetric force macrostresses and thus reduce the relations (1.47) to the
equations of motion of the “symmetric” classical continuum. In this case, the
couple boundary conditions (1.49); become identities.

In the subsequent approximations (M = 2,3,...) eqns. (1.47) and (1.48)
include different force macrostresses: O'g-v[) ineqn. (1.47) and O'E;) in eqn. (1.48).
Due to this feature, the macroscopic equations (1.47) and (1.48) at M > 1
become quite different from the equations of motion of both classical and
Cosserat continua.

1.4.4 Alternative Formulation

For later convenience, we express some of the equations developed in the
previous sections in a more compact form. The kinematic equations (1.12),
(1.17) and (1.24) are written as

o (ma)* 7!
=) QX| Tai Ta(x) 0¥t (1.50)
=1 :
M x—1
o= —(na;! Tai Ta(x) 0 i, (1.51)
=1
M -~
Yoi = Torn 6 uj
x=1
15 ()X
—(rb' 52 ! a(x)¢1) Tap Eiip) (1.52)
x=1

where



26 1. Introduction (M. Ferrari, V. T. Grantk and A. Imam)

Ta(x) = Tak, -+ Taky (1.53)

OXu;
Oz, ... 0z

X

, 0% = e . (1.54)

X g7, =
O = O0zg, ...0zk

X

Furthermore, conservation of linear momentum, eqn. (1.33), and conser-
vation of moment of momentum, eqn. (1.34), are written as

Z Z )X+t ()7 a(x)a (Pai + tai) + F; = piis, (1.55)
a=1 x=1 '
n
Z [fuq jtag
a=1

= +1 (na)x_l 1
+ Z(_I)X X! a(x) ox (mm - 5 N €ijq Ty taq) =0. (156)
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K.Mon and M. Ferrari

2.1 Introduction

It may be said that the field of continuum thermomechanics (CT) was es-
tablished in its contemporary format with the landmark contributions of the
late fifties and early sixties (Coleman and Noll 1959, Coleman and Noll 1963,
Gurtin 1965, Truesdell and Noll 1965) Disagreement between researchers in
CT has not been infrequent (see e.g. Day (1977), Green and Naghdi (1977),
Naghdi (1980), Kestin (1990)) and much of it has centered around using the
Clausius-Duhem Inequality (CDI) as the embodiment of the Second Law of
Thermodynamics and its use to derive constitutive restrictions in the man-
ner proposed by Coleman and Noll (1963). Day (1977), using an example of
a rigid, homogeneous, simple heat conductor with memory, has shown that
the CDI is consistent with nonunique values of entropy, i.e. the CDI can be
satisfied by any of a range of entropy values. Green and Naghdi (1977) have
shown that the CDI predicts, for a class of rigid heat conductors in equi-
librium, that if heat is added to the medium, temperature must decrease.
Green and Naghdi (1977) proposed use of the Clausius Inequality in con-
junction with the concept of an entropy balance law as an alternative to
the CDI. The Naghdi-Green formalism has been successfully applied to stud-
ies of mixtures of interacting continua (Green and Naghdi 1978) and nonlo-
cal elasticity (Green and Naghdi 1978). For elastic constitutive assumptions,
the CDI-based approach of Coleman and Noll (1963) yields identical results
to the Naghdi-Green formalism (Naghdi 1980).

Generalized continuum mechanical theories have been proposed, with
the objective of modeling continua endowed with a material microstruc-
ture (Cosserat and Cosserat 1909, Eringen and Suhubi 1964, Mindlin 1964,
Green and Rivlin 1964b, Eringen 1966). These are essentially continuum ap-
proaches in that they are based on the modeling assumption that all contin-
uum points are endowed with additional kinematic variables that are some-
how representative of the microstructure contained in the “differential vol-
ume element” centered at the point. Literature studies on the thermodynam-
ics of the generalized continua are not as abundant as those in continuum
thermomechanics, and are generally based on the CDI as the mathemati-
cal embodiment of the Second Law (Eringen and Suhubi 1964, Eringen 1966,
Stojanovié 1972). It may be expected that the use of the CDI in this context
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be subject to the same objections as those mentioned above for conventional
contintum mechanics. On this basis, and without entering into the com-
parative merits of the various approaches to the thermomechanics of media
with or without microstructure, in this chapter we employ the procedure of
Green and Naghdi (1977) to determine the constitutive restrictions that are
imposed on a class of microstructured media by the entropy balance law and
the Clausius Inequality. The analysis is limited to the thermoelastic range,
where the choice of thermomechanical formulations has been shown to be
immaterial, not only for the cited case of continuum thermoelasticity, but
also for the case of micropolar elasticity (Ferrari 1985).

In analogy with the methods of Green and Naghdi (1977, 1979), in this
chapter we first identify local energy and entropy balance laws, and make con-
stitutive assumptions as to what variables the functions that appear in these
balance laws depend on. Substitution of the constitutive assumption into the
balance laws allows simplification of these functional dependencies. Next, an
analysis is undertaken to determine what further restrictions are implied by
consideration of superposed rigid body motions (Green and Naghdi 1979).
(Green and Naghdi, 1979). Finally, the results of the analyses are applied to
a study of homogeneous linear elastic doublet mechanics.

2.2 Balance Laws

We start from the differential formulation of energy balance
pr —div(q) + P —pE =0, (2.1)

where the superscripted dot ( ° ) denotes the material time derivative. In
eqn. (2.1), r is the volume rate of heat supplied per unit mass, q is the heat
flux vector, P is the mechanical power per unit volume, E is the internal
energy per unit mass, and p is the mass density.

The differential law of entropy balance, introduced by Green and Naghdi
(1977), is

r . (4 .

p (5 + 6) - dlv(§> = ps, (2.2)
where £ is the internal rate of entropy production per unit mass, s is the
entropy per unit mass, and § is a function of empirical temperature, T, and
other constitutive variables such that 8 > 0 and 86/8T > 0. The combination
of eqns. (2.1) and (2.2) yields the relation
q-g

6
where g denotes grad(f). Rewriting eqn. (2.3) yields

pr — div(q) = pfs — pf¢ — =pE - P, (2.3)

—p(E—Qé)—gé—g—-p9£+P=0, (2.4)
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or, in terms of the Helmholtz free energy (¢ = E — 0s)

— p(3 +6s) — q_eg ~pE+P =0. (2.5)
Expressions (2.4) and (2.5) will be referred to as energy/entropy balance
equations and must hold for all thermomechanical processes. Definition of
a thermomechanical process will be delayed until the mechanical power is
discussed further.

The only difference in these equations, between continuum mechanics
(CM) and doublet mechanics (DM), lies in how the mechanical power per
unit volume P is written. In CM, P = o - L where o is the stress tensor and

L is the velocity gradient. L is related to the deformation gradient, F, by
L=FF~! InDM,

n
P = (Pafa + Mafia + ta - ¥y)- (2.6)
a=l
The elongation microstress p, is conjugate to the elongation microstrain ¢,
the torsional microstress my, is conjugate to the torsional microstrain pq, and
the shear microstress vector t, is conjugate to the shear microstrain vector,
“a- Use has been made of the fact that py - €4 = pa€o and Mg - flg = Mofia
, i.e. the elongation and torsion microstrains and stresses are collinear with
the o doublet axis.
Additionally, the microstresses are required to satisfy the balance of linear
momentum,

n M x—1 ox ' .
1 e e PPaittei) oo
;;( 1) X Tak, """ Tak, Bz, - Oay, + F; = pi;, (2.7)

and moment of momentum,

n

(o]
2 : (fiquajtaq

a=1

< X!
T
x=1 ’

+L; =0, (2.8)

ax(mai - %naet’jq'r;jtaq)
6$k1 s 6ka

where F; is the volume body force, L; is the volume distribution of body
couples, and ¢;;; is the permutation tensor. The summing limit, M, refers to
the degree of approximation.

The independent variables in the above treatment are

{u,,T}. (2.9)
The balance laws (2.2), (2.5), (2.7), and (2.8) contain the fields
{¢797 8’ E’pa’ma,ta,q}7 (2.10)
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as well as
{F,L,r}. (2.11)

We assume that the fields (2.10) depend constitutively on the variables in
eqn. (2.9) and possibly on their space and time derivatives. We assume that:

1. The balance laws hold for arbitrary choices of the variables in (2.9) and,
if constitutive assumptions require, their space and time derivatives;

2. The fields (2.10) are calculated from their constitutive equations;

3. The fields (2.11) can then be found from the balance of momentum (2.7),
moment of momentum (2.8), and entropy (2.2);

4. The energy/entropy balance equation (2.5) may be imposed as an iden-
tity for every choice of variables (2.9). This allows restrictions on the
constitutive equations to be derived.

A thermomechanical process is defined by specifying the set of variables
(2.9) such that the balance laws are satisfied.

2.3 Elastic Constitutive Assumptions

The constitutive assumptions of doublet elasticity are

Y = Yl tiar¥a T, VT : X), (2.12)
s = 3(€arBoyVa, T, VT : X), (2.13)
¢ = &learttar¥a,T,VT: X), (2.14)
8 = 0(€arttarVa,T,VT : X), (2.15)
q = Q(ea,ua"Ya,T,VT:x), (2.16)
Pa = Palesup, v, T, VT : X), (2.17)
mo = maleg,pp,vs, I, VT : X), (2.18)
ta = tolesusvs, T,V : X), (2.19)

where T is the empirical temperature and « and 3 range from 1 to n. The X
indicates a possible spatial dependence. Expanding these functions into their
partial derivatives and substitution, along with eqn. (2.6), into eqn. (2.5)
yields an equation of the form

ar T | <
AT+B a +C:]a 0z, +Z (Hla€a+H2aﬂa+H3m7m
e .aﬂa O} Lo
+ Ilai oz, + 12, oz, + 134 B, +G=0, (2.20)

with coefficients
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A= —p (g% + sﬁ) : (2.21)

5 = (5175 * sH7ER) 22
Cij = _%Wégi—amﬁ’ (2.23)
Hl, = -p (g:—/:: + s%) + Pas (2.25)
H2 = —-p (a% + s%) + M (2.26)
H3s,i = —p (66';/:,- + saiii) + tai, (2.27)
MNai = —%i(%, (2.28)
I24; = —991%, (2.29)
Baij = —% aii, (2.30)

The vectorial subscripts ¢ and j vary from 1 to 3, while the doublet num-
bering subscript, a, varies from 1 to n. Equation (2.20) must hold for every
thermodynamic process, including arbitrary choices of the functions in the
set

) _67;’8—:1:,6_.1:;’60’”“’%’.’530—5’ ;. oz (2.31)

{. T OT .. Oeq O aya,-}

Since these functions do not enter into constitutive assumptions (2.12)—(2.19)
or the coefficients defined in eqns. (2.21)-(2.30), any functional relationships
derived from arbitrary choices of the functions in the set (2.31) must hold for
every thermodynamic process. In particular,

a) Taking each member of the set (2.31) to be zero yields G = 0.

b) Given that G = 0, and taking all of set (2.31) except 0°T/0z;0z; to be
zero yields Cj; = 0. This means that 6 = é(ea,ua,'ya,T : X) i.e. 8 is not
a function of VT.

¢) Given that C;; = G = 0 and taking all of the set (2.31) except aT /8z; to
be zero yields B; = 0. This means ¢ is not a function of VT. )

d) Given that C;; = G = B; = 0 and taking all of the set (2.31) except T to
be zero yields A = 0.

e) Given that C;; = G = B; = A = 0 and taking all of the set (2.31) except
Oeq [0z ; to be zero yields I1,; = 0. This means # is not a function of €,4.
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f) Given that C;j = G = B; = A = Il4; = 0 and taking all of the set (2.31)
except Opo /O to be zero yields 12,; = 0. This means 6 is not a function
of pg,.

g) Given that Cjj = G = B; = A = I1,; = I2,; = 0 and taking all of the
set (2.31) except 074j/90z; to be zero yields I34i; = 0. This means 8 is
not a function of 4. At this point 8 = §(T : X).

h) Given that C;; = G = B; = A = Iy; = I2,; = I34i; = 0 and taking
all of the set (2.31) except é, to be zero yields Hl, = 0. This means
Po = pOip[De, and, since ¢ is not a function of VT, p, is not a function
of VT.

i) Given that C,‘j =G=B;=A=11y;=12,; = 130,;]' = Hl, =0 and
taking all of the set (2.31) except fi, to be zero yields H2, = 0. This
means mq = potY/Ou, and my is not a function of V7.

j) Given that C,'j =G@=Bi=A=11,; =12, = I3m'j =Hl,=H2,=0
and taking all of the set (2.31) except 74; to be zero yields H3,; = 0.
This means to; = p01)/3vqi and t,; is not a function of VT.

Up to this point we have not applied the Second Law of Thermodynamics;
nothing has been said of which processes are possible and which are not. In
this chapter, we retain the viewpoint that different statements of the Second
Law are possible, each embodying some aspects of it. In what follows we ex-
plore the consequences of the Clausius Inequality (Green and Naghdi 1977),

f ( / L / ﬂdv) dt >0, (2.32)
1 \Jen, 0 B 0

which states that the sum of the entropy from heat conduction q through the
surface of the body 8B; and from radiation r in the body B;, considered over
a closed cycle I, must be greater than or equal to zero. A closed cycle is one
in which the entropy, s, is the same before and after the cycle is completed.
If the Second Law applies locally to every part of the body, through the use
of the divergence theorem and entropy balance (2.2), the Clausius Inequality
(2.32) can be reduced to

j[ £-dt>0. (2.33)
I

If the entropy production rate, £, is independent of time, eqn. (2.33) implies
£20.

To incorporate eqn. (2.33) into the above analysis, one must reconsider the
results of part a) of the application of the constitutive assumptions (2.12)~
(2.19) to the energy/entropy balance equation (2.5), particularly

g (86 0T 06 B
& (?ﬁa_x,- + 57 ) PE8=0. (2.34)

Since it is possible to choose the cycle (I) in eqn. (2.33) such that q, T,
VT, and therefore { are independent of time, it must be that £ > 0 for all

G=
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processes. Recalling that 6 > 0, equation (2.33) is then equivalent to the
condition
o6 8T  0O6
g =—+=—]|20 .
gi (aTaz;+6m;) >0 (2.35)
If we assume Fourier’s Law of heat conduction holds, i.e. ¢; = K;; 0T /0x;
when 0T /0x; approaches zero, with

K= K(ea,ua,7a,T 1 X), (2.36)
eqn. (2.35) can be rewritten as
08 oT oT % 9T ., (2.37)

3T 82: 02; T e, 0 =
Given that K # 0, if eqn. (2.37) is to hold for arbitrary (near zero) values
of 8T /Ox; it must be that 80/0z; = 0. Thus, 6 is not an explicit function of
X. This result, added to the results of parts d) to f) above, show that 0 is
an explicit function of 7' only. Given that # > 0 and 86/8T > 0, §(T) is an
invertible function and can replace T as a constitutive variable in all of the
foregoing equations and relations.

Armed with this result, conclusion d) above is reinterpreted to be

I

50 = % (2.38)
and s is not a function of g = grad(#) because ¥ is not from part c) above.
Also (2.34) can be rewritten as

p&o = —%gi, (2-39)
and, from eqn. (2.3),
pr — divq = pfs. (2.40)

Relations (2.39) and (2.40) are consistent with the results of Coleman and
Noll (1963) and Green and Naghdi (1977).
At this point the relations (2.12)-(2.19) can be rewritten as

-

Y = Y(€asBarVarb: X), (2.41)
s = 3(€asparVa,b: X), (2.42)
'3 é(ﬁa,um’h,e,g : X), (2.43)
6 = 4(I), (2.44)
a4 = Aa(eastasVar0,8: X), (2.45)
Pa = Paleg ppvs,0:X), (2.46)
ma = theles pa, 78,0 : X), (2.47)
ta = f:a(eg,uﬂ,‘Y@,a:X). (2,48)



34 2. Doublet Thermomechanics (K. Mon and M. Ferrari)
2.4 Superposed Rigid Body Motions

In the various theories of solid mechanics, once a set of measures of the defor-
mation are chosen, these measures are tested against transformations of the
deformed configuration to check whether they are properly invariant. Thus,
in finite deformation theories of classical continuum mechanics, the Cauchy-
Green tensor C = FTF is chosen as a strain measure and is determined to be
invariant under arbitrary finite rigid motion of the deformed configuration.
In geometrically linear continuum theories, € = sym(grad(u)) is chosen, and
is proven to be invariant only under infinitesimal rotations of the deformed
configuration. As shown by Casey and Naghdi (1981), invariance of € under
arbitrary finite rotations may be proven, upon choosing to remove the trans-
lation and rotation at a “pivet point” in the body from the description of the
deformation. This introduces an element of frame specificity to the theory,
but allows the linear theory to be deduced as a special subcase of the finite
theory.

The set of deformations appropriate to a theory is chosen on the basis
of the ability of said measures to quantify those aspects of the deformation
that are of interest within the theory itself. Thus, € is an appropriate measure
in linear continuum theories in that it contains the desired information on
changes in lengths, areas, volumes, and angles. By comparison with this, the
lack of proper invariance of € under finite rotations has been considered a
notion of lesser importance throughout the history of mechanics. As will be
shown, the kinematic equations of DM are properly invariant under super-
posed rigid body motions, an undervalued but highly desirable component of
any mechanical theory.

In the present form of doublet mechanics, as presented in the original
paper by Granik and Ferrari (1993) and summarized in Chap. 1, the mea-
sures of deformation are the elongational strains €,, the torsional strains y,,
and the shear strains 4. In this and the following sections we consider the
geometrically linear kinematic relations

¢, = TaAUa (2.49)
N
fa = E_'A_d’i’_, (2.50)
Na
1
Yo = — (¢ + §A¢a —_ T: X Ta) X T;, (2.51)

where 17, is the internodal distance of the a-th particle doublet, 7, is a
unit vector in the undeformed configuration oriented along the a-th doublet
axis, and Au, and A¢, are given by the following relations in Cartesian
coordinates:

Auai(x7t) }_ ud ’lé o o ox { u,'(x,t)

Adyi(X,t) —X—!Tak,  Tok, m #:(X, 1) .(2.52)

X=X,

x=1
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Repeated Latin indices (e.g., k;) should be summed over while repeated Greek
indices (e.g., @) should not. This equation should be evaluated only at the
doublet nodes (when X = X,). The vector fields of translations u and rota-
tions ¢ are mutually independent and are functions of position X and time
t.

In this section the invariance properties of these measures of deformation
are investigated under the transformations

w ot = Qutus i) (253)
o — ¢,’ = Qij(t)¢i» (2.54)
2

where Q;;(t) represents a proper orthogonal matrix (a rotation) and ¢;(t
represents a rigid translation. Under eqns. (2.53) and (2.54), the doublet uni
vectors transform as

m’ —QIJ ai’ (255)

and the internodal distances remain unaltered, i.e., g} = n,.

2.4.1 Microstrains

Using relations (2.53)-(2.55) and the identities

ovf
QUsz = Jk and 3z + szQ;k (256)
where Vv is any vector, it can be deduced from eqn. (2.52) that
Aul; = QijAua; and A¢Y; = QijAda;j, (2.57)
and from eqns. (2.49), (2.50) and (2.53)—(2.57) that
€k =€a and pf = pla. (2.58)

Relation (2.51) for the microshear strain vector can be rewritten in Carte-
sian form as

1 R ToiTai — 0ij
Yoi = — [((ﬁ, + §A¢aj)7'ap€ijp + (ﬁ#) Auaj] , (2.59)

where €;;; is the permutation tensor. Again using the relations (2.53)-(2.57)
it is found that

1 o QilTa1Taqg — Qi
Tai =~ [((151 + §'A¢al)lequTaq€ijp + (————l . g q) Auaq] ,(2.60)

with no further algebraic simplification apparent. We note from eqns. (2.59)
and (2.60) that v = Q. if Q is such that

Qijilquejip = €mlig- (2.61)

Equation (2.61) is an identity for all Q given that the determinant of Q is
unitary (Shames and Cozzarelli 1991).
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By eqns. (2.58) and (2.61) it is seen that the axial, torsional, and shear

microstrains are properly invariant under the finite rigid motions considered
in eqns. (2.53) and (2.54).

2.4.2 Microstresses

It is postulated that the doublet mechanical microstresses are invariant, apart
from changes in orientation, under the transformations (2.53) and (2.54)

P& = Pas m} =m,, tt. = Qijtai. (2.62)
Under the constitutive assumptions (2.17)-(2.19), relations (2.62) imply that
ﬁa(eﬁ,l‘ﬁ’ Q7ﬁ’o : X) = ﬁa(Gg,Hﬁ,’Yﬁ,e : X), (263)
ha(ep, pp, Qp,0: X) = ria(ep, pp,vp,0 : X), (2.64)
ta(ep, up, Q0 : X) = Qtales, p,75,0 : X). (2.65)

Relations (2.63)-(2.65) place significant restrictions on the functional forms of
the microstresses. Through application of Cauchy’s representation theorems
(Truesdell and Noll 1965) eqns. (2.63)—(2.65) can be rewritten as

Pa = Pales, 1,718,601 X), (2.66)

Mo = ﬁla(éﬁ, K3, 7,399 : X)a (267)

ta = Z iaﬂ(eﬁauﬂ, 7/3,9 : x)'Yﬂ, (268)
=1

where 3 is the magnitude of v4.

2.4.3 Other Functions

Similar restrictions for the other functions in our development are obtained
in the same manner as above

~

¥ = (easBarVar0 : X), (2.69)
s = 3(€arbasVa,9 : X), (2.70)
£ = &(eastarVasb: X), (2.71)
q = Zﬁa(6ﬁ$“ﬂ’7ﬂ70agv7ﬂ'g:x)7a+"‘
a=1
+K(€ﬂ,ﬂﬁ, Vﬂ,e’ga’Yﬂ +g: X)g9 (272)

where g is the magnitude of grad(#). The heat flux vector q in (2.72) is shown
to depend not only on the temperature gradient g, as in CM, but also on the
shear microstrain v,. In DM, q depends constitutively (see eqn. (2.45)) on
these two vectors and not just one vector g as in CM. As will be shown, the
dependence of q on v, can be removed in the linear theory.
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2.5 Linear Elastic Doublet Mechanics

Assuming material homogeneity, the most general physically linear relation

between the microstrains and microstresses takes the form
n

Pa = ) (Aapes+Bappg+Capp) +JaO, (2.73)
B=1

ma = ) (Dapes+Eap s+ Fapp) + Ko, (2.74)
B=1

loi = Z I.3i5 Y55, (2.75)
B=1

where © = -8, is an increment of the temperature and 8, is the temperature
of the granular media in an initial state.

Further restrictions on the micromoduli follow from the results of parts
h) through j) of the application of the constitutive assumption to the en-
ergy/entropy balance equation and the mathematical requirement that par-
tial differentiation be independent of the sequence of differentiation, i.e.,

Py O _ Opa _ s

p@eaaep - pae,,aea " Oeg  Oeq

Such considerations lead to the conclusions that

= Aop = Aga. (2.76)

Aop = Apa Eap = Epa Tapij = Ipaji (2.77)
Bag = Do Cap=Fop=0.

Using relations (2.77), relations (2.73)-(2.75) are rewritten as

n
Po = Y (Aapep+ Bapps) + Ja, (2.78)
p=1
me = Z (Dapep + Eapg) + KoO, (2.79)
p=1
n
tai = D Lapij V8is (2.80)
p=1

with the conditions Ao,ﬂ = Aﬁa, Eaﬂ = Epa, Iap,'j = Iﬂaj,', and Bap = Dﬁa.
In the linear regime, we may rewrite the expression for the heat flux vector
(2.72) as

q=) H.v.+Kg, (2.81)

a=1

where H, and K are no longer functions of the constitutive variables as
in the nonlinear regime (see eqn. (2.72)). Due to the kinematic nature of
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the microshear, i.e. the dependence of v, on the doublet geometry, it must
be that the heat flux, q, has no dependence on 7,. To see this, consider a
doublet that is perpendicular to the plane of the page (i.e., one node above
and one node below). Suppose that, looked at from above, there exists a
nonzero microshear strain oriented along the positive horizontal (“z”) axis.
Looked at from below, the same microshear strain would be oriented along the
negative horizontal axis. If the heat flux were to depend on the microshear,
one would determine different values for the heat flux vector depending on
one’s position with respect to the doublet arrangement. Thus,

q=Kg, (2.82)

for linear DM as well as for linear CM.

2.6 Closure

From the present thermomechanical analysis it is concluded that:

1. The constitutive functional measure of temperature 4§ must be a function
only of empirical temperature 7.

2. The Helmholtz free energy, 1, is not a function of the temperature gradi-
ent, g = grad(9).

3. The microstresses and microstrains obey the following relations:

oY oY oY
Pa = Pg;, Ma = Pa;, toi = pa’me’ (2.83)

and thus the microstresses are also independent of grad(6).

4. The Helmholtz free energy and the entropy s are related by:

i
~5
and thus the entropy is also independent of grad(d).
5. The microstrains €,, to, and vy, are properly invariant under arbitrary
finite rotations

6: = €q, NI = Ha, 7: = QYa- (2-85)

6. For an elastic solid, the functional representations of the microstresses
must obey the following relations:

(2.84)

Da = ﬁa(eﬂaﬂﬁa’ﬂ%e : X), (286)

me = thales, ps,7s,0 : X), (2.87)
n

te = Z Iaﬁ(eﬂ’ HBs Y8y 0: X)7/3 (2.88)

B=1
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7. The constitutive laws for a homogeneous linear elastic solid reduce to

n

Pa = Y (Aapes+Bappp) +Job, (2.89)
p=1

Mo = Z (Daﬁ €3 + Eozﬂ l‘ﬁ) + K0199 (2.90)
p=1

tai = ) apij V65, (2.91)
p=1

with the conditions Aag = Agy, Eap = Ega, Iapij = Igaji, and Bag =
Dg,.



3. Multi-component Constitutive Equations

K.Mon and M. Ferrari

3.1 Introduction

The theory of mixtures has been the subject of intensive study in contempo-
rary mechanics (Truesdell 1957, Truesdell 1969, Truesdell and Toupin 1960,
Green and Naghdi 1965, Green and Naghdi 1978, Goodman and Cowin 1972,
Passman 1977, Nunziato and Walsh 1980) and has spawned as many contro-
versies about the statement and application of the Second Law of Thermo-
dynamics as studies of single component materials. Most mixture theories
assume that each component of the mixture occupies space simultaneously
and is required to satisfy its own set of balance laws involving additional
“growth” terms that allow the components to exchange mass, momentum,
and energy among themselves in such a way that these quantities are con-
served for the mixture as a whole. Generally, such treatments make use of
different temperatures for each component. Controversies arise over which
entropy inequality the components are required to satisfy and whether en-
tropy inequalities that apply to the mixture as a whole can be validly applied
to each component individually.

Perhaps the most notable generalized continuum mechanical theory of
mixtures is that due to Goodman and Cowin (1972) with later improve-
ments by Passman (1977) and extension to reacting mixtures by Nunziato
and Walsh (1980). In this theory, the material is considered continuous and
each point of the continua is assigned a scalar-valued “director” correspond-
ing to the proportion of the volume that actually contains material (i.e.,
(1 — porosity)). Again we note that the concept of material microstructure
is inherent in the doublet mechanical material model obviating the need for
generalized continuum techniques.

The treatment presented here is much simplified relative to those men-
tioned above and represents the first treatment of multicomponent doublet
mechanics (DM). Qur approach follows classical non-equilibrium treatments,
such as those of DeGroot and Mazur (1962) and Kirkaldy and Young (1987),
in which each component supports its own body forces and emits its own
radiation, however, there is only one set of balance laws for the mixture
as a whole. The presented approach differs from the classical treatments
mentioned above in that constitutive restrictions are derived in the man-
ner proposed by Green and Naghdi (1977) as applied successfully to single
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component DM in the previous chapter. We also require at the outset that
each component have the same temperature §. In contrast to the previous
treatment of single component materials in which the Helmholtz free energy
¢ was used, here we elect to use internal energy e as the thermodynamic
potential with which to analyze constitutive restrictions. It is the authors’
view that what this treatment lacks in generality is somewhat offset by its
ease of applicability and its use of the local kinematical relations of doublet
mechanics.

In Sect. 3.2, we consider the concept of mass balance within the framework
of a multicomponent theory. In Sect. 3.3, we present the non-linear dynamic
equations of motion, using the concept of the barycentric time derivative
introduced in Sect. 3.2. In Sect. 3.4, we present the energy/entropy bal-
ance equations including a new term representing the chemical work and
discuss the subtleties of its application in contemporary thermodynamics. In
Sects. 3.6 and 3.7, we briefly present the results of application of the ther-
momechanical framework to a study of multicomponent elasticity including
a more detailed consideration of the process of linearization of the balance
laws. Section 3.8 enumerates the constitutive relations of multicomponent
linear doublet elasticity. Overall, the presentation is similar to that of the
previous chapter with the exception of our use of internal energy as the gov-
erning potential, the inclusion of chemical work terms, and the exceptions
noted above.

3.2 Mass Balance

We start by analyzing the concept of mass balance within the context of DM.
Let us consider a system consisting of m components. Following continuum
treatments (DeGroot and Mazur 1962, Kirkaldy and Young 1987), for each
component a, the differential law of mass balance is

Opa
ot

where v, is the velocity of component a, and p, is the density of component
a. Summing eqn. (3.1) over all components a, we have

= —div(paVa), (3.1)

— = —div(pv), (3.2)

where p = Y7 p, is the total density and v = (1/p) Y oe, paVa is the
barycentric or center of mass velocity. With the introduction of barycentric
time derivative represented by a superposed dot:

p= 66—? + v - grade, (3.3)

and the barycentric diffusion flux
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Ja = pa(Va—V), (3.4)
such that

f:.l,, =0, (3.5)
a=1

eqn. (3.1) can be rewritten

fa = —padiv(v) — div(T,), (3.6)
eqn. (3.2) is rewritten as
b= —pdiv(y), (37)

or, using mass fractions ¢, = pq/p such that

m
Y ea=1, (3.8)
a=1

we have

péa = —div(Ja). (3.9)

3.3 Dynamic Equations of Motion

The basic approach taken here is to assume that the material making up each
doublet node is composed of possibly m different components each occupying
the entire node volume simultaneously. The DM material model dictates that
all of the properties ascribed to a node are considered to act at the geometric
center of the node, where the doublets intersect. This formulation yields the
balance of momentum

-1 o (p + tai)
1 X lna ok T o = alai iy 3.10
; XZ( . Tak; Takx a % 637kx + E P pv ( )

and moment of momentum
n

Z (5114 jlag

a=1

1 o
+ x -1 T]a To . 7_o ax(mai - fnaﬁjq'rajtaq)
E : ak; aky axkl .. axkx

+ Z paLai =0, (3.11)
a=1

where F, is the body force per unit mass acting on component a, L, is
the distribution of body couples per unit mass on component a, and €;;, is
the permutation tensor. v; is a Cartesian component of the center of mass
velocity.
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3.4 Energy Balance

The differential formulation of energy balance for the material is
r—div(q)+ P+C—-¢é=0. (3.12)

In eqn. (3.12) r is the volume rate of heat supplied per unit volume, q is
the heat flux vector, P and C are the mechanical and chemical power per
unit volume, respectively, and e is the internal energy per unit volume. Of
course, one could define r as a summation of heat supplies associated with
each component, however, in this work, we elect to use the simpler definition
given above. This choice leads to no loss of generality since r is determined
by the balance laws. One should note the change in the definition of some
of the quantities in eqn. (3.12) from those used in Chap. 2. In most of the
DM developments thus far, the volume of the DM “unit cell” (defined by the
doublets) is implicitly assumed to remain constant from node to node, i.e.
there exists inversion symmetry of the doublets defined at each node. Thus,
in a DM context, it is highly desirable to define properties in terms of volume
densities, particularly for studies involving compositional changes.

The differential law of entropy balance, introduced by Green and Naghdi
(1977), is

r . (4A) _ .
(0 +€) dlv(e) =3, (3.13)
where £ is the internal rate of entropy production per unit volume, s is the

entropy per unit volume, and 8 is a constitutive measure of temperature such
that # > 0. The combination of eqns. (3.12) and (3.13) yields the relation

r—div(q)=9é—o.5-ng=é-P—C, (3.14)
where g = grad(f). Rewriting eqn. (3.14) yields
-(é-os')—i‘—(;ﬁ—og+P+C=o, (3.15)
or, in terms of the Helmholtz free energy (v = e — 0s)
—(¢+és)—%§—0£+P+C=O. (3.16)
The mechanical power per unit volume P in DM is
n
P = (Pata + Mafta + ta¥s)- (3.17)
a=1

Po is the elongation microstress which is conjugate to the elongation micros-
train €,, Mg is the torsional microstress which is conjugate to the torsional
microstrain g4, and t, is the shear microstress vector which is conjugate to
the shear microstrain vector, v,.

The chemical power per unit volume C is given by
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m
C=) M, (3.18)
a=1

where there are m chemical components associated with each doublet node.
M, is interpreted as the chemical potential and ¢, as the mass fraction of
chemical component a. The chemical power and chemical potential are some-
what subtle concepts in that all permeable system boundaries (walls) are also
diathermal; chemical species cannot be added or subtracted from a system
without the possibility of a simultaneous transfer of heat. This leads to the
ability to consider chemical changes as either changes in the heat supplied to
(lost from) or the work done on (by) the system under consideration. Treat-
ing chemical changes as a heat term is common in texts on nonequilibrium
thermodynamics (DeGroot and Mazur 1962, Kirkaldy and Young 1987) and
has the advantage that heat is easily measured since the energy change can
be determined from the initial and terminal states of the system and the
mechanical work can be determined independently from consideration of the
laws of mechanics. The major disadvantage of treating chemical changes as
a heat term stems from the loss of the usual association between heat and
entropy. Using the “chemical heat” approach,

1 m
bs= (6q -3 Maéca) , (3.19)

a=1
meaning that entropy is not simply the heat divided by temperature. In
this work, we elect to consider chemical contributions to the energy change
as a chemical work analogous to the familiar concept of mechanical work.
Much as the microstresses are the conjugate forces to the microstrains, the
chemical potentials are the conjugate forces to changes in the mole fractions.
This approach allows the traditional relation between heat and entropy to be
maintained.
The independent variables in the above treatment are

{u,¢,5,{ca}}. (3.20)
The balance laws (3.13), (3.12), (3.10), and (3.11) contain the fields

{&,6,€,pas M0, ta,q}, (3.21)
as well as

{Fo,Lg,7}. (3.22)

We assume that:

1. The balance laws hold for arbitrary choices of the variables in eqn. (3.20)
and, if constitutive assumptions require, their space and time derivatives;

2. The fields (3.21) are calculated from their constitutive equations;

3. The fields (3.22) can then be found from the balance of momentum (3.10),
moment of momentum (3.11), and entropy (3.12);
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4. The energy/entropy balance equation (3.15) may be imposed as an iden-
tity for every choice of variables (3.20). This allows restrictions on the
constitutive equations to be derived.

A thermomechanical process is defined by specifying the set of variables
(3.20) such that the balance laws are satisfied.
3.5 Elastic Constitutive Assumptions

The constitutive assumptions of doublet elasticity on the material response
functions are:

e = é(€atarYar$8Ca: X), (3.23)
0 = H(earttarVar$ 8 ca: X), (3.24)
£ = &leartarYars8:Ca: X), (3.25)
q = d(earMarVas: 5,8,Ca : X), (3.26)
Pa = Palep,16,75,5,8,¢a : X), (3.27)
me = 1a(€p, 1s,78,8,8,Ca: X), (3.28)
t, = Ea(eﬁ’“ﬂ")'ﬁ’s’g’ca:x)’ (3-29)

where o and 3 can vary from 1 to n. The X indicates a possible spatial
dependence. Substituting the above equations together with eqns. (3.17) and
(3.18), into eqn. (3.15) yields

A-§+Bzgz+z (Hlaéa + Hzal:‘a + H3ai;)/ai)+z H4aéa+G = 0,(330)

a=1 a=1

with coefficients

Oe
A = —(a—o), (3.31)
Je
B; = —a_g," (3.32)
G = —%g,- — ¢, (3.33)
Oe
lg = ——— +pa, 34
H 3. +p (3.34)
Oe
201 = -5 @y .
H T (3.35)
de
H3ai = —67011' +taia (336)
Hi, = -2 1m, (3.37)
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The vectorial subscript i can vary from 1 to 3, while the doublet numbering
subscript o varies from 1 to n, and the chemical subscript a varies from 1 to
m. All these coefficients must be zero since

1. Neither the coefficients in eqn. (3.30) nor, by constitutive assumptions
(3.23)~(3.29), the material response functions depend on €q, fta; Yais Ca
8, or g;.

2. The results obtained for a particular choice of €4, fla, Yai, Cas §, and g;
must hold for all choices of €, fla; Yais €as § and g;.

3. Processes can be chosen in such a way to require each coefficient (3.31)-
(3.37) to vanish in turn.
We find, analogous to the treatment in Chap. 2, that

Oe Oe de Oe Oe
= — = lgi= =, 0=—,and M, = . 3.38

Pa= B¢ Mo Ope” ' Oai’ s’ " dc, (3:38)

Since e is not a function of g (as B; = 0), g, M, the microstresses are not
functions of g. The requirement that G = 0 shows that

% = —£0, (3.39)
reducing the energy equation (3.15) for elastic solids to
n m
~(€=05)+ Y (Pata + Mafla +ta Fa) + ) Maéa =0, (3.40)
a=1 a=1

3.6 Linearization and Superposed Rigid Body Motions

Up to this point, our developments have been fully non-linear in nature. In
the present form of DM, as presented in Chapter 1, the microstrains are
defined by the geometrically linear (JAu,| < 7a, €x < 1) definitions

¢, = Ta'AUa (3.41)
Na
° . Ady
fe = ’7-*_?_, (3.42)
Na
1
Yo = —<¢+§A¢a—"'§,x“'a> X To- (3.43)

Using these definitions, we must linearize all the balance laws. Starting with
mass balance, we consider the center of mass velocity, v, to be O(¢) but the
velocity of each component, v4, to be O(1). This approach readily leads to a
restatement of eqn. (3.2)

Op

rri —div(pv), (3.44)
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from a summation of eqn. (3.1). The geometrically linearized equations of
momentum are

lnor ° o ox (Pm+tm) _ 62
EZ 1x* Toks Tk 5 Bz, ZpaFai =rsa —75(345)

a=1 x=1 kx a=1

where the partial derivative has replaced the material time derivative on the
right hand side. The balance equations for moment of momentum (3.11) and
the reduced energy/entropy balance equation (3.40) remain unchanged in
form.

Similar to the treatment presented in Chap. 2, consideration of superposed
rigid body motions (SRBMs) of the form

ui = ul =Qii(t)u; +cilt), (3.46)
¢ - oF = Qii(t)e;, (3.47)

applied to the kinematic relations of DM (3.41)—(3.43) leads to the conclusion
that the DM microstrain measures are properly invariant. Similarly, signifi-
cant restrictions on the functional forms of the microstresses are obtained

Pa = DPal€ss 18,78, 8, ¢a : X), (3.48)
me = 1al€g, 1s,78,8,Ca : X), (3.49)
n
te = Z Iaﬁ(Eﬂ, UB,78,8,Ca : X)’Yﬁ, (3.50)
B=1
M, = M.(es,18,78,5,¢a : X), (3.51)

where g is the magnitude of v3.
Restrictions for the other functions in our development are also obtained

= é(fonl‘a’ Yas8;Ca : X), (352)
= B(€artiarYar 55 Ca : X), (3.53)
= é(ﬁmlla”)’mS,ca : X), (354)
n ~
q = Z Ha(eﬁ,l‘ﬂ,'Yﬂas,caaga'Yﬂ i X)'Ya +
a=1
+ K(Gﬁa“/% Y3+5:Car 9, Y3 8 : X)g, (355)

where g is the magnitude of grad(f). Again, as in Chap. 2, the dependence
of g on “y, can be removed in the linear theory.

3.7 Linear Elastic Doublet Mechanics

Assuming a physically linear constitutive relation between the microstrains
and microstresses. we obtain
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n

m
Pa = Z(Aaﬁ €3+ Baﬂ pp+ Caﬁ 'Yﬁ) + Jo A+ ZMlaa Ca, (3'56)

p=1 a=1
n m
me = Z(Daﬁ €g+ Eappp+ Fag ’75) + K. A+ ZMZM Ca,s (3.57)
p=1 a=1
n
tai = 3 Japij V8is (3.58)
#=1

n m
My = Y (Gadta + Hoaia + Baa¥a) + LaA+ ) M3ascs,  (3.59)
a=1 b=1
A = s — s° is an increment of the entropy per unit volume and s° is the
entropy per unit volume of the solid in an initial state.
The continuity of e implies the independence of the order of partial dif-
ferentiation, i.e.,

Pe _ Fe _op _0ms

= = = —_— AO( — A .
OeqOcp  Oepgleq  Oeg  Oeq A Pers (3.60)
leads to the conclusions that
Asp = Aga,s Eup = Epa, Iagij = Ipaji,
Ba,@ = Dﬂa, Goa = Mlaa, Hyo = Mzam (361)
M3 = M3pa, Cop= Fop=Raa=0.

As can be seen from this exercise in mathematical symmetry, it is wise to
group the chemical potential, M,, with the microstresses, as we have done.
Using relations (3.61), relations (3.48)—(3.51) are rewritten as

n m
Pa = Z(Ao‘ﬁeﬂ+B°‘ﬁ”ﬁ)+JaA+zGaaca, (362)
B=1 a=1
n m
ma = 3 (Dapep+Eappp)+Kad+)  Hoaca, (3.63)
B=1 a=1
n
tai = z Iaﬁ,'j V8js (3.64)
A=1
n m
M, = Y (Gaa€a + Haatla) + Lad + ) M3arcs, (3.65)
a=1 b=1

with the conditions Aqp = Aga, E.p = Egq, Iaﬁij = Iﬁaj,', B.s = Dga, and
M3, = M3,

3.8 Closure

From the preceding analysis it is concluded that:
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. The internal energy e is not a function of the temperature gradient g =

grad(6).
. The microstresses and microstrains obey the following relations
Oe Oe Oe Oe
= — a= t,i = M, = _— .
Pa 6501, m Gua’ ai a')'ai, a ac“ (3 66)
and thus the microstresses are also independent of grad(6).
The internal energy e and the temperature # are related by
Oe
- (3.67)

The microstrains: €,, po and -y, are properly invariant under arbitrary
finite rotations:

5: = €q, Mi = Ha, 7: = QYe- (3-68)

For an elastic solid, the functional representations of the microstresses
must obey the following relations:

Pa = DPal€s 18,78, ¢a : X), (3.69)

me = thal€s, 1p, 78, $,¢a : X), (3.70)

te = Z Lop(es, 18,78, 8, Ca : X)v3, (3.71)
B=1

M, = Ma(eﬁ,uﬁ,'yﬁ, s,¢q : X), (3.72)

where 73 is the magnitude of 4.

6. The constitutive laws for a homogeneous linear elastic solid reduce to

Pa = D (Aapep+Bapup)+Jad+)  Gaaca, (3.73)
p=1 a=1

me = Z(Dap €s+ Eagpp) + KaA+ z Hyaca, (3.74)
B=1 a=1

tai = ) Tagij Vi) (3.75)
p=1

Mo = ) (Gasta + Haafta) + La + ) M3arcs, (3.76)
a=1 b=1

with the conditions Aag = Aﬁa, Eaﬁ = Eﬁa, Iaﬁ,'j = Iﬂaj,', Bo,/j = Dga,
and M3ab = M3ba-



4. Comparison with Other Theories

V.T. Granik

4.1 Introduction

As is clear from the previous chapters, doublet mechanics (DM) is a new the-
ory of elasticity stemming from and based on the consideration of the discrete
microstructure of solids. Doublet mechanics is not the only microstructural
model—there are many similar theories that have been developed during the
last 30-35 years. The existance of a wide variety of microstructural theories of
elasticity leads to the inevitable question: what are the salient features of DM
that distinguish it from the others? In this chapter we discuss this question
with regard to well-known mathematical models of elasticity (WME).

Since some elastic solids with microstructure (crystals) are studied in
lattice dynamics (LD), it is instructive to include LD in our analysis as well.
Given the goal of this chapter, our consideration of LD is concise. We only
touch upon those peculiarities of LD that make it radically different from
DM. We begin with a brief discussion of LD and then go over the WME. By
comparing LD and the WME on the one hand, and DM on the other hand,
we determine some domains of applicability of DM.

4.2 Lattice Dynamics

4.2.1 General Remarks

The fundamentals and basic applications of LD are considered in the mono-
graphs by Born and Huang (1962), Maradudin et al (1971), Béttger (1983)
and Askar (1985). Elements of LD are also treated in books on solid state
physics by Landsberg (1969), Cochran (1973), Elliott and Gibson (1974),
Venkatamaran (1975), Rosenberg (1975), Ashcroft and Mermin (1976) and
Kittel (1986) to name but a few. Various applications of LD are dealt with
in a vast number of papers.

Lattice dynamics is concerned with the motion of the nuclei (and more
closely bound electrons) in crystals and may be divided into two branches.
The first one is based on the adiabatic approximation (Born and Oppen-
heimer (1927) that allows one to separate the motion of nuclei from that of
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electrons. The motion of electrons is studied within the framework of quan-
tum mechanics. The motion of separated ions in a crystal lattice is considered
by the adiabatic version of LD in which only the ion-ion interaction is taken
into account and the electron motion is ignored. It is worth mentioning that,
despite its wide applicibility, this version of LD is not completely infallible
and gives rise to critical discussions (Ziman 1960, Haug 1972).

The second branch of LD does not apply the Born-Oppenheimer approx-
imation and is therefore able to study more subtle and complex phenomena
caused not only by the ion-ion interactions but also by the ion-electron in-
teractions (see, e.g., Bottger (1983, pp. 59-62)).

Doublet mechanics is, in a sense, closer to the adiabatic version of LD.
Therefore in what follows we mean the adiabatic branch of LD and call it
simply LD. Using the above quoted sources, we can outline some salient
features of LD that are important in comparison with those of DM.

4.2.2 Salient Features

Lattice dynamics studies vibrations of the atomic nuclei of solid crystals,
the nuclei being considered as material points (“particles”) mutually bonded
by elastic interatomic forces. The particle vibrations can be small or large
compared with interatomic distances. The corresponding approximations of
the theory are called harmonic and anharmonic, respectively. The harmonic
approximation leads to linear governing equations and is usually referred to
as the classical LD (Madelung 1978). We treat below the classical LD only.

Dealing with crystals, LD makes crucial use of their translational sym-
metry. Due to the symmetry involved, the governing equations of LD are
simplified almost to the extreme. Such a great benefit is achieved with cer-
tain losses. Let us quote to the point (Landsberg 1969, pp. 331-332):

The advantages of translational symmetry can only be fully obtained
in an infinite crystal. On the other hand in order that, for instance,
the energy shell be finite, a finite crystal is desirable. Also it would
be convenient if in some way the group of translational symmetry
operations could be made finite, since the theory of finite groups is
simpler than that of infinite groups. All these ends can be achieved
by the device of periodic boundary conditions.

LD is based on the following far-reaching, but to a certain extent artificial,
premises:

1. Any crystal is an tnfinite lattice structure.
2. The crystal obeys some devised periodic boundary conditions (PBC).

How do these concepts work in LD? Since a crystal is assumed to be
infinite LD is only capable of studying a particular case of the atom vibra-
tions, namely, the propagation of body waves. The waves being determined
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by the angular frequencies w and the wave vectors k. Lattice dynamics is pri-
marily aimed at solving various eigenvalue problems, i.e., finding functions
w(k) by considering the above body waves on the basis of the linear gov-
erning equations. There are also other problems treated by LD such as the
frequency spectrum g(w) = 2wG(w?) which is most commonly applied to the
calculation of thermodynamic properties of crystals. However, this problem
is not quite independent because there are certain relations between G(w?)
and w(k) based on the Bowers-Rosenstock equation (Maradudin et al 1971).

The infinite crystal has an infinite number of atoms and hence must have
an infinite number of eigenvalues. But the crystal’s infinite expanse, along
with its symmetry, bring about a crucial simplification of the problem: they
reduce the number of eigenvalues to a finite number by considering only a
finite number of ions in a unit cell of the underlying lattice.

Despite, however, the finite number of eigenvalues, there remains some
uncertainty in the values the vector k can assume. This obstacle is overcome
by the aforementioned periodic boundary condition (PBC) first proposed by
Born and von Kérman (1912). The PBC postulates that ionic displacements
are periodic with the periodicity of a certain characteristic length L. Due to
the PBC, the allowed values of k lie in one cell of the reciprocal lattice of the
crystal, i.e., in the first Brillouin zone. The PBC also simplifies the study of
the frequency spectra g(w).

A remark should be made about the characteristic length L. This param-
eter is not the length nor the width of a real finite crystal. It is a conditional
quantity to be determined with regard to the problem in question. We thus
see that the PBC has nothing in common with the real boundary conditions
well-known from mathematical physics, continuum mechanics, etc. The PBC
applications are rigorously justified under two limitations:

1. The outside surface of a crystal is free from forces and
2. Interionic forces are short-range; they may also be long-range but not
including all the ions of a crystal.

In general, the role of the PBC in LD is not restricted to placing all
the values of k in the first Brillouin zone and simplifying the calculations of
frequency spectra. There is another—crucial—reason for incorporating such
a mathematical device as the PBC in LD (Maradudin et al 1971, p. 38):

If the calculations to be described in this book (on LD) were crit-
ically dependent on the particular choice of boundary conditions it
would be virtually impossible to develop a theory with any degree of
generality. Fortunately this does not turn out to be the case, and the
very simplest boundary conditions first proposed by Born and von
Karman may be used to develop a theory with as much validity as
the physical axioms permit.
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4.2.3 Domains of Inapplicability

We see that LD can exist as a general theory only on the basis of a particular
boundary condition (the PBC) and it is, in general, incompatible with arbi-
trary boundary conditions. It follows that LD is incapable of solving those
vibration problems where boundary conditions differ from the PBC with
its strong requirement that no forces be applied to the outside surface of a
crystal. Meanwhile, in numerous cases that are intrinsic to the wide-ranging
problems of elasticity, quite an opposite situation prevails when certain forces
act on the bounding surface of a solid body, which is not necessarily a crys-
tal, or the surface is subjected to specified displacements. Thus, LD is, in
general, inapplicable to the boundary problems of elasticity. There are also
other limitations. Since LD was developed to study only elastic vibration it
is unable to address both inelastic and static problems of solid mechanics.

Despite being an efficient theory for crystal vibrations, LD is not a uni-
versal tool to solve all the problems of deformable solids. There are extensive
domains where LD is inapplicable. Let us mention some of these.

1. Quasielastic and inelastic behavior of solids
e Viscoelasticity!
o Plasticity
2. Dynamic boundary problems
e Vibrations of soil bases (foundations)
¢ Propagation of surface waves?®3
e Stress concentration
O Around holes, cavities, notches, and the like
O Around inclusions
O Under punches, beams, shells, etc.
O At the tips of cracks
3. Static boundary problems
e Strains and stresses in soil bases (foundations)*
o Stress concentration
O Around holes, cavities, notches, and the like
O Around inclusions
O Under punches, beams, shells, etc.
O At the tips of cracks
4. Failure criteria!
5. Fracture mechanics

! These problems are touched upon within the present book on the basis of DM.

2 These problems are dealt with in the present book on the basis of DM.

% In solids with independent rotations ¢ of underlying particles. In a particular
case of central interatomic forces when ¢ = 0 some problems of surface waves
can be treated by means of LD. The treatment is excessively complicated since in
general such problems are not inherent in LD (see, e.g., Maradudin et al {1971,
pp. 520-582)). For comparison with DM, see Chap. 7 in this book).

* Including the Flamant problem which is considered here in Chap. 8.



4.3 Doublet Mechanics 55

4.3 Doublet Mechanics

4.3.1 Salient Features

The fundamentals of DM are stated in detail in the previous chapters. Here
we are going to recount and reemphasize only those salient features of DM
that are important in comparison with other theoretical models of elasticity.

From Chap. 1 it follows that doublet mechanics is not a deductive phe-
nomenological theory stemming only from purely axiomatic principles. DM
is an inductive mathematical model based on a certain physical prototype.
This prototype is, in turn, a discrete physical model of some real solids with a
pronounced microstructure. DM has been developed according to the stages
shown in Fig. 4.1.

1. Real solids with microstructure

2. A discrete physical model

3. A mathematical model (DM)

Fig. 4.1. Stages of developing DM

The first element in Fig. 4.1 —the real solid in question—may be a crys-
tal or a granular array or the Earth’s crust, etc., whose underlying material
units—atoms, grains, tectonic plates—are considerably smaller than the cor-
responding solid as a whole. Due to this feature the material units may be
called particles. The arrangement of the particles in a solid body, i.e., its
microstructure, may vary from regular and almost regular (quasi-regular)
to completely irregular (chaotic). For example, a perfect crystal has a regu-
lar microstructure, an array of tectonic plates of the Earth’s crust spreading
over tens of kilometers usually possesses an irregular microstructure, whereas
granular packings may have any microstructure, from regular and quasi-
regular to chaotic, depending on their genesis.

According to Chap. 1, the second element in Fig. 4.1—a discrete physical
model of DM—is a set of numerous identical small elastic spheres whose
centers form a regular microstructure, a Bravais lattice with the coordination
number m and the valence n = m/2. The couples of adjacent particles A and
B, called doublets create elementary blocks of the discrete microstructure,
their length being 71, @ = 1,2,...,n. The kinematics of the doublets is
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defined by mutually independent particle translations u and rotations ¢.
When passing in a doublet from one particle A to another B,, the vectors
u and ¢ change by Au, and A¢,, respectively. The vectors ¢, Au, and
A¢, engender the doublet microstrains of elongation, shear, and torsion, as
well as the corresponding doublet microstresses of the same nomenclature.
In general, any particle may interact with any of the others. However, in
the present version of DM the interparticle microforces and microcouples
are assumed to be in a sense local®, i.e., confined as a rule to nearest and
sometimes to the next-nearest and third-nearest neighbors. Unlike LD, the
microforces in DM are not necessarily central because of possible microshears.

The third element in Fig. 4.1—a mathematical model—is based on the
assumption that the spatial increments Au, and A¢, may be expanded into
infinite three-dimensional Tailor series. The main consideration is focused on
arbitrary truncations of these series that include the first M > 1 spatial
gradients 8%u and 8%¢ (k = 1,2,..., M). The truncated series result in the
kinematic equations of DM in which the doublet microstrains are expressed
via the gradients *u and 8% ¢ up to the Mth order. In view of the kinematic
equations, the variational principle of virtual work brings about a coherent
set of the motion/equilibrium equations and the natural boundary conditions
written in terms of the doublet microstresses.

The doublet microstrains and microstresses constitute the “language” of
DM. It should be emphasized that the doublet microstresses have a clear
physical meaning They represent the elastic microforces and microcouples of
interaction between any two particles of a doublet. As a consequence, on the
basis of the doublet microstresses, one is capable of revealing such phenomena
that are inaccessible by means of the conventional macrostresses (see, for
example, the Flamant problem in Chap. 8). Being either scalars or vectors, the
doublet microstresses as mathematical quantities are much simplier than the
conventional macrostresses (second-rank tensors). This quality considerably
facilitates the formulation of invariant constitutive equations. As a whole,
the novel concept of doublet microstrains and microstresses plays a crucial
role in making DM different from, and competitive with, the other theories
of elasticity (see, below, Sect. 4.4 and Sect. 4.5).

Let us return to the governing equations of DM. These relations have the
following distinctive features:

1. They are differential.

2. They include the scale parameters 7.

3. The parameters 7, enter into the equations in an explicit form, as the
multipliers (nf~1)8 (k = 1,2,..., M) of corresponding equation terms.

® This term has also another meaning specified below (see Sect. 4.4.1) when applied
to local theories of elasticity as the opposites to nonlocal ones.
6 n for the microshears.
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4. The higher the level of approximation M, the closer DM is to its discrete
physical prototype. A case of large values of M is exemplified below, in
Chap. 5.

5. If we let M — oo, the differential governing equations can be transformed
into the consequent finite difference equations in spatial variables. With
these equations, DM becomes an exact theory of elasticity of the under-
lying discrete physical model. In Chap. 7 we will consider an example of
the derivation and the application of such difference governing equations.

Real solids with microstructure

Assumptions concerning

1. The geometry of the microstructure
2. The physical laws of particle interactions

A discrete physical model

Assumptions concerning

3. The representation of the discreteness of microstructure

3. A mathematical model (DM)

Fig. 4.2. An extended pattern of developing DM

Figure 4.1 and the above remarks show that the road from a real solid
with microstructure to its mathematical model, DM, passes through the set
of three basic assumptions pointed out in Fig. 4.2. As in all the mathematical
models of elasticity, there are certain differences between the fundamentals
of microstructure intrinsic to real solids (they are italicized in Fig. 4.2) and
those assumed in DM. From Fig. 4.2 it follows that DM enables one to get
an exact mathematical description of the mechanical behavior of a solid with
microstructure if the two necessary conditions are satisfied:
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1. A solid in question and its discrete physical prototype coincide.

2. Doublet mechanics is applied in the version with the difference govern-
ing equations of kinematics and statics/dynamics that hold both for the
interior and the boundaries of a solid.

Departures from these conditions lead to some discrepancies between
theoretical quantities—microstrains, microstresses, elastic translations and
microrotations—and their true values. Such discrepancies are different in na-
ture from the errors of measurements, calculations, etc., and might therefore
be called the errors of a mathematical model (EMM). According to the above
necessary conditions, the set of the EMM in doublet mechanics is made up of
two subsets: {EMM}={EMM-1}U{EMM-2}, {EMM-1}n{EMM-2}=0. The
subset {EMM-1}=0 if the first condition is obeyed, and {EMM-2}=0 if the
second condition is satisfied. In the latter case, as noted previously, doublet
mechanics is an exact theory of elasticity of the underlying discrete physical
model. The notion of the EMM is useful in the comparison of DM and other
theories of elasticity.

4.3.2 Comparison with Classical
and Cosserat’s Theories of Elasticity

Although all the governing equations and boundary conditions of DM are
derived and written in terms of the doublet microstrains and microstresses,
generalized macrostresses— “force” O'E;W) and “couple” M,-(M)—are also intro-
duced. In a first approximation of the theory (M = 1), they coincide with
the conventional Cauchy o;; and Cosserat M;; stress tensors; at M > 2 they
have no counterparts.

The generalized macrostresses O'EM) and Mz.(]M) can be computed via the
doublet microstresses by two formulas (1.40) and (1.41) which are briefly
referred to as the macro-microrelations. The macro-microrelations have an
essential feature, if M = 1 their inversion is, in general, impossible since
the number of doublet microstresses is usually more than that of the ma-
crostresses: 0;; and M;;. However, if we know the doublet microstresses we
always are able to calculate the unknown macrotensors o;; and M;;. If we
know o;; and M;;, we are, in general, unable to determine the doublet mi-
crostresses. This means that the doublet microstresses are more informative
than the Cauchy o;; and Cosserat M;; macrostresses and they provide, there-
fore, deeper insight into the mechanical behavior of solids.

The above macro-microrelations enable one to express the equations of
motion of DM in terms of both the doublet microstresses and the generalized
macrostresses org;m and Mi(JM). At M =1, the latter relations reduce to the
differential equations of motion of either the classical or the Cosserat elastic
continua depending on whether the couple macrostresses M;; are respectively
equal to or different from zero.
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As follows from eqn. (1.41), Cosserat’s couple macrostresses M;; vanish
in two cases:

1. The doublet microstresses of torsion m, and shear t, are equal to zero.
As a result, the doublet governing equations of motion and the boundary
conditions do not contain the scale parameters 7.

2. The doublet microstresses m, = 0, but t, # 0. The scale parameters
N = 0 and are therefore eliminated from the doublet governing equations
of motion and from the boundary conditions.

These cases become possible if, respectively:

1. The particle interactions are central (axial). The solid micro- structure
may therefore be called axial. It is also nonpolar (m, = 0) and explicitly
scaleless (1o = 0).

2. The underlying particles interact not only by central, but also by shear
microforces. Hence the solid microstructureis nonaxial. As in the previous
case, it is also nonpolar and explicitly scaleless.

Just for such solids—nonpolar and ezplicitly scaleless—the first approxi-
mation of DM reduces to classical elasticity; otherwise this approximation of
DM reduces to the Cosserat continuum. We thus see that the classical theory
of elasticity is explicitly (and implicitly, as shown below) scaleless whereas
Cosserat’s theory is scale dependent, either explicitly or implicitly. The origi-
nal Cosserat model (Cosserat and Cosserat 1907, Cosserat and Cosserat 1909)
is implicitly scaling. As to the explicit scale version of Cosserat’s continuum
its existence was first established by Granik and Ferrari (1993).

4.4 Micromechanics

4.4.1 Classification

All the theories of elastic solids with microstructure are referred to as
micromechanics. The distinctive feature of micromechanics is nonlocality.
This means that any micromechanical theory incorporates—explicitly or
implicitly—some scale parameters inherent in the solid under consideration.
The parameters may be the sizes and the separations of the underlying par-
ticles, the dimensions of internal microstructural cells, characteristic ranges
of particle interactions, and so on. However, whatever the scale parameters,
they are assumed to be small when compared with the total dimensions of
the solid. By this definition and according to Sect. 4.3.1 and Sect. 4.3.2,
doublet mechanics and Cosserat’s model are nonlocal theories and belong to
micromechanics, whereas classical elasticity does not.

As in the case of lattice dynamics, we will further consider only those
nonlocal theories of elasticity that are based on the harmonic approximation
(see Sect. 4.2.2) and include therefore only linear governing equations as DM
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does. For this reason we avoid the so-called Toda systems, i.e., microstructural
models based on regular lattices with exponential nearest neighbor interac-
tions (Toda 1988). Therefore, talking about micromechanics, we mean only

linear microstructural theories.

Table 4.1. Classification of Micromechanical Theories

Governing
No. | Theories Equations | Nonlocality | Stresses
1. DM Differential | Explicit Doublet microstresses
2. DM Difference | Explicit Doublet microstresses
3. Other theories | Differential | Implicit Tensor macrostresses
4. Other theories | Integral Explicit Tensor macrostresses

Despite a wide variety of the micromechanical theories, they might be
classified with regard to the principal features of (i) governing equations, (ii)
underlying nonlocality, and (iii) underlying stresses, as shown in Table 4.1.
The differences in these three attributes make DM distinct from and compet-
itive with the other microstructural models. To clear up the point we should
take a look at the other nonlocal theories keeping in mind the classification
given in Table 4.1.

4.4.2 Nonlocal Theories of Differential Type

General Remarks. This type of nonlocal theories (No. 3 in Table 4.1) in-
cludes many models developed during a relatively short time, from the end
of the 1950s to the early 1970s, mainly by Ericksen and Truesdell (1958),
Giinther (1958), Aero and Kuvshinski (1960), Grioli (1960), Toupin (1962,
1964, 1968), Mindlin and Tiersten (1962), Dahler and Scriven (1963), Koi-
ter (1964), Mindlin (1964, 1965), Green and Rivlin (1964a), Green (1965),
Eringen (1966, 1968), Jaunzemis (1967, pp. 223-250, 394-425), Rivlin (1968)
and Stojanovi¢ (1972). Being different in many details, these theories have,
nonetheless, one common principal characteristic. They all take into ac-
count not only the first order spatial gradients of displacements (as in clas-
sical elasticity) and those of microrotations (as in Cosserat’s model), but
also the higher order gradients of the kinematic variables. From this view-
point, such models generalize the Cosserat medium, as well as the clas-
sical one, and are therefore referred to as generalized Cosserat continua
(Teodorescu and Soés 1973). In special instances these continua are also
called gradient, structured, oriented, multipolar, micromorphic, Cosserat-
type, materials of grade N, etc.

Due to the higher order gradients of kinematic variables, scale param-
eters are involved in governing equations of the generalized Cosserat the-
ories (GCT) and thus impart to them nonlocal character. But in contrast
with DM, all geometrical parameters of microstructure—scale and non-scale
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ones—enter into the GCT implicitly (see Table 4.1). This feature of the GCT
results in far-reaching consequences and is therefore considered below. In
order to highlight the point and avoid insignificant details, we adopt the fol-

lowing simplifications which do not affect principal differences between the
GCT and DM:

1. The analysis is carried out in a fixed rectangular Cartesian frame of ref-
erence {z;}, 1 = 1,2,3, so that there is no difference between covariant
and contravariant spatial derivatives.

2. A solid in question is assumed to be homogeneous.

3. Thermal phenomena and entropy are neglected.

4. Independent microrotations are not included and the elastic motion of a
solid is described by a displacement field u, as in classical elasticity and
DM. Such a technique is, in general, tantamount to another one used in
most GCT where, instead of the field u, a field of current position vectors
X is employed.

Scaling Role of Displacement Gradients. In the classical anisotropic
elasticity, the energy of deformation E depends on the first order spatial
gradients u; ; = Ou;/0z; of the displacements u;(z, t):

8:/ W(ui’j) dV = % /Eijkl Ui j Ukl dV (4.1)
v

where t is time, V is the volume of a solid, W(u; ;) = %E;jklu;,juk,l is the
energy density, E;ji is the fourth-rank tensor of elastic constants. By analogy
with (Toupin 1962), we assume the existence of a material parameter
having the physical dimension of stress, [ML~!T?], and a second material
parameter pz having the physical dimension of length, [L]. Equation (4.1)
then takes the form

£= % / w1 Eijrivi jug dV (4.2)

v

where E’ijk, are dimensionless elastic constants. In view of eqns. (4.1) and
(4.2), Hamilton’s principle for independent variations du; brings about the

well-known differential equations of motion of classical anisotropic elasticity
(Landau and Lifshitz 1959)

piii = Eijryue ji = 1 Eijriu i, (4.3)

in which p is the mass density and ii; = 8%u;/8t%. The equations of motion
(4.3) do not contain—explicitly or implicitly—any parameters with dimen-
sion length [L}]. This means that classical elasticity is a scaleless (local) theory.

The locality of classical elasticity stems from the underlying expression
(4.1) according to which the energy density W depends only on the first
order displacement gradients u; ;. This fact suggests that a theory can be
made nonlocal by taking into account not only the first but also the second
and the higher order spatial gradients u; j, u; jk, .... Just such a postulate is
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adopted in the GCT. Due to the postulate, eqn. (4.1) is represented in the
generalized form

5=/ W (i ey s Wi kykyse ey Uiy by k) AV (4.4)
VvV

Following Noll’s terminology (Noll 1958), the materials described by the un-
derlying eqn. (4.1) are called simple materials. On the other hand, the ma-
terials pertaining to the more complicated eqn. (4.4) are not simple. If N
is the order of the highest gradient presented as an argument of the energy
density, the material is called a material of grade N. It follows that a simple
material is a material of grade 1, whereas nonsimple ones are of grade 2 and
higher. In other words, a scaleless theory we may write symbolically the fol-
lowing chain of equivalencies: scaleless theories = local theories = theories of
continua without microstructure = theories of simple materials = theories of
materials of grade 1. On the contrary, theories of materials of grades 2 and
more (the GCT) = scale (nonlocal theories. Let us prove these equivalences.

General features of the GCT are illustrated sufficiently well by materials
of grade N = 2. If N > 2 then the analysis becomes much more complicated;
these details are unessential here. Therefore, for the sake of simplicity, we
restrict ourselves to materials of grade N = 2. Since we consider only linear
elastic solids the generalized eqn. (4.4) takes a quadratic form analogous to
eqn. (4.1):

1
£=3 / [Eijktwi,j ve, + 2Eijkap i j uk,tp + Eijkipg i jk tipg) AV (4.5)
\ %4

where E;jrip, Eijripg are additional macroscopic tensors of elastic constants.
By employing the above material parameters p7 and pg, we can represent
eqn. (4.5) as follows:

1 . .
&= 5/ 70 [Eijkl Ui j Ukt + 2p2 Eyjrip Ui j Uk lp
v

+ (H2)* Eijkipg ui,ji ut,pq] av (4.6)

Here E‘;j“p and E‘;jklpq are additional dimensionless elastic constants. On the
basis of eqn. (4.6), Hamilton’s principle for independent variations du; yields
the following equations of motion typical of the GCT:
pii = Eijerurji + (Eijkip — Expijt) k jtp — Eijkipgi,jkpq (4.7)
= W [Eijkluk,jl + 2 (Eijklp - Ekpijl) Uk,jlp
- (ﬂz)2Eijkzqui,jkpq] (4.8)

Equations (4.7) and (4.8) are drastically different from eqns. (4.3) in that
they incorporate not only a parameter y; of dimension of stress, but also a
parameter u; of dimension length. This feature makes the GCT scale (non-
local) theories. We thus see that through the energetically conjugated elastic
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macrotensors Ejjrip and Ejjripg of rank five and more the second-order dis-
placement gradients u; j; introduce nonlocality into the GCT. The same is
true for the higher order gradients of u;.

Comparison with Doublet Mechanics. Under some simplifying assump-
tions of no consequence here, the equations of motion of DM take the form

(see Chap. 5)
pit; = Cijritk jt + Cijkipgtii,jkpg + Cijklpgrstip jkigrs + -+ (4.9)

where Cijki, Cijkipg, - .. are macroscopic elastic tensors of an underlying dis-
crete physical model (see Fig. 4.1). Equations (4.8) and (4.9) have a similar
pattern. In both of them the associated elastic macrotensors E and C carry
information about microstructure. But there is a crucial difference between
E and C, and hence between the GCT and DM to be discussed.

Let us recall that in DM, solids with microstructure are studied on the
basis of their discrete physical models. As soon as a certain physical model of
a solid is chosen, all the information about the microstructure is assumed to
be known. Otherwise it can be obtained by a realistic number of experiments
(see, below, Sect. 4.5). By microstructure, we mean the two following groups
of parameters of a physical model (see Fig. 4.2):

1. Physical parameters: microconstants of elastic interactions between con-
stituent particles.

2a. Geometrical scale parameters: dimensions and separations of the con-
stituent particles.

2b. Geometrical nonscale parameters: directions of the doublet axes.

Given this information, DM enables one to get the elastic macroconstants
C as explicit functions of the above microstructural parameters. Specifically,
for the physical model described by eqns. (4.9), the macroconstants C are
expressed by (see eqn. (5.17))

n o heg
n,
Cijk,y..ky = 24, (;l, ToiTojTaks """ Taky> (4.10)

a=1

where h = 2,4,.... Equation (4.10) yields, in particular,

Cijkl = Ao Z Tai a] ak al’ (411)
Cijklpq = Ao Z 12 Tai a]TakT i7 cyp aq? (412)
Cis = A, a 4.13
ijklpgrs = 360TazTajTak lTapTaqTarTas ( . )

These expressions include the following microestructural parameters of an un-
derlying physical model:
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1. A physical parameter A, which is a microconstant of elasticity (see
Chap. 5).

2a. The geometrical scale parameters 1, (see Sect. 4.3.1).

2b. Geometrical non-scale parameters 7, = 75;€; (@ = 1,2,...,n) which
are the unit vectors of the doublets of a-directions (see eqn. (1.6)), e;
being the unit basis vectors of the fixed Cartesian frame of reference.
The valence n depends on the underlying Bravais lattice and the kind
of particle interactions. In the case of nearest neighbor interactions, the
valence n < 6 regardless of the Bravais lattice.

Equations (4.10) through (4.13) show that, however high the rank of the
macrotensors C, they depend on a small number of the physical and geo-
metrical microparameters. For instance, when the valence n = 6 we have in
eqn. (4.10) only 13 microparameters: A,, six 7, and six T,. In general, the
number Np of the underlying microparameters in DM is limited to the value
Np = 2n + np, where n;, is the number of independent microconstants of
elasticity which varies from 1, as in the above uniconstant version of DM,
to a feasible maximum of 2 to 4. Thus, in the version of DM with nearest
neighbor interactions, there may be no more than N3 = 2.6+ 4 = 16 micro-
constants. It must be noted that in practice the number Np is significantly
less than the maximum NVJ = 16. In particular,

e Np =2 in the case of a uniconstant plane hexagonal lattice (see Chap. 5),
which in a first (scaleless, continuum) approximation of DM is equivalent
to an isotropic elastic continuum with Poisson’s ratio v = 1/4.

e Np = 3 in the case of a biconstant plane simple cubic lattice (see Chap. 7),
which in a first approximation of DM can be reduced to an isotropic elastic
continuum with Poisson’s ratio v = 0 with Np = 2.

e Np = 4 in the case of a triconstant simple cubic lattice, which in a first
approximation of DM can be reduced to an isotropic elastic continuum
with an arbitrary Poisson’s ratio (see below Sect. 4.5.3) with Np = 3.

Once the microparameters of an underlying physical model in DM are
specified, macroconstants of elasticity, such as Cjji and the like, can be
computed by relations similar to eqn. (4.10).

1. Real solids with microstructure

2. A mathematical model (GCT)

Fig. 4.3. Stages of developing the GCT
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Quite the opposite situation exists in the GCT. To elaborate, we should
point out that the GCT are phenomenological in nature. This means that
unlike DM (see Fig. 4.1) they are developed following a simplified pattern
(Fig. 4.3) without underlying physical prototypes. Under such an approach
the parameters of the microstructure are not included in the mathematical
model directly as in DM. The microstructural parameters enter into all of
the GCT indirectly because they are implicitly contained in the macroten-
sors of elasticity F. In other words, unlike the elastic macrotensors Cjji,
Cijkipg, - - - in DM, the elastic macrotensors E;jii, Eijkip, .. ., in the GCT are
unknown functions of the underlying microstructural parameters. It follows
that even though the microstructure of the solid is specified, the macroten-
sors F cannot—in contrast with the macrotensors C—be computed via the
microstructural parameters. There remains only one way to determine the
constants E and that is through experiments.

This way, however, is impeded by an immense number N¢ of elastic con-
stants E required. Indeed, while disregarding all kinds of symmetry rela-
tions peculiar to E, we can take that any additional subscript in the tensors
Eijk,...k, triples the number of subsequent components E;ji, ...k, ,: there are
243 independent components E;jrip, 729 components of Ejjkipg, and so on.
Hence in eqn. (4.8) for materials of grade 2, which are the simplest microstruc-
tural generalization of classical continua, there are Nc = 1000 different elas-
tic macroconstants E. The Mindlin theory (Mindlin 1964), representing the
simplest microstructural generalization of Cosserat’s continuum, has 903 in-
dependent elastic macroconstants. Both these numbers being close to 1000
are incomparably larger than that in DM which does not exceed the value
N}, = 16. So even in the simplest GCT there are many hundreds of elas-
tic macroconstants to be obtained experimentally. Clearly this is practically
impossible, not to mention the additional macroconstants required in more
complex theories of materials of grade three and higher.

Given microstructural symmetry, the number N is reduced. Nonetheless,
it remains too large even at the highest-order symmetry. For instance, in
Mindlin’s isotropic microstructure (Mindlin 1964), Nc = 18 which is much
larger than Np = 3 for the above triconstant cubic lattice reduced to an
tsotropic one in a continuum approximation of DM. For comparison, we can
refer to the complexity of experiments described by Lakes (1995) to obtain
only six Cosserat constants (not Mindlin’s eighteen) using the theoretical
results for a bending of rods (Krishna Reddy and Venkatasubramanian 1978)
and plates (Gauthier and Jahsman 1975).

We should also point out an additional salient feature of the GCT. Sup-
pose for a moment that we are able to get all the elastic macroconstants F in
the theories of materials of grades N = 1,2, 3, etc. Then applying these theo-
ries sequentially, we would be monotonously approaching an exact description
of the elastic behavior of the solid in question. Since such a promising process
is impossible, and since we are forced to stop at materials of grade 2 or even 1,



66 4. Comparison with Other Theories (V. T. Granik)

the theoretical description of elasticity by a GCT remains approximate. Any
abridged GCT represents an approximate theory of a real solid or an exact
theory of its approximate image. By analogy with DM (see Fig. 4.1) we can
thus extend the pattern in Fig. 4.3 and depict it as in Fig.4.4. Although the
second element of the pattern—an approximate image of a solid in Fig. 4.4—
resembles its counterpart in Fig. 4.1, a discrete physical model, they are in
fact drastically different from each other. This difference is important and is,
therefore, to be elucidated.

1. A real solid with microstructure

2. An approximate image of a solid

3. A mathematical model (GCT)

Fig. 4.4. Stages of developing the GCT {an extended pattern)

A discrete physical model in Fig. 4.1 is chosen in accord with a real solid,
before a mathematical model. By an appropriate choice of the physical model,
one is able to draw it closer to a real solid and thus decrease EMM-1 (see
Sect. 4.3.1) and increase the exactness of DM. Unlike the physical model of
DM, an approximate image of a solid in Fig. 4.4 cannot be chosen first—it is
generated automatically after the GCT is selected. Since the only reasonable
GCT can be that of materials of grade [N = 2, the gap between a solid and its
approximate image is frozen and cannot be narrowed by going to the other
more accurate GCT of materials of grade N > 2. The GCT are, therefore,
not amenable to refinement.

The above discussion of the GCT may be summarized as follows:

1. The number of elastic macrotensors N¢ in any GCT is, in general, ex-
tremely large and they cannot be obtained by means of a realistic number
of experiments.

2. Due to the above disadvantage, the GCT are, in general, inapplicable as
a result of the unrealistic number of experiments that would be required.

3. The GCT can be applied only to materials of grade 2 and only in some
particular cases when the above number N¢ can be reduced by considering
relatively simple problems (e.g., plane waves) for solids of simplified forms
(rods, plates, etc.) and isotropic symmetry of microstructure.

4. Unlike DM, the GCT are not amenable to refinement.
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4.4.3 Nonlocal Theories of Integral Type

General Remarks. The integral nonlocal theories (No. 4 in Table 4.1) are
based on the assumption that the forces of interaction between atoms in a
solid extend beyond nearest neighbors. They have a characteristic radius of
action I* > 1, where 7 is the nearest neighbor separation. In general, the
radius !* is unbounded. However, outside a certain limit ! the long-range
interatomic forces drop considerably and may be neglected in accord with a
problem under study. The limit ! depends on the type of constituent atoms
and on the character of the problem in question. It also depends on the
underlying model of the interatomic forces (UMIF).

Information about the interatomic forces is obtained primarily by neutron
spectroscopy (Bacon 1962) which allows one to measure phonon frequencies.
The experimental data are then correlated with the theoretical frequencies
delivered by various UMIF that include different ranges of action R = I /7.
Such a method was applied, in particular, to covalently bonded crystals of
germanium (Cochran 1973). It has been determined that a good fit to the
experimental frequencies can be achieved by a “rigid ion” model” which takes
into account the interatomic forces extending up to the fifth-nearest neigh-
bors, i.e., having the range R = 5. At the same time a more sophisticated
“shell” model® has given quite good agreement with the measurements pro-
vided that only nearest shells and cores interact, i.e., when R = 1. As a
matter of fact, the range R may reach 15 (Cochran 1963), which is probably
an upper bound for any interatomic forces.

Due to the long-range interatomic forces, integral type theories involve the
scale parameter [ and thus assume nonlocal character. The integral nonlo-
cal theories (INT) have been pioneered by Kroner (1967), Krumhansl (1968),
Mindlin (1968), Edelen et al (1971), and Eringen and Edelen (1972, 1973). A
comprehensive exposition of the INT is presented in the work by Edelen (1976)
and in the monographs by Kunin (1982, 1983). We present here a sketch of
the INT that is suitable for a comparison of the INT with other nonlocal
theories of elasticity, viz., DM and the GCT.

Nonlocal Equations of Motion. We begin with the simplest one dimen-
sional discrete model of a crystal. It is an infinite homogeneous linear chain
of identical atoms of mass m located along the z-axis. The n-th atom has
an equilibrium coordinate z,, = nn where 7 is the nearest atom separation
and n belongs to the set Z of all integers. The masses are bonded to each
other by interatomic elastic forces having the range of action from 1 to R.

7 A central force adiabatic model of LD for ionic crystals in which rigid and unpo-
larizable ions interact by Coulomb’s long-range cohesive forces and short- range
repulsive forces with R = 1 (Maradudin et al 1971, pp. 221-225).

8 It includes both the ion-ion and the ion-electron interactions: each ion is regarded
as a core to which a massless shell, representing the outer valence electrons, is
bound by short-range isotropic forces (Bottger 1983, pp. 59-60).
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Displacements of the atoms u(n,t) at any instant of time ¢ are assumed to
be longitudinal, i.e., u(n,t) || z.

The equation of motion of the chain in the particular case with the max-
imum range of action R =1 is

mi(n) = F(n,1) + P(n). (4.14)
The function F(n, 1) is given by
F(n,1) = a(l)[u(n + 1) — u(n)] + a(-1)[u(n — 1) — u(n)) (4.15)

where (1) and a(—1) are the force constants (or, simply, the stiffness coeffi-
cients) of the elastic interatomic bonds having the range of actionr = R =1
and P(n) is an external force acting on the atom n. In the above notation
we have, for simplicity, omitted the argument ¢ from the time dependent
functions u(n,t) and P(n,t).

In the case of R = 2, eqn. (4.14) will include the additional terms F(n,2)
representing the influence of the second range interatomic bonds character-
ized by the force constants «(2) and a(-2):

mii(n) = F(n,1) + F(n,2) + P(n). (4.16)
The function F(n,2) is analogous to F(n,1):
F(n,2) = a(2)[u(n + 2) — u(n)] + a(-2)[u(n — 2) — u(n)) (4.17)

Continuing this process we easily arrive at the equation of motion of the
chain in the general case of arbitrary R

R
mi(n) = Z a(r)[u(n +r) —u(n)] + P(n). (4.18)
r=—-R
The stiffness coefficients a(r) in eqn. (4.18) hold for the elastic interatomic

bonds whose range of action is |r]. Due to the homogeneity of the chain, the
constants a(r) are even functions of r, i.e.,

a(r) = a(=r) = o(lr]) (4.19)
where
r€eZp={-R,-R+1,...,R—1R} CZ, (4.20)

where K is the set of integers. Note that in eqn. (4.18) the constant a(0)
is multiplied by zero and may therefore assume any finite value; we take
a(0) = 0.
In view of eqn. (4.19), eqn. (4.18) can also be presented as the sum of
symmetric terms
R

mii(n) = Z a(r)[u(n+r) = 2u(n) + u(n — r)] + P(n). (4.21)

r=1
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If we now take n' = (n+ r) € Z and introduce new force constants
$(n —n’) so that

d(n—n') = &I(r)=—afr), r#0, (4.22)
$0) = > ofr), (4.23)
r=—R
then eqn. (4.18) yields
n+R
mii(n) + Y ®(n—n')u(n) = P(n). (4.24)
n'=—R
The relations (4.19) and (4.22) yield
d(n—n')=&(n' —n)=d(|n-n'}). (4.25)

As is clear from eqns. (4.22) and (4.23), the new force constants $(n —
n') are different from zero only on Z . Beyond the set Z g, the parameters
&(n — n’) = 0. In other words,

0, In-n|<R
&(n - n') { ? > {n - n'= <k (4.26)

Owing to eqn. (4.26), eqn. (4.24) can be rewritten in the form
mii(n) + »_ &(n —n')u(n') = P(n) (4.27)

which coincides with Kunin (1982, eqn. 2.1.13) where this relation was ob-
tained in a different way. Following the conventional procedure , , (Askar
1985, p. 64, Maradudin 1971, p. 576), we make the transformations m  p,
ni—z €R,n' » 2’ €R, P(n) = g(z), where p is the mass density, g(z)
is the external force distribution, and then replace summation over n’ by
integration over z’ according to

1
ZF(n,n') — /_IF(x,x') dz’. (4.28)

On the basis of eqn. (4.28) and with the argument ¢ restored, eqn. (4.27)
transforms into

!
pi(z,t) + /_I B(z — ') u(2',t) dz’ = ¢(z,t). (4.29)

Equation (4.29) is the same as (Kunin 1982, eqn. 2.4.39) and represents the
key relation in a one-dimensional INT. In accord with eqn. (4.26), the kernel
®(z ~ z') in eqn. (4.29) must satisfy the condition of finiteness

0, |z—-2'| <1
qs(x_zr){ 7:0, Im_;,:;l (4.30)
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Let us recall that the difference equation (4.27) relates to an infinite ho-
mogeneous chain of identical atoms. Therefore the integral equation (4.29)
derived from (4.27) is valid, in general, for only infinite one-dimensional solids.
At the same time, the conditions (4.30) reduce this limitation in that they
make eqn. (4.29) applicable also to finite and semi-infinite solids with the
exception of their boundary regions (layers) of length I.

Boundary Problems. Since any theory of elasticity is primarily intended
for solving boundary problems, so are—or at least should be—all the INT.
Therefore many intrinsic features of the INT can be revealed by considering
the way they deal with boundary problems. Here we touch upon this matter
in terms of a one-dimensional elastic solid occupying the semi-infinite domain
—! € £ < 0. The segment —! < z < 0 and the semi-axis 0 < z < co corre-
spond to the boundary layer S and the interior D of the solid, respectively.
Restricting ourselves to the static case, we rewrite eqn. (4.29) for the region
D as follows

o o)
/ &(z — 2') u(z') dz’ = q(s), zeD (4.31)
-1

where the kernel $(z — z') obeys eqn. (4.30). Equation (4.31) should be
supplemented by boundary conditions. As in classical elasticity, these are of
the two basic forms (Kunin 1982):

!
/4 I'(z,z')u(z')dz’ = qs(z), r€S (4.32)

us(z) = h(z), zeS (4.33)

which apply to the first and the second boundary problems, respectively. In
the above relations, gs(z) and h(z) are external forces and displacements to
be specified on S. The notation of Kunin (1982) has been adopted. The basic
boundary equations (4.31) through (4.33) have been analyzed in detail in
literature on the INT. Some remarkable features of these relations are briefly
considered below.

We begin with the second boundary problem. To solve it, we must adopt a
certain distribution of the displacements us(z), i.e., specify the function h(z)
on the segment S = [, 0]. This is quite a new and difficult requirement that
has never emerged in the other theories of elasticity. Its difficulty becomes
clear while we draw on the analogy between the above basic boundary prob-
lems. In the first one instead of the displacements ug(z), the external forces
gs(z) are to be given on S. This can be done in the usual way by specifying
gs(z) = g # 0 only on the surface of a solid, i.e., at the point z = —I. At the
other points = € (—1,0] of the boundary layer S the forces gs(z) can be taken
equal to zero as assumed in all the theories of elasticity except the INT:

sw={ & 127 (439)
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Let us now suppose for a moment that the boundary displacements ug(z)
are distributed on S similarly, i.e.,

us(z) = h(z) = { g: > - (4.35)
It is easy to see that the distribution (4.35) is preposterous because it de-
scribes the decomposition of the boundary layer S by peeling its surface
z = —l away or pushing it through §. To avoid this senselessness, the func-
tion h(z) on S must be continuous and this is the only one point known for
sure. But there are innumerable continuous functions and no guides on how
to select a unique h(z) among them in advance. Of course one may consider
any continuous function i(z) in the abstract. However, in the most realistic
cases of the second boundary problem—in the contact problems of elastic-
ity (Gladwell 1980, Kikuchi and Oden 1988)—an arbitrary choice of h(z) is
inadmissible. The point is that in a contact problem, the boundary displace-
ments h(z) are given at the surface ¢ = —I, i.e., on a part Sy of the boundary
layer S. On the rest of the region S, at ¢ € (S — Sp) = (—!,0] the function
h(z) is unknown beforehand and can only be found after a contact problem
is solved.

Let us now touch upon the first basic boundary problem described by the
integral equations (4.31) and (4.32) which include quite distinct kernels—
difference $(z—2') and nondifference I'(z, z'). Being nondifference, the kernel
I'(z,z') entails a significant complication of the problem (Kunin 1982, p. 70):

...in the general case the first basic problem is equivalent to the so-
lution of an infinite system of linear algebraic equations. Therefore a
solution in the closed form can be obtained only in the approximation
by the first roots.

These algebraic equations remain infinite at any parameters [, either large
or small, if only | > 7. Meanwhile, as noted above, the interatomic forces
do not span appreciably beyond approximately 15 interatomic spacings 7
so that at worst [ = 157. More feasible values of [ fall within the range
between two and five distances 7. In these cases, the first boundary problem
can be efficiently treated in terms of the difference equations (4.18) or (4.27)
from which the INT are derived. Such an approach does not give rise to the
foregoing infinite algebraic equations and admits not only numerical but also
analytical solutions in the closed form (Granik and Ferrari 1996).

Within the framework of the INT, the one-dimensional boundary prob-
lems have the following features:

1. The first boundary problem can be easily formulated but its solution runs
into serious mathematical difficulties. In many cases, the difficulties may
be obviated by applying the simpler difference equations (4.18) or (4.27).

2. The second boundary problem can sometimes be solved with lesser math-
ematical difficulties but its solution is often impeded by the uncertainty
of the boundary condition (4.33).
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In the cases of two- and three-dimensional boundary problems, these dif-
ficulties considerably increase and along with some additional theoretical ob-
stacles make the INT, in general, intractable. As a result, the applications of
the INT have until now been limited to several elementary one-dimensional
boundary problems and some two- and three-dimensional non-boundary prob-
lems for which lattice dynamics is also applicable.

4.5 Doublet Mechanics: Closure

4.5.1 Advantages

The foregoing discussion has shown several limitations of comparable theories
which are not inherent in DM and give it certain advantages. These advan-
tages allow us to delineate some domains of efficient applicability of DM.
Before doing this it is useful to make a summary of the theories considered
above in comparison with DM.

Lattice Dynamics

o Lattice dynamics is a micromechanics of infinite elastic crystals and is,
in general, unable to deal with boundary problems which are the main
concern of all the theories of elasticity including DM.

Classical Theory of Elasticity

e Unlike DM, classical elasticity disregards the discrete nature of solids and
is therefore inapplicable for studying scaling microstructural phenomena.

Cosserat’s Theory of Elasticity

o If the microstructure is nonaxial, then a first approximation of DM coin-
cides with Cosserat’s elasticity. Such an approximation is often insufficient
to describe scaling effects fairly well and can be improved by the second
and higher approximations of DM that are completely different from the
Cosserat theory.

o If the microstructureis axial, then Cosserat’s theory reduces to the scaleless
classical elasticity and therefore, in contrast to DM, fails to represent scale
phenomena.

Nonlocal Micromechanical Theories of Differential Type

o These theories take into account the microstructure of elastic solids and
should, in principle, be able to study scale phenomena. Unlike DM, how-
ever, they include a great number of phenomenological macroconstants
that cannot be determined by a realistic number of experiments. Due to
this obstacle, differential type theories are impractical except some simple
cases.
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Nonlocal Micromechanical Theories of Integral Type

¢ In contrast to all other models of elasticity, the integral type micromechan-
ical theories are based on the assumption of long-range elastic interactions
of constituent particles. However, an overcomplicated mathematical tech-
nique and the uncertainty of the displacement boundary conditions make
these theories either needlessly difficult (in the case of one-dimensional
boundary problems) or even generally intractable (in the cases of two- and
three- dimensional boundary problems).

The Theories of Elasticity as a Whole

o All the theories of elasticity, except DM, deal with various tensors of
stresses. The stress tensors make real sense only with respect to continua
in which the action of a force applied at any internal point is transmit-
ted in all directions. On the other hand, the action of a force applied at
any material particle of a solid with discrete microstructure is transmitted
only in specified directions, from one constituent particle to another. This
fundamental feature of discrete microstructure cannot be described within
the framework of the tensor-based theories of elasticity.

e In contrast to these theories DM employs a technique of doublet mi-
crostresses that, being either scalars or vectors, adequately represent mi-
croforces and microcouples of the directional particle interactions. In com-
parison with the stress tensors, the doublet microstresses constitute a more
precise tool which imparts to DM a deeper insight into the mechanical be-
havior of solids with microstructure and thus makes it possible to discover
new micromechanical phenomena.

4.5.2 Domains of Efficient Applicability

Below we outline some domains of efficient applicability of DM. We do not,
however, specify the microstructural solids for which they apply. This speci-
fication is considered later, in Sect. 4.5.3. Thus we have

In any approximation of DM

1. Development of new micromechanical versions of the following theories
1.1. Viscoelasticity
1.2. Plasticity

In a first (local) approximation of DM

If the number of doublet microstresses Npy is larger than that of macrostre-
sses Ntm (Nom > Nrum):

2. New solutions of boundary problems in terms of doublet microstresses
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2.1. Dynamic boundary problems
2.1.1. Vibrations of soil bases (foundations)
2.1.2. Propagation of surface waves
2.2. Static boundary problems
2.2.1. Strains and stresses in soil bases (foundations)
New solutions of stress concentration problems. Determination of doublet
microstresses
3.1. Around holes, cavities, notches, and the like
3.2. Around inclusions
3.3. Under punches, beams, shells, etc.
3.4. At the tips of cracks
Transfer from doublet microstresses to conventional macrostresses
4.1. Studies of macrostresses unobtainable by the tensor-based theories
4.2. Computations of macrotensors of elasticity via parameters of mi-
crostructure
4.3. Solutions of homogenization problems

jij NDM = NTM:

5.

If the problems #2 and 3 have already been solved on the basis of ma-

crostresses, then

5.1. Transfer from macrostresses to doublet microstresses

5.2. Studies of scaleless microstructural phenomena in terms of doublet
microstresses

If the problems #2 and 3 have not been solved on the basis of macro-

stresses, then

6.1. Solutions of the problems #2 and 3

If Npm 2 Nrwm:

7.

10.

11.

Development of new failure criteria on the basis of doublet microstresses.

LIn nonlocal approximations of DM

Development of new failure criteria including not only the doublet mi-
crostresses but also their spatial gradients and scale parameters of mi-
crostructure.

Solutions of the boundary problems #2 in view of scale parameters of
microstructure.

Solutions of the stress concentration problems #3 in view of scale pa-
rameters of microstructure.

Development of a new version of fracture mechanics using solutions of the
problems #10 (here, the stress concentration factor is a finite quantity,
in contrast with all the local theories of elasticity).
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4.5.3 Real Solids, Physical Models and Microstructural
Parameters

In Sect. 4.4.2 we considered one of the most influential features of DM: a small
number Np of microstructural parameters involved in any approximation of
this theory. In the case of nearest neighbor interactions, the number Np <
N}, = 16 is even less than the maximum number of macroconstants NS = 21
in classical anisotropic elasticity (CAE). Just as the number Ng in CAE
decreases owing to various kinds of symmetry, so does V) in DM. As a
result, in most realistic cases of solids with microstructure, the number of
microparameters of DM varies over a narrow range 2 < Np < Nj = 59,
Determination of these microparameters is a vital part of DM and deserves
a special consideration. In this chapter we outline conceptual facets of this
momentous problem.

A solution of the problem starts from choosing a discrete physical model
of DM that has to represent a real solid (see Fig. 4.1). This step is not
unique. It is intrinsic to all microstructural theories including in particular
LD. Referring to LD makes it easier to understand the way of transferring
from real solids to their physical models.

For lattice dynamics, the real solids under study are crystals, objects
of great complexity to tackle without making decisive simplifications. Lat-
tice dynamics adopts them by introducing tractable physical models of real
crystals. Different models make different compromises that is why there are
a variety of such models in LD, from the simplest Born-von Karméan elas-
tic chain of atoms with short-range interatomic forces (see eqns. (4.14) and
(4.15)) to more sophisticated models such as a “rigid ion” model with short-
range repulsive and long-range attractive microforces, a “shell” model (see
Sect. 4.4.3), a “breathing shell” model (Madelung 1978), and so on.

These examples clearly show that the choice of a suitable physical model
is not a matter of philosophy—it is a matter of experimental test. And as
such, it is dictated first and foremost by the obvious test requirements:

1. Parameters of a physical model have to be amenable to either direct or
indirect experimental determination.

2. A mathematical theory based on a physical model has to be capable of
describing experimental phenomena.

3. The theory should be able to predict new phenomena supported then by
new experiments.

Let us now return to DM. The basic physical model of DM (see Chap. 1
and Sect. 4.3.1) is not a “frozen” object—it admits a variety of particular
variants with different geometrical and physical microstructural parameters.
This variability enables DM to deal with a number of real solids possessing
microstructure of different scale, from crystals to granular packings and arrays

® The same range in CAE includes elastic solids possessing isotropic (Ng = 2),
cubic (Ng = 3), and transversely isotropic (Nc = 5) symmetry.
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of tectonic plates in the Earth’s crust. Each of these solids can be represented
by a variant of the basic physical model of DM. Whether the variant is
suitable or unsuitable for a given solid ought not to be decided a priori—
this question can be resolved only a posteriori, in terms of the above test
requirements. Before this step is taken, the physical model chosen should not
be ruled out. In general, only experience will exactly determine the kinds of
solids and the scope of problems that are analyzable by DM.

We can draw an important conclusion: since classical elasticity and
Cosserat’s theory are particular cases of DM, all the solids and problems
they study can also be treated by DM. An example will make it clear.

Let us take a variant of an elastic isotropic continuum characterized by the
Lamé macroconstants A and g. Within the framework of classical elasticity,
this continuum is a reasonable physical model of certain real solids. On the
other hand, as shown below, a discrete physical model of DM with a simple
cubic microstructure described by three independent elastic microconstants:
Ao, B, and I,,, and a scale parameter 7 (the interparticle separation) can be
reduced in a first approximation of DM to an isotropic continuum with only
two independent microconstants A, = A+2u, I, = 2u, B, = A,—I, = ), the
scale parameter 77 being equal to zero. It follows that for the same real solids,
this particular physical model of DM is no less reasonable and no doubt more
general than the classical isotropic continuum. We thus can transfer from
classical elasticity to DM and consider all the isotropic scaleless continua as
a particular case of discrete solids that possess scaling cubic microstructure
with the elastic microconstants A, = A + 2u, I, = 2u, B, = X and the scale
parameter n > 0.

There might be an objection that real isotropic media are those of chaotic
microstructure which is far from any kind of cubic symmetry. But this ob-
jection is unessential because, in comparison with classical isotropy, cubic
symmetry leads to the same macrostresses in a continuum approximation of
DM. Moreover, in the same approximation, DM can render additional impor-
tant information: microstresses. This information is inaccessible to classical
elasticity and alone gives DM a significant advantage. Furthermore, if we
apply DM in scale M > 1 approximations then the influence of the scale mi-
croparameter 1 on the elastic behavior of a solid in question will be revealed.
If the cubic (or any other physical) model satisfies the above test requirements
then its application to any elastic solid treated by classical and Cosserat’s
elasticity is also completely valid and, in addition, much more informative.

Classical elasticity is applicable to crystals when modeled as anisotropic
continua. Therefore DM being a scaling generalization of classical elastic-
ity has at least adequate reason for applying to crystals in view of their
discrete nature. This is, however, possible under some limitations: (i) the
crystal structure should be a Bravais lattice and (ii) the microforces of in-
teraction between atoms have to be short-range or moderate long-range ex-
tending respectively to nearest or next-nearest and third-nearest neighbors.
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Despite certain deficiencies (Maradudin et al 1971, pp. 68-77), crystal mod-
els including a small number of force constants, from one to three, continue
to be an efficient tool for studying lattice vibrations. In particular, on the
basis of a simple cubic lattice with one force constant, a theory of surface
phonons in superlattices was developed (Dobrzynski et al 1984). Even the
simplest Born-von Kérman chain model with nearest-neighbor interactions is
used efficiently to study rather subtle physical phenomena in crystals, e.g.,
zone-folding effects (Barker, Jr. et al 1978). Since LD is, in general, inappli-
cable to boundary problems of elasticity, DM, in the version with up to third
nearest neighbor interactions, can be successfully applied to these problems
for certain crystal structures. Two such applications are presented in the
article (Granik and Ferrari 1996) and in Chap. 7 of this book.

There is also a special kind of microstructural solids, the so-called granu-
lar media, whose constituent particles interact only through nearest neighbor
contact microforces. Granular solids display both elastic and inelastic prop-
erties. The latter may often be neglected. In this case, granular media can
be considered as elastic solids with microstructure and efficiently treated by
DM (Granik and Ferrari 1993).

It should be noted that for many decades elastic granular solids have been
the subject of inquiry in numerous theoretical works carried out on the basis
of discrete and continuum approaches. A comparison of DM with these works
is of interest and deserves a detailed analysis. This analysis, however, would
extend beyond the scope of this chapter. A brief discussion of this matter can
be found in Chap. 5 and in the article by Granik and Ferrari (1993).

In connection with granular media, it is worth emphasizing one more ad-
vantageous feature of DM. It stems from the fact that DM is developed as a
general theory covering different microstructural solids under any mechanical
actions rather than an ad hoc theory for some particular solids at some par-
ticular mechanical actions. It follows that DM can provide more information
than any comparable ad hoc model. As an illustration, let us take a look
at a boundary problem for a granular semispace loaded by a vertical con-
centrated surface force. A solution of the problem by means of DM is given
in Chap. 8. The solution has revealed a “conical” transmission of a surface
load into the depth of the granular array. This phenomenon is well-known
from experiments but is completely concealed from all the tensor-based the-
ories of elasticity. That is why several ad hoc models have been developed
that are capable of describing this specific phenomenon (Misra 1979, Cundal
and Strack 1979, Li and Bagster 1990, 1993, Liffman et al. 1992, Beranek
and Hobbelman 1992, Meek and Wolf 1993). Unlike DM, the ad hoc models
are unable to represent other essential phenomena in granular media such as
Rayleigh waves.

The capability of studying wave propagation in discrete solids can make
DM a promising tool in geophysics and seismology. The point is that due to
faults, the Earth’s crust is divided into numerous tectonic blocks which are on
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the order of 15 to 25 km in length and depth (Robinson and Benites 1995).
There are other discontinuities such as stress-induced cracks, preferentially
oriented pores and impurities {(Anderson et al. 1974, Garbin and Knopoff
1975, Hudson 1982, Crampin 1981, 1984, Fraser 1990). Due to these discon-
tinuities, the Earth’s crust can be considered as a solid with a pronounced
stochastic microstructure and as such can be dealt with by DM. Doublet Me-
chanics can be especially useful in a study of waves of short wavelength. These
waves being most sensitive to the particulate structure of the Earth’s crust
exhibit some phenomena (e.g., strong scattering effects) that so far have not
been completely accounted for by continuum scaleless theories (Pollitz 1994).

Let us now turn to microscopic parameters of DM. We suppose that for
a given real solid, a particular variant of the basic physical model of DM
is chosen and hence the kind and the number of microparameters are fixed.
If unknown, they have to be determined by using experimental information.
Here we will exemplify a possible approach to a solution of the problem. As
a physical model we select a simple cubic microstructure with independent
translations u and rotations ¢ of constituent particles. Further analysis is
based on the governing equations of DM presented in Sect. 1.4 (see also
Sect. 4.3). In order to emphasize conceptual facets of the problem, we omit
insignificant details.

Neglecting doublet microstresses of torsion (m, = 0), we consider a non-
polar microstructure in which only doublet microstresses of elongation p,
and shear t, remain (o = 1,2,3). For these microstresses, we take a vari-
ant of constitutive microequations with three independent microconstants of
elasticity Ao, B, and I,:

| ! Ao Bo Bo €

P2 = Bo Ao Bo €9 (436)
Ps3 Bo Bo Ao €3

tl Io 0 0 Y1

tz = 0 Io 0 Y2 (437)
t3 0 0 I Y3

where € and 7y are doublet microstrains of elongation and shear, respectively.
It is easy to show that in a first (scaleless, continuum) approximation of DM,
eqns. (4.36) and (4.37) along with the macro-microrelations (see eqns. (1.40)
and (1.41)) bring about the following constitutive macroequations relating
macrostresses 0;; to macrostrains &; i

- - ¢

011 Ao Bo Bo 0 0 0 €11
0929 B, A, B, 0 0 0 E22
033 _ Bo Bo Ao 0 0 0 £33
o (Z] 0 0 0 L 0 0 ) e (4.38)
23 0 0 0 0 Io 0 E23
031 | 0 0 0 0 0 Io 1 U £31
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Equations (4.38) characterize a linear elastic cubic continuum. We thus see
that the elastic microconstants A,, B, and I, are at the same time elastic
macroconstants. This fact greatly facilitates the problem because macrocon-
stants can be determined without special subtleties peculiar to microtests,
just in terms of rather “rough” and simple macroscopic experiments. On the
other hand, if the solid in question is a cubic crystal, we can simply borrow
the values of A,, B, and I, from experimental crystal data. In particular,
for a cubic crystal of NaCl we have (in 10!! dyne/cm?) A, = ¢;; = 5.73,
B, = ¢12 = 1.12 and I, = ¢44 = 1.33 (Catlow et al 1982, p. 147, Table 3). In
the case of isotropy, eqns. (4.38) are transformed into (Gould 1983)

011 1 2u 4+ A A A 0 0 0 €11
a99 A 2u4 A A 0 0 0 €922
o | _ | A 2u+Xr 0 0 0 | ) ess
o (T 0 0 0 24 0 0 |y en (439
023 0 0 0 0 2/1 0 £23
031 L 0 0 0 0 0 2[1 j €31

where p and X are the Lamé constants. The comparison of eqns. (4.38) with
eqns. (4.39) yields

Ao=2u+) L =2 Bo=A.—-I =)\ (4.40)

The relations (4.40) reduce the problem of determining A, B, and I, to
the problem of getting the Lamé constants. The latter problem presents no
special difficulties.

Besides the physical parameters A,, B, and I,, the cubic microstructure
is characterized by the geometrical scale parameter 7, the interparticle sepa-
ration. If the real solid in question is a crystal then 5 can be found similarly
to Ao, B, and I, from experimental crystal data. For example, n = 2.82A
for a crystal of NaCl (Catlow et al 1982, p. 147, Table 3). In all other cases,
when a microstructural solid is not a crystal, the scale parameter n can be
obtained in terms of dispersion relations. Let us touch upon this method.

For simplicity we consider the case of one-dimensional deformations of
the elastic cubic structure. In this case, the governing equations of DM can
easily be reduced to the difference equation (4.21) of longitudinal vibratiens
in which the range of action R = 1 (for nearest neighbor interactions) and
a(1) = Aon. Assuming a longitudinal coordinate z, = nn and taking u(z,) =
Un, P(n) = 0, we bring eqn. (4.21) to the form

min, = Ao)(Unt1 — 2Up + Up—1). (4.41)

Equation (4.41) admits a solution of the type of a plane steady-state wave
propagating along the z-axis:

u, = Uexpli(kz, — wt)] (4.42)

where U, k and w are the wave amplitude, the wavenumber and the angular
frequency, respectively. Inserting u, from eqn. (4.42) into eqn. (4.41) and
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taking into account that m = pn®, r,41 = z, £ 1, we come to the dispersion
relation

2 Ao .
w= -r;\/;sm(knﬂ). (4.43)

This relation also allows one to obtain the phase velocity V, = w/k. In view
of the identity k = 27/, A being the wavelength, eqn. (4.43) yields

_ _ , sin(mn/A)
Vo = wlk= Vo DR

where V, = /Ao/p is the velocity of sound, i.e., the velocity of the wave
when the wavelength A — oo or the scale parameter n — 0. As seen from
eqns. (4.43) and (4.44), the frequency w and the phase velocity V, depend
on the scale parameter n: w = w(n), V, = V,(n). Similar dependencies at
different A can be obtained experimentally. The measured data of w and V,
can then be compared with the theoretical curves w = w(n), V, = V,(n) with
a varying degree of accuracy which depends on the values of 7. At the same
time, a least square fitting procedure enables one to find the only value of 5
that makes this reproduction as close as possible. This value just represents
the most plausible scale parameter 1 sought for.

It is worth recalling (see Sect. 4.4.2) that once the above four microcon-
stants: Ao, Bo, I, and 7, are determined no additional constants are needed
for the cubic solid. The parameters A,, B,, I,, n are not only necessary but
also sufficient to solve any problem within the framework of DM, at any ap-
proximation of the theory. In this connection it is instructive to present here,
without derivation, one of the differential equations of motion of the cubic
solid in the M-th arbitrary approximation of DM (M > 1) which includes
the parameters A,, B,, I, and 7 only:

- yy et D L) Aot

k=1(¢=1

(4.44)

+ 1 (Ul 2|s+¢ + Uy 3[n+() + B, (U2,1Qn,2|c + u3,1|n,3|()]

K—

~———Ty(n) (¢3 2| — P2 3|n)

1

M —1)%-
Z I'e(n) (¢3,2|n+( — daajete)  (4.45)

k=1¢=1

i

+

o | 5

where
ot 6"+<u
Fn(n) = I_S—!-, up,qlh‘,,f‘lc ana ( ’

Other symbols were given in Chap. 1. For the displacements us and u3, equa-
tions of motion are similar to eqn. (4.45). If the elastic microconstants A,, B,

(p7Q7r =:1a2,3)- (4u46)
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and I, obey eqn. (4.40) then, in a first approximation M = 1, eqn. (4.45) is
reduced to the Lamé equation for classical isotropic elasticity (Gould 1983):

piln = puy pjz + (A + )i i1 (4.47)
or, in conventional notation,
piil = HU) pp + (A + p)up,pl. : (4.48)
Let us note that eqn. (4.48) is obtained in view of the relations
1 1
¢ = 5("1,3 -u31), 3= 5(“2,1 —up2) (4.49)

which follow from the first approximation of the couple equations (1.34)
(omitted here for brevity).



5. Multi-scale, Plane Waves

V.T. Granik and M. Ferrari

5.1 Introduction

In this chapter some dynamical problems in doublet mechanics are consid-
ered which incorporate multi-scale effects. In particular, the plane propaga-
tion of elastic waves in granular media is analyzed, with reference to a spa-
tial arrangement of the particles that results in macroscopic-level isotropy
in the plane of propagation and particle displacement. The topic is mo-
tivated by experiments that establish the dependence of wave frequen-
cies and velocities on the parameters of granular microstructure, includ-
ing porosity (Urick 1948, Hampton 1967), coordination numbers and con-
tact bonds (Trent 1989), particle sizes and interparticle distances (lida 1938,
Matsukawa and Hunter 1956). Theoretical approaches to the modeling of dis-
persion of plane seismological elastic waves have been proposed that incorpo-
rate some characteristic of the Earth’s crust. Among these are multilayered
structures (Haskell 1953), anisotropy (Crampin and Taylor 1971), gravity
(Ewing et al 1957), the curvature and stratification (Sezawa 1927), radial in-
homogeneity (Saito 1967), vertical discontinuities (Malischewsky 1987), etc.
Other than anisotropy, these properties induce surface wave dispersion. How-
ever, the quantitative results—when provided—are in strong disagreement
with observations.

In this chapter the theory of doublet mechanics is shown to predict strong
dispersion, especially at shorter wavelength. However, neither this chapter
nor the presented theory are dedicated to the detailed study of seismological
phenomena: the emphasis is on the development of a full multiscale theory,
applicable, in principle, to very different materials and microstructural di-
mensions. Consistent with this objective, doublet mechanics is shown below
to be fully compatible with crystal dynamics and continuum elastodynam-
ics, yet intrinsically richer than the latter in that it affords the modeling of
dispersion and retardation phenomena. Both of these effects are scale-related
and disappear in the continuum or the infinite wavelength limit. Doublet me-
chanics is compatible with lattice dynamics since these phenomena are also
predicted by the latter theory.

However, doublet mechanics differs from lattice dynamics in several re-
spects. For instance, the macroscopic elastic constants in DM are obtained
through considerations of shear, torsion and elongational micromoduli as well
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as geometry of the underlying lattice. In lattice dynamics, one usually con-
siders the many-body interactions in order to obtain the full set of macro-
scopic elastic constants as the pairwise interactions between two particles
only provide some of the elastic constants (Askar 1985). Secondly, in dou-
blet mechanics, through the introduction of microstresses one can satisfy the
boundary conditions imposed on the surface of the body unlike the case in
lattice dynamics where the boundary conditions, when specified, are assumed
to be of periodic type (Maradudin et al 1971). Finally, the introduction of mi-
crostresses and constitutive relations at the microscopic level makes it pos-
sible to develop a general thermodynamical theory of doublet mechanics in
which constitutive reductions are performed and various thermal fields are
introduced which have counterparts in continuum thermoelasticity as shown
in Chaps. 2 and 3. In lattice dynamics, the forces between the particles are
directly specified and, as a result, such considerations do not arise at the
microscopic level. More on the comparison between doublet mechanics and
other theories was presented in Chap. 4.

Conventional studies of elastic wave propagation in particulate solids have
neglected particle size and scaling effects. In well-developed branches of solid
mechanics, such as soil dynamics (Prakash 1981), seismology (Bath 1968) and
geophysics (Pilant 1979), despite the macroscopic evidence of the particulate
nature of the media under study, this approach has been justified by treating
only dynamic phenomena with wavelengths that are much larger than the
particle dimensions.

The same reluctance to address scaling effects is also pervasive in the liter-
ature on granular media, from the earliest theories (Takahashi and Sato 1949,
Takahashi and Sato 1950, Gassmann 1951) to contemporary models (Stout
1989, Wijesinghe 1989, Agarwal 1992, Ostoja-Starzewski 1992, Slade and
Walton 1993).

In view of its multi-scale nature, and its capability to bridge the discrete
and the continuum viewpoints, doublet mechanics offers a natural framework
for the discussion of scaling effects in the dynamics of particulate and granular
media as is illustrated in the subsequent sections.

5.2 Dynamic Scaling Equations

A simplified version of the doublet mechanical governing equation is now
derived, with the purpose of studying mono- and bi-dimensional propagation
phenomena. It is assumed that the dynamic process is isothermal and the
volume forces vanish. In addition, the particle interactions are assumed to
be longitudinal (central), so that the shear and torsion microstresses vanish
everywhere in the body:

Mei = tai =0. (5.1)



5.2 Dynamic Scaling Equations 85

As shown in Sects. 1.4.3 and 4.3.2, the granular medium with such proper-
ties is nonpolar: it bears only conventional (macro)stresses o;; and does not
sustain couple (macro)stresses M;; which are identically equal to zero in the
volume V.

Moreover, the central interactions are assumed to be local, i.e., the elon-
gation microstress p, in an arbitrary doublet (A4, B,) depends only on its
elongation microstrain €, and is independent of microstrains €g(3 # a) in
the other doublets (A, Bp) originated from the same particle A. Such an inter-
action arises, for instance, if two particles of any doublet are supposed to be
rigid and bonded by a small elastic spring. This assumption of local interac-
tion formally means that in the constitutive relation developed in eqn. (2.78)
for a nonpolar medium under isothermal conditions, the micromoduli of elas-
ticity Aap = Aq dap results in

Pa = Ag€qa. (5.2)

Finally, if the local interactions are homogeneous, i.e., all the micromoduli of
elasticity A, = A, = constant for any a = 1,2,...,n then (5.2) yields

Da = Ao €ay (53)

where A, is a microconstant of elasticity. Within such a set of assumptions,
it is noted that this single microconstant suffices to fully define the physical
properties of the granular medium in question.

Assumption (5.1) identically satisfyies the conservation of moment of mo-
mentum (1.56). Substituting relations (5.1) and (5.3) into the balance of
linear momentum (1.55) we obtain the scale dynamic equations in terms of
the displacements u;(z;,t):

n M

—4o ) Y ()" n". To(w) Tai Taj Z T, w(w) O uj = pil;,(5.4)

a=1 k=1

where the indices ¢,j = 1,2,3. To sxmphfy these equations we rewrite them
as

n
— A, Z 7-0] Z E( ].)'e "0‘ ' ,,(K.H‘)a Al u; = pﬁ,‘. (5.5)
a=1 k=1 pu=1
Let us now take thesumk +p =4. Since1 <k < Mand 1 <p < M,
we have 2 < § < 2M. For example, if M = 1, then § = 2; if M = 2, then
0 = 2,3,4; and so on. Denoting R = 2M, we fulfill identical transformations
of the internal double sum in eqns. (5.5):

M M K+u—2
Y (1) T T 0744
k=1 p=1 :
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= Z 7721 2T0(5) ol Uj Z K,'((ts 1_)'; (5.6)

The last sum in eqns. (5.6) may be computed in terms of Newton’s binomial
formula
)

(a+b)° = go ,Tv(a_a'_'ﬁ ar b= (5.7)

which at a = —1, b =1 gives

Yo (-pF 7;'_(62'——;;—)' =0. (5.8)

£=0
Identity (5.8) may be rewritten as follows:

6 K
Z( )" _N), = 5!2;—!% (5.9)

S
= 4 Z_:l N!((;—l_)n)! +S (5.10)
= 0, (5.11)

where S = 2 if § is even, and § = 0 if  is odd. The relations (5.10) and
(5.11) yields
§—-1
D _ (8
X_: k(6 — k) (6!)‘ (5:12)
K=1

On substituting the identity (5.12) into eqns. (5.6) and then into eqns. (5.5),
we finally obtain the following three basic equations of scaling microdynamics:

n R 5—2
piii =240 Y 1T Y 1'(;—,—:11,(5) 8% u;. (5.13)
a=1 §=24,.

These equations include the scaling parameters 1, in an explicit form. In the
first (or nonscale) approximation, i.e., for M = 1, the scaling parameters 7
vanish, and eqns. (5.13) reduce to

02 u; o2 u;
p atZ -—A Z T T T ak ﬂl amkaw, (5.14)

For clarity, the multi-scale equations (5.13) may be written in extenso as

&%u; -0 o u;
p——at2 = 24, Z Tai 01] (2’ Tak alawkawl

4,,.
na o T 7. T 6 u]
4! Tak Tat Tap Taq Oz Oz Oz 0xg

+ —
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7731 © .0 ,_,0 ,0 0 _O a6uj
2T Tor Tay Tag Tap T,
1 Tak Tal Tap Tag Tar Tas o 0z, 8z, Oz, Oz, Oz,
+-- ) , (5.15)
or, in an explicit tensor notation,
R=2M
8% u; O%u;
= C:: A M 5.16
where
n nn,—Z
Cijkyo ke =240 ‘;, ToiTaj Taky **" Tak. (5.17)
a=l :

are tensors of rank x + 2 that correspond to generalized moduli of elasticity.
Formula (5.17) shows that these moduli comprise micro-level constitutive
information (A, ), as well as microstructural parameters (7q,75;). In the first
approximation, the scaling dynamic equations (5.16) are form-identical with
the non-scaling equations of the conventional theory of anisotropic elasticity
(Pilant 1979)

O%u; 8%u;
= Ciipg — .
Potr = "M gy b
Within the doublet mechanical context, however, the stiffness tensor is

(5.18)

n
C.'jk[ = Ao Z Tao" sz T;k T:;‘. (5.19)
a=1

Equations (5.18) and (5.19) are equivalent to eqns. (5.14). There is a major
difference between the conventional understanding of eqn. (5.18) and its dou-
blet mechanical counterpart; the tensor C;jz in eqn. (5.19) is invariant with
respect to any permutation of its subscripts, including C;;z; = Cir;ji and thus
possesses only 15 independent constants: Cja3;, Ci232, Ci23s, Cio11, Ci212,
Ci222, Ciai1, Ci313, Ci3a3, Ca2azz, Caazs, Casas, Ci111, C222, and Cszss. By
contrast, the number of independent constants in the conventional theory of
anisotropic elasticity is 21.

In order for an arbitrary anisotropic elastic granular medium to be com-
pletely characterized by 15 independent constants it is sufficient that the mi-
croforces of interaction between constitutive particles {granules, molecules,
etc.) be central, local, and homogeneous in the sense specified above. It can
easily be shown that the first two conditions are also necessary. The third
condition is not necessary and was adopted here because it has eventually
led to the simplest form of scaling equations (5.15)-(5.17). In the case of
isotropy, the elastic features are characterized by one macroconstant of elas-
ticity (see below eqn. (5.68)). We further remark that a and similar result
is obtained using the approach of lattice dynamics where the interparticle
forces are assumed to be central (Askar 1985). However, in DM, using the
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above governing equations, it can also be shown that the tensor Cjji; has
21 independent components if the interparticle microforces are only central.
The basic equations of scaling microdynamics become then much more com-
plicated than eqns. (5.15)-(5.17). The proofs of the above statements are
omitted for brevity. The reader interested in the historical discussion of the
multiconstancy versus rariconstancy is referred to (Todhunter 1886, articles
921-934).

Equation (5.17) may be interpreted in two, quite different manners.
In the first, the microstructural parameters Ao, 17, and 7; are assumed
known, and formula (5.17) enables one to compute the microstructural ten-
sors Cijk, ..k, and then apply the dynamic equations in explicit tensor nota-
tion, eqns. (5.16). However, computing the tensors Cjjg, ...k, is not a necessary
step and may be avoided by inserting the known microstructural parameters
directly into the dynamic equations (5.15). Alternatively, if the microstruc-
ture of a granular body is unknown, the elastic moduli Cjjk,...x, must be
considered as some macroscopic parameters of the body to be determined
by special macroscopic experiments. Nevertheless, based on the underlylng
theory, the experimental variables are only Ao, 7a, 73;

Thus, using the doublet microstructural approach, we have first obtained
the dynamic scaling equations (5.15)—(5.17). These equations not only enable
us to study dynamic scaling problems for granular and particulate materials
but also allow us to do this, if necessary, from two quite different viewpoints:
microscopic (eqn. (5.15)) and macroscopic (eqns. (5.16), (5.17)).

5.3 Plane Elastic Waves in Granular Media

p—1 P p+1 .
W= WA W))W ) —
n n | »n n

L e T g -t

Fig. 5.1. A linear monatomic lattice

We begin by studying the propagation of waves in a one dimensional lat-
tice and subsequently consider plane waves in granular media. To this end,
consider a linear monatomic lattice with the valence n = 1 and internodal
distance 1, = n = constant (Fig. 5.1). The only lattice direction which cor-
responds to a = 1 is taken to be parallel to the Cartesian axis ) = z so that
the lattice axis T3, = e;. Since 73 = 72, e;, it follows that

mp=1and 75,=0if a#1 or i#1. (5.20)
The relations (5.17) and (5.20) then imply
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QA 2Rl Hi=j=k=..=ke=1

Ciibr.ke = { 0 otherwise. (5.21)
In view of eqn. (5.21), the dynamic equation (5.16) becomes
2 R=2M k—2 ax 24 R=2M ® g
28 o4, " 0% _ 24 y L= (5.22)
o2 k! fz=  n? k! Oz*®

K=24,... k=24,...

in which u = u; is a node displacement along the z-axis.

It is of interest now to demonstrate that the differential equation (5.22)
actually contains the difference equation employed in solid state physics for
wave propagation in a monoatomic lattice. To this end, the limit of the right-
hand side of eqn. (5.22) is taken for M — oo, yielding

o0

e 0%u _ 1

;—% 6::" = E(up.H + up_l - 2Up) (523)
Kk=24,...

where u, = u = u(z,t), up-1 = u(z — ,t), upy1 = u(z + n,t) denote the

displacements of an arbitrary p-th node and its nearest neighbors to the

left and the right, respectively (see Fig. 5.1). To prove eqn. (5.23) let the

displacements u,_; and u,4; be expanded into Taylor’s series about z:

cu(eonf)=ut S (o) T O 5.24
up—l—u(z ’7,)—"4‘2( ) ! OzF’ ( )
k=1 :
0t 0%u
Uppr Su(z+n,t) =u+ z Z—"" s (5.25)
k=1

The sum of series (5.24) and (5.25) is

s O “) . (5.26)

o0

Uppi +Up_ =2 (u + P

K=24,...
Since u = uy, the relation (5.26) directly entails the identity (5.23), as was
to be shown. Substituting eqn. (5.26) into the differential equation (5.22) at
M — oo, we obtain the difference equation of motion of an arbitrary p-th
node, or atom:
2

m %t%ﬂ = O (upp1 + Uyt — 2up), (5.27)
where m = pn® may be interpreted as the mass of an atom in the monatomic
lattice, and C' = A7 is the force constant. Equation (5.27) may be found in
textbooks on solid state physics (Kittel 1986) and in the dynamics of atoms
in crystals (Cochran 1973).

Consider now a longitudinal wave

Up = Uo expli (wt — kpn)] (5.28)
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traveling along the axis z to the right. Here, i = /—1, while u,, w, k are
the wave amplitude, (angular) frequency, and wavenumber, respectively. The
quantity pn is a discrete analog of the continuous variable z. On substituting
the function u, from eqn. (5.28) into the dynamic equation (5.27) we find u,
to be a solution of eqn. (5.27) provided that

— mw? = C [exp(ikn) + exp(—ikn) — 2]. (5.29)
Since exp(ikn) = cos(kn) + ¢ sin(kn), eqn. (5.29) becomes

o fC ()2 A (n
w—Z\/; Sm(Z)_n p sm(2). (5.30)

In view of the identity £k = 2m/A, A being the wavelength, eqn. (5.30)
yields the expression for the phase velocity V;:

v=Y_v sin(mn/)

==V (5.31)

where V, = /A./p is the phase velocity for waves of infinite wavelength.
The case of infinitely long waves may be alternatively obtained by restricting
the general dynamic equation (5.22) to the first, nonscale, approximation

(M=1,R=2)

o%u 0%u
P =Ao g2 (5.32)
and considering the continuous analog to the longitudinal wave (5.28)
u = u, expli(wt — kz)]. (5.33)

Inserting eqn. (5.33) into eqn. (5.32), we obtain the frequency w = k/A./p
and the phase velocity V, = w/k = y/A./p = V.. The quantity V; is known to
be the velocity of sound in a classical—nonscale—continuum (Cochran 1973).

The function w(k) in eqn. (5.30) is periodic with periodicity k = 27 /n.
Therefore with no loss of generality the wavenumber £ may be restricted
to the range +n/n: if 0 < k < 7w /n, the wave travels to the right, and if
—n/n < k < 0, the wave travels to the left. Since |k| < n/n and A = 27 /k, it
follows that

A> 2, (5.34)

i.e., in the monatomic structure, the only wave modes that may propagate are
those of the wavelength A no smaller than twice the internodal distance (or
twice the doublet length) 2n. The restriction (5.34) holds for all particulate
materials.

According to eqn. (5.30), the phase velocity 1}, depends on the wavelength
A. This means that longitudinal waves in the monatomic lattice are dispersive
in contrast to those modeled by the conventional nonscale wave equation
(5.32) which are known to be nondispersive. By eqn. (5.31), the velocity V,
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reaches the maximum V, max = Vo = /4o /p at the maximum wavelength
Amax —* 00, and the minimum V, min = 2V, /7 = 0.63662 V, at the minimum
wavelength Apin = 27. This scale effect may be called the wave retardation
at short wavelengths.

Next, consider a plane wave

uj = ujo expli(wt — kz)), (5.35)

traveling in an unbounded granular medium along the axis x = z,. The

symbols i, w, k are the same as in eqn. (5.33). It follows from the expression
(5.35) that

2
Ou; 2

Pop = W Ujo exp[t(wt — kz)], (5.36)
0% u; _ 0%u; /2 1k .

ot = g = () s expli(et — k) (537)
0"u;  0%u; _

5t = s =0 (5.38)

where kK = 2,4,6,.... Substituting eqns. (5.36)—(5.38) into eqn. (5.16) and
using eqn. (5.17), we obtain the following set of homogeneous algebraic equa-
tions:

ujow?® +wo V2 Fj =0, (5.39)
in which
R=2M P
FJI = F’l] =2 Z 5/2 Z Tln - Toj al orl) (5‘40)
K=24,.

We assume that the z3 = z-component of the displacement u = u;e;
vanishes in all the medium in question, so that us = 0. The medium is
therefore in a state of plane-strain and the indices j,! = 1,2 everywhere in
this section. The same simplification would obviously result from considering
a three-dimensional medium, with translational symmetry of the hexagonal
type. Under either assumption, the above set (5.39) reduces to a system of
two homogeneous equations, which admits a nonzero solution if and only if
its determinant is equal to zero (Sokolnikoff and Sokolnikoff 1941):

w? + V2 Fy, V2 Fpp

V2Fy w4 V2 |=0 (5:41)

where Vo = v/ Ao/p. The parameters Fj; are functions of the lattice directions

Tq; and the doublet length 7, and thus depend on the microstructure of the
granular medium. Therefore the solution of eqn. (5.41) also depends on the
microstructure. We are going to get a numerical solution of eqn. (5.41) which
demands focusing attention on a particular microstructure. So we will further
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T2 =Y
73 5
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e nn=x

Fig. 5.2. A cubical-tetrahedral packing Hy

consider the cubical-tetrahedral packing H; which in the plane (z;,z2) =
(z,y) resembles a honeycomb pattern (Fig. 5.2).

The packing Hy has in general the valence n = 4, i.e., four spatial direc-
tions that are determined by the following four unit vectors (see Fig. 5.2):

(5.42)

T$=e, TS =e€; cosp + e sinyp,
T3 = —ej; cosp+eysing, T;=es,

with the structural angle ¢ = 60°. Since the translation u3 = 0 and we only
consider the wave displacements u; and us in the plane (z,z3), the fourth
microstructure direction 7§ = ez which is parallel to the z3 = z-axis and
perpendicular to the plane (z;,z;) does not play any role in this problem.
By eqn. (5.42), the direction cosine matrix is

™ Tz 1 0
[roil=1 ™1 73 | = 1/2 3/2 (5.43)
7';1 T§2 —1/2 \/3/2
Equation (5.40) takes the form

5 2 (kn)*
Fy=F;= Z (~1)? = gy, (5.44)

2 !
Kl
K=24,... n

where 1, = 7 = constant for all @ = 1,2,3 and
n
ap=ay =) 737a (10)" (5.45)
a=1

According to eqns. (5.43) and (5.45), the parameters a;; are determined by
the formulas
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app=142"0 0 g =3.27HD 4 —ay =0, (5.46)

Substituting these expressions of a;; into eqn. (5.44), we obtain

R=2M

k k=2
Fu=2K Y (-1 %—— [1427(=+D)] (5.47)
Kk=24,... :
R=2M K—2
Fp=6k > (-1)? % g~ (~+1), (5.48)
k=24,... :

The parameters Fy3 = Fy; = 0 and thus eqn. (5.41) splits up into two separate
dispersion equations:

wz + V:,2 Fu = 0, (5.49)
w2+ V2Fy =0. (5.50)

Equation (5.49) involves the parameter Fy; and by eqns. (5.39) and (5.35)
concerns the displacement u; that is parallel to the z;-axis; eqn. (5.50) in-
cludes the parameter F3; and according to eqn. (5.39) and eqn. (5.35) con-
cerns the displacement uy; that is perpendicular to the z;-axis. Since we
consider the plane wave (5.35) traveling along the axis z;, eqn. (5.49) relates
to longitudinal elastic displacements, or P-waves, and eqn. (5.50) refers to
transverse elastic displacements, or S-waves. The fact that the P-waves and
the S-waves are described by separate equations means that these waves are
not interconnected and propagate quite independently of each other. The
characteristics of P-waves (amplitudes, frequencies, velocities) are indepen-
dent of the same characteristics of S-waves—exactly as in the classical elastic
isotropic continuum (Kolsky 1963).

The phase velocities V,,, and Vs of the P- and S-waves, respectively, are
found via eqns. (5.47)—(5.50) to be:

R=2M 1/2
Y _ l _1\i+x/2 (1 2n+1) ne2 (Q)n_2 (5 51)
Y=g =3l ~=§4: =1) * A\ o
R=2M 1/2
_w_V3 e B2 e
Ve= 2 =5V Lz; (-1) — ( /\) | (5.52)

where the identity k = 27/ has been taken into account, A being the wave-
length.

The group velocities V; are related to the phase velocities V}, as (Brillouin
1960)

N

=g =%

(5.53)
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By substituting the phase velocities V;, and Vj,s from eqgns. (5.51)-(5.52) into
eqn. (5.53) we obtain the group velocities Vg, and Vg, of the P- and S-waves,
respectively:

R=2M

1 © © K—2)n""2 rpy\r-2
Vo =Vo—gi D (U ey EEUE (I (55
K=2,4,... :
R=2M
3 (k —2)7""2 rp\r—2
=Vps — — I MUE 3 Wi/ LN /)
Ver = Vou = 597 2 (-1) = (/\) . (5.55)

The formulas (5.51)—(5.55) express the wave velocities to an arbitrary M-
th approximation for M from 1 to co. In the first approximation (M = 1),
the above formulas yield the following expressions for the wave velocities:

3
22

(1) — (1) = = _\/5
V;s - Vgs - V;S = 2 \/§ VO? (5'57)
which are independent of the nondimensional scale parameter n/\. Alterna-
tively, these expressions may be arrived at via two different assumptions:

Ve = V) = Vop = ==V, (5.56)

(A) the constituent granules of the solid are material points (whose sizes are
infinitesimal: n = 0) and all the waves may have arbitrary but finite
length A, or

(B) the constituent particles of the solid may have an arbitrary but finite
size ) # 0 and all the waves have an infinite length A — oo.

The assumption (A) is adopted in classical theory of elasticity, while the
restriction (B) is employed in the special discrete-continuum theories of wave
propagation in granular media (Takahashi and Sato 1949, 1950, Gassmann
1951) and crystals (Cochran 1973). It is clear that neither of these approaches
permits the analysis of scale effects.

The question of convergence of the series appearing in the wave velocity
expressions (5.51)-(5.55) is considered next. Consider eqn. (5.51) first, in the
limit as M — oo. Squaring both sides of the relation, we obtain an infinite
alternating series on the right-hand side of eqn. (5.51). According to Leibnitz’s
theorem (Sokolnikoff and Sokolnikoff 1941), such series is convergent if its
terms satisfy the following conditions:

A2 < Uy, (5.58)
nlgrgo a, =0. (5.59)

In the inequality (5.58), we took into account that the term a,i, follows
@, because a subscript x only runs through even values 2,4,.... The rela-
tion (5.51) shows that
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ae = (1+2%1) 1:-:—2- (%)H, (5.60)
tura = (14 2°%9) ﬁ U (5.61)

Substituting a, and a.42 from eqns. (5.60) and (5.61) into eqn. (5.58), we
transform it to the inequality

2 Q 2 14+ 9r+1

" (A) < Tomes
According to eqn. (5.34), max(n/A) = 1/2, and therefore the left-hand side of
eqn. (5.62) has max [71'2 (17/)\)2] = 72 /4 = 2.467401. On the other hand, at

x = 2, the right-hand side of eqn. (5.62) has min [Hg—:z (k+1)(k+ 2)] =
3.272727 > 2.467401. Thus inequality (5.62) and, consequently, the condition
(5.58) are satisfied.

We now turn to eqn. (5.61) and use Stirling’s formula (Sokolnikoff and
Sokolnikoff 1941)

Kl ~ /(27R) (g) (5.63)

Substituting eqn. (5.63) into eqn. (5.59) and taking account of the obvious
inequalities 1 + 2%*! < 2%*2 /275 > 1, n/A < 1, we obtain

(4 2ethes 1 g\ 4 (2me\" 2me\ "

N TP 3 <= ( i ) < (—;—) . (5.64)
Since limy_00 (27e/x)" = 0, the term a,, by eqn. (5.64), obeys the condition
(5.59). Thus the infinite series in eqn. (5.51) is convergent.

The convergence of the other three series in relations the (5.52), (5.54) and
(5.55), with M — oo, is proven analogously. Because of convergence, the sums
of these infinite alternating series may be determined by truncating them and
computing the remainder, which is always less than the first truncated term
ant+2 (Sokolnikoff and Sokolnikoff 1941).

Let us, for instance, calculate the remainder A for the infinite series in
eqn. (5.51) by using the formula (5.61) and replacing « by R:

(k+1) (£ +2). (5.62)

nk R
A <anp = (1+2%) S (3) - (5.65)
The relation (5.65) shows that the term ag4 attains a maximum when n/A
reaches a maximum which, by eqn. (5.34), is equal to 1/2: then maxapy2 =
2.497 x 1072 (R = 30, M = 15). In this case, the remainder A also attains
a maximum that is no larger than 2.497 x 1072°, and hence max+/A <
1.5801071% < 10~°. Thus, if we truncate the infinite series in eqn. (5.52) at
the 15-th term (M = 15, R = 30), we approximate the phase velocity V},; to
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Fig. 5.3. Wave velocities versus normalized wavelength
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within one part in a billion. A completely analogous analysis can be carried
out for the other series given in equations (5.52), (5.54) and (5.55).

The results of the calculations are presented in Fig. 5.3, which compares
the phase and group velocities of P- and S-waves in scale elastic granular
media (which have finite sizes of particles d = 7) with the corresponding
velocities Vo, and Vs in conventional nonscale elastic media (where n = 0)
that are determined by classical theory of elasticity (see, also, eqns. (5.56)-
(5.57)).

Figure 5.3 shows a most interesting feature of the plane P- and S-waves in
scale granular media. The waves have dispersion because all their velocities
depend on the wavelength A and the granule size 7. In particular, the veloci-
ties diminish as the nondimensional parameter ! = A/eta decreases. As in the
case of monoatomic crystals we observe the phenomenon of wave retardation
at relatively short wavelengths.

It is further noted that, in the bands of relatively long waves when the
parameter [ = A/n is large enough, i.e., [ > 15 or 20, the velocities V,p, Vgp
are only slightly less than V,,, as well as the velocities V5, Vg, are somewhat
less than V,; the difference between these is no more than 2%.

On the other hand, the shorter the waves, the more significant the wave re-
tardation. In the band of short wavelengths that are close to their minimum—
a double particle diameter (when ! = 2)—the velocities reach the least values
that are considerably less than Vo, and Vis. In this band, classical theory of
elasticity significantly overestimates the wave velocities: phase velocities up
to 33% for P-waves and 10% for S-waves, and group velocities up to 89% for
P-waves and 29% for S-waves.

5.4 Discussion and Closure

In the previous section, the doublet elastodynamics of the basal plane of
the cubical-tetrahedral packing H, was considered, with the purpose of es-
tablishing the fact that elastic plane waves in an isotropic granular medium
are dispersive. It was thereby demonstrated that the capability of modeling
dispersion is lost upon introducing the long-wavelength or the continuum
approximations. In analogy with isotropic continuum elastodynamics, it was
also shown that the longitudinal and shear waves are decoupled. To place
this analogy in the proper perspective, however, it is remarked that the basal
plane of H, is isotropic only at the nonscale approximation (M = 1). As aside
remark, it is noted that eqns. (5.18)—(5.19) do not allow for the propagation
of nontrivial plane waves polarized in the normal direction (i.e., SH-waves).

Returing to the question of the scale-dependence of isotropy, we have
computed the generalized macromoduli of elasticity Cjjk, ..., in accordance
with eqn. (5.17), where of o, = n = constant, x = 2,4,6,.... For ease
of representation, the associated nondimensional macromoduli C’ijkl.‘.lcn are
introduced that are defined as
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= K1 Cijk, .. k., - o
Cijky ..k = 2AJ’7X'2 Z Taky """ Ta

In order to establish the conclusmn, thecaset=j =k =

ky*

(5.66)

w=ke=1,

is considered for different values of x and in variuos frames differing by the
angle v, i.e., under

Nondimensional Moduli
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Fig. 5.4. Variations of nondimensional moduli of elasticiy C;ji,...x, with the rota-
tion of a plane frame of reference by an angle v

C‘ijkl...k,‘ for Kk = 4,6,8,...

The variation of the moduli with v is plotted in Fig. 5.4. It is noted that
the nonscale macromodulus C1;11, corresponding to x = 2, is indeed inde-
pendent of v, i.e., isotropic in the plane. On the contrary, the macromoduli

are anisotropic. It can be seen from Fig. 5.4 that

all C,-jk_l,_,k“ — 0 as kK = oo for any angle v except for v = 0°, 60°, 120°
where Cjjk, . .k, — 1, which are the angles that identify the directions of the
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doublets (see Fig. 5.2). It may then be concluded that in the first approx-
imation, K = 2, eqns. (5.16) model the continuum-like behavior of solids,
whereas in the other approximations, £ = 4,6,..., eqns. (5.16) also reflect
discrete-like features of the solid, in a manner that increases with «.

In this sense, doublet mechanics may be concluded to be capable of mod-
eling solids in view of their dual and to some extent contradictory discrete-
continuous nature. The power of such dual-representation capability is evi-
dent in the discussion of isotropy. The basal plane of the cubic-tetrahedral ar-
rangement is isotropic only in the continuum, nonscale approximation. Thus,
isotropy is a scale-related notion—a fact that is of course physically evident,
as no material may be argued to be isotropic at all dimensional scales, down
to its most elementary component level. What is promising for the doublet
mechanics approach is the fact that this theory is capable of modeling such
observation, and recourse to different theories for different dimensional scales
is avoided altogether.

According to eqns. (5.56)—(5.57), the velocity ratio is C; = Vop/Vos = V3.
By comparison with the well-known relation (Fung 1977)

C = \/2—1(1{2—:2, (5.68)

this leads to Poisson’s constant v = 1/4. This value is conventionally assumed
in seismology for the Earth’s crust (Leet 1938, Macelwane 1949, Bath 1968).
A theoretical validation of this assumption is furnished by doublet mechanics.
Any isotropic tensor in accordance with the relation (5.19) must have the form

Cijkt = X (8: 0kt + 8ir 851 + 8t 05k ).- (5.69)

This tensor differs from the conventional (continuum) moduli of elasticity in
that it is also endowed with the additional symmetry C;jix = Cixji which is
not necessary in continuum mechanics. In turn, the symmetry imposes the
equality of the Lame’ constants, i.e., A = p. This reduces the number of
independent moduli to only one. Of course, this conclusion holds only for
materials with such microstructure and properties that satisfy the assump-
tions employed for the derivation of eqn. (5.19). By applying the well-known
relationship

A

1/_2(,\_*_“). (5.70)
it is then concluded that v = 1/4, which was to be shown.

The developed micromechanical elastodynamics theory is applicable not
only to the unbounded isotropic granular solids but to any similar particulate
media, i.e., any media with microstructure characterized geometrically by
finite particle sizes (or finite central particle distances) 7 and physically by
longitudinal particle interactions (5.3) only.

The term microstructure is relative, in our context, in the sense that the
wave dispersion and wave retardation depend on the wavelength A and the
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characteristic distance 7 not separately, but in a nondimensional combination
! = A/n. Thus the internal size 7 is significant only in comparison with
the wavelength A. This may be arbitrary large and, consequently, the size n
may also be arbitrary large provided the ratio ! has finite values | > 2. On
these bases, the absolute dimension of the typical internal structure is not
a determining factor concerning the applicability of the present theory. To
illustrate the point, three classes of materials are here briefly considered, that
possess very different internal dimensional scales.

First, consider crystals with typical interatomic spacing n ~ 10~%cm.
The phenomena of wave dispersion and retardation in linear monatomic
crystals are well-known in solid state physics where they are modeled by
eqn. (5.27). Experimental verifications of eqn. (5.29) are given, for instance,
in Kittel (1986) and Cochran (1973).

Equation (5.27) can be generalized to higher dimensions for two- and
three-dimensional crystal arrangements. The corresponding theoretical re-
sults obtained in solid state physics have been verified experimentally for
many spatial crystal structures including the f.c.c. such as aluminum and
copper. The f.c.c. structure is equivalent to a regular pyramidal packing Hg
(Deresiewicz 1958, pp.237-238) which has crystallographic planes identical
with the basal plane of the cubical-tetrahedral packing Hy considered in this
section.

Second, consider granular materials with the characteristic granule sizes
n in the range 107!-10? cm (sand, gravel, rubble, boulders), where the im-
pact of particle sizes on wave propagation has been directly studied in a few
experimental works. The earliest of these (Ilida 1938) established that the
phase velocities of P- and S-waves in dry sand depend on the particle diam-
eter d and slightly rise as d increases. These data first indicated that wave
dispersion was associated with size parameters, but was at variance with the
phenomenon of wave retardation. The fact that the phase velocities of plane
P-waves are sensitive to the granule sizes was also observed in other direct
experiments with dry sand (Matsukawa and Hunter 1956).

Several later studies brought indirect experimental data concerning the
influence of particle sizes on wave velocities in granular massives. Among
these, Trent (1989) dealt with two arrays of 270 like spheres which had
diameter d = 2 mm and occupied equal volumes. The first array had
480 interparticle bonds, the second one 397, i.e., 21% less. By perform-
ing numerical experiments based on the so-called distinct element method
(Cundall and Strack 1979), it was established that the phase velocity of P-
wave in the second array is 37% less then in the first array (1050 m/s versus
1440 m/s). There is only one difference in the two arrays which is responsi-
ble for the change in velocities—the difference in numbers N of the bonds.
Meanwhile in any regular n-valence packing H3 to Hg (should they have
equal volumes) the number N and diameter d are inversely correlated. So a
decrease of bond numbers is, in general, equivalent to an increase of particle
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size. Therefore the retardation of wave observed in the second granular ar-
ray tested may be attributed either directly to a reduced number of particle
bonds or indirectly to an increase of particle diameters d and, consequently,
to a decrease of the ratio I = A/d, A being the wavelength. This means that
the waves slow down as the scaling parameter ! declines, a result that is in
agreement with the quality of Fig. 5.3.

Finally, consider the Earth’s crust with n ~ 10° cm (= 10 km). As dis-
cussed in Granik and Ferrari (1994) the doublet mechanical approach is ap-
plicable in the context of plane-wave seismology. In particular, in the above
reference, comparisons were made between classical seismic data (Leet 1938,
page 261, Miyabe 1935, Pilant 1979, page 254, Fig. 7-1), and scale-accounting
predictions of DM that are concerned with the effects of the particulate struc-
ture of the crust on the velocities of longitudinal waves. The results showed
good agreement (no more than a 5% discrepancy) between the predictions
and the three sets of seismic data.



6. Reflection of Plane Waves

M. Zhang and M. Ferrari

6.1 Introduction

Microscopically isotropic, infinite plane regular assemblies of discrete nodes
capable of elastic axial interactions were shown in Chap. 5 to sustain both
longitudinal and shear vertical plane waves for all values of the dimensionless
scale parameter ! = A/n , where X is the wavelength and 7 is the internodal
distance. Ibidem, it was also shown that the incorporation of scale effects
permits the modelling of physical observations that are otherwise intractable
in terms of a general theory. Amorg these are the phenomena of dispersion
and retardation of both P- and S-waves, which are incompatible with homo-
geneous continuum linear elasticity, but are successfully predicted employ-
ing the microstructure-accounting methods of multi-scale doublet mechanics
(DM).

In Chap. 5, the elastodynamic study was limited to infinite media, and in
this chapter we extend that work, by considering the problem of reflection of
plane waves at the free surface of macroscopically isotropic solids. While the
problem of plane elastodynamics in solids has received considerable attention
in the literature (see discussion in Chap. 5), the issue of wave reflection has,
to the best of the authors’ knowledge, never been addressed.

In the first part of this chapter, the non-scale version of the problem
of plane wave reflection is considered, with results that are in compliance
with those of continuum linear elastodynamics. However, in later sections it
is demonstrated that the simplest scale variable of the theory elicits results
that are qualitatively different from the classical ones. In particular, it is
found that the critical angles of mode conversion, the phase changes and
the amplitude ratios are dependent on the dimensionless scale parameter,
and thus on discrete size for a fixed wavelength. The dependence is more
pronounced at shorter wavelengths.

The following analysis, for mathematical simplification and physical ex-
plicitness, is based on the following assumptions:

(i) no body forces are acting on the discret domain;

(i) the doublets are capable of axial microstresses only;

(iii) the doublet constitutive response is linear elastic and local, with mi-
crostresses in a-th doublet depending on the a-th microstrain only;
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iv) the discret packing is macroscopically isotropic in the plane of propaga-
p g Y g
tion.

It is noted that (iv) is satisfied by choosing the plane of propagation to be
the basal plane of the cubic-tetrahedral packing, which is elastically isotropic
in the nonscale (macroscopic) limit, but becomes anisotropic once scale effects
are accounted for (Chap. 5).

In this chapter, the first and fundamental scale-accounting version of
the doublet mechanical approach is employed, corresponding to the trun-
cation of the displacement expansion at M = 2 in eqn. (1.5). This choice
retains the advantage of analytic treatment, while sufficing to establish the
above-mentioned qualitative features of the scale-accounting treatment. The
presently employed methods of analysis are not confined to the specific pack-
ing here discussed, but are applicable to any other discrete array of interest.

6.2 Model and Formulation of Reflection
of Incident Waves

Xy
7777 77777 X
PorS 60 91 P
)
S
Mg

Fig. 6.1. Reflection of an incident P-wave at the interface of discrete medium and
free space with a sketch of corresponding doublet orientation (73; parallel to z;
axis); 6o is the incident angle of the incident P-wave; 6, is the reflection angle of
the reflected P-wave; 0; is the reflection angle of the reflected S-wave; ¢ is the angle
between the directions of two doublets.
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We consider single-frequency time-harmonic waves only. Fig. 6.1 depicts a
plane P-wave traveling at an incident angle 6. Upon reflection with the free
surface x3 = 0 this wave gives rise to a reflected P-wave and a reflected
S-wave with reflection angles 6; and 65, respectively.

The incident and reflected waves propagating in the half-space z3 < 0 are
defined by the following equations

u™ = 4,d™ exp[in™] (6.1)
where
0™ = ka(x- p™ — cat) (6.2)

where A, are the amplitudes of the waves and d(™ are the unit vectors
of particle motion; x is the position vector and p(™, the unit vectors of
propagation; k,, are the wave numbers and ¢, are the phase velocities of
wave propagation. The index n is assigned the value of 0 for the incident
P-wave, 1 for the reflected P-wave and 2 for the reflected S-wave.

From the geometry of Fig. 7.1 we have, for the incident P-wave

dO =pO®, ¢y=¢ (6.3)
p® = sinbpi; + cos iy (6.4)

NO!

{u(o)} = {u%o) } (6.5)

Ag sin 6y exp[iko (1 sin § + z2 cos By — cot)]
{ Ag cos by exp[iko (1 sin 8y + x4 cosy — cot)] } (6.6)
for an incident S-wave
d® =i3xp°®, co=cr (6.7)
p® = sin6i, + cosByi, (6.8)
d©® = — cosfyi; + sinboi, (6.9)

(0) “go)

WP =1 0 (6.10)
2
_ — Ay cos 0y expliko(x; sin By + o cosbp — cot)] (6.11)
- Ay sin 8y expliko(z1 sin By + z2 cos by — cot))] ’

for the reflected P-wave
p(l) = sin 91i1 — COos 91i2 (612)
dV =pW ¢ =¢ (6.13)
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yo
WV} = {uil) } (6.14)

Aj sin ) explik; (z sin 6, — 25 cosb; — ;)]

= { —A; cos b, explik; (1 sin 6y — 3 cos by — cit)] } (6.15)

and finally for the reflected S-wave
p® = sinbyi; — cosfyi, (6.16)
d? =i3 xp®, ¢ =crp (6.17)
d® = cos i + sin i, (6.18)

)
U} = {uéz) } (6.19)

_ Ag cos 03 expliky (1 sin 6y — x5 cosby — cat)] (6.20)
- Aj sin 0 explika(z1 sin 6, — x5 cos Oy — cat)] )

In the above, ¢, and cr are the propagation velocities of P- and S-waves
respectively. The derivatives of the displacement of the incident P-wave are
0
Bu(l )
Ox 1
0
aug )
6172
aug")
63:1
6u§0)
6132
0
2ul?
Oz?
0
Bzug )
Oz
o ugo)
Ox?
62u§°’
Oz
82ug0)
Oz 18.'172
62u§°)
071024

= iAgkosin® g exp[in“”]

= iAoko sin 8y cos by exp[in®]

= iAoko cos 8y sin Oy explin'®]

= 1Agkg cos? 8, exp[in(")]

= —Agk? sin® o explin®]

= —Agk? sinfy cos? 6y exp[in¥]

= —Aokj sin® 6y cos g explin®]

= —Aok? cos® 8 explin®]

= —Apk?sinfy cos? 6y exp[in(o)]

= —Agkj] sin? 8y cos 8y exp[in®]. (6.21)
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Derivatives for the other waves are similarly defined.
Via eqn. (1.40) the free stress boundary conditions at plane z; = 0 may
be expressed as

E oV = (6.22)

Z o = (6.23)

where the summation is performed over each wave n, and the superscript M
is dropped for notational conventional convenience.

In analogy with continuum elastodynamics (Achenbach 1980), for a given
incident wave, the amplitudes, the unit propagation vectors, and the wavenum-
ber must be computed from the boundary conditions. Thus, the problem is
reduced to solving for the amplitude coefficients and reflection angles of re-
flected waves, on the basis of the above stated stress free boundary conditions.
This approach also allows us to develop families of solutions to the reflection
of incident waves for various boundary conditions. Some scale and nonscale
reflection problems are studied next.

6.3 Reflection of an Incident P-Wave: Non-scale
Analysis

6.3.1 Doublet Axis Parallel to the Reflecting Surface

According to the coordinate system defined in Fig. 6.1, we can write the
direction matrix of doublets as follows

11 T2 —cos¢ —sing

To1 T22 = COS¢ - Sil’l¢ (624)
731 732 1 0

where ¢ is 60° for the basal plane of the cubic tetrahedral packing. For the

nonscale case (M = 1) this plane is elastically isotropic (see Chap. 5). The
stress relation (1.40) for M = 1 is thus reduced to

3
gji = Z Tai Taj Pa (6.25)

a=1
where, for plane waves, 1,7 = 1,2. From the boundary conditions (6.22) and
(6.23), constitutive relation (5.3), and kinematic equation (1.12), we obtain
the following relations between the incident and reflected waves
Agko[sin® 8 + 3 cos? by) exp[in'®)]
+A; ki [sin® 6, + 3 cos® 8;] explin®]
— Asky sin(26;) explin®] = 0 (6.26)
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Agkg sin 26, exp[in(o)] — A1k sin 26y exp[in(l)]
— Agky cos(285) explin'®] = 0 (6.27)

Since eqns. (6.26) and (6.27) are valid for all values of z; and t at z; = 0,
the existence of solutions of the set of equations requires that the exponential

must appear as factors in both equations (Achenbach 1980). This will be
satisfied only when

n =nt = n? (6.28)
We conclude, from inspection of the definition of 7™ in eqn. (6.2), that

kosinfy = ky sinf; = kysinfy, = & (6.29)
koCL = kch = kgcT =w (630)
From eqns. (6.29) and (6.30), it follows that
B = 6;, 6, =sin"!(k!sinby) (6.31)
_ kz _ CL _
kv = ko, o on (6.32)

By employing eqns. (6.31) and (6.32), the algebraic equations for the ampli-
tude ratios A;/A¢ and A;/A¢ are obtained from eqns. (6.26) and (6.27):

A A
2L (sin® 6y + 3 cos? ) — A—zn sin 26, = —(sin? 6y + 3 cos? ) (6.33)
0

Ao

A A

2L sin 26 + S2k cos 20, = sin 26, (6.34)
Ao Ao

A typical plot of amplitude ratios A;/Ag, Az/A¢ versus the angle of
incidence is shown in Fig. 6.2 for the standard value of material constant
k = V3 (Kolsky 1963). This value of the material constant was chosen
for ease of comparison with literature results. It is found that the re-
sults obtained using DM theory in the first degree approximation (M =
1, nonscale) corresponds exactly to those of classical continuum elasticity
(Kolsky 1963, Achenbach 1980).

It is observed from Fig. 6.2 that:

(i) for normal incidence (6 = 0), the amplitude of the reflected S-wave is
zero, the incident P-wave is reflected as a P-wave only, and the amplitude
of the wave is equal to that of the incident wave with a phase change of
LB

(i) for an angle of incidence about 45°, the amplitude of the reflected S
wave reaches the maximum, which is greater than that of the incident
wave;

(iii) for the angles of incidence 8y = 60° and about 80° , the incident P-
wave is reflected as a S-wave only, which is known as mode conversion
phenomena;
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Fig. 6.2. Amplitude ratios of the reflected waves to the incident wave for an incident
P-wave in the nonscale case of M=1. Ay is the amplitude of the incident P-wave;
A; is the amplitude of the reflected P-wave; A, is the amplitude of the reflected
S-wave.

(iv) for 6y = 90°, the reflected S wave vanishes and the incident P-wave is
again reflected as a P-wave;

(v) the reflected P-wave have same phase as the incident P-wave between
about 60°-80°, and otherwise it is 180° out of phase to the incident
wave.

6.3.2 Doublet Axis at an Angle v with Respect
to the Reflecting Surface

The geometry of this case is sketched in Fig. 6.3, and the direction matrix of
the rotation may be written as

. ™ T2 —cos(¢—7) —sin(¢—7)
[l=| ™ 7 | =| cos(¢+7) —sin(¢+1) (6.35)
T3 cosvy —siny

By eqn. (1.12) and eqn. (5.3), the stress relation (1.40) may be expressed
in terms of the components of displacement as

3 (n) (n) (n)

o Ou o o Ou Ou
”é?) = E : E : Toa(Te) 2= + (o178 | 52—+ —
a.’l?l 6231 62)2

n a=l

(n)
+r:1<r:2>39“2—} (6.36)
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Xy

PorS

Fig. 6.3. Reflection of an incident P-wave at the interface of discrete medium and
free space with the sketch of corresponding doublet orientation (73 in an angle of
~ with respect to z; axis); o is the incident angle of the incident P-wave; 6, is the
reflection angle of the reflected P-wave; 8 is the reflection angle of the reflected
S-wave.

R o
Ugg) ZZ [ 02( l - + al( a2)3 ( 8132 + = 62?1

n a=1

o g Oul™
+(12,)* ;2] (6.37)

Substituting eqns. (6.36) and (6.37) into eqns. (6.22) and (6.23), and
following the same procedure as in Sect. 6.3.1, it is proven that the angle
of the reflected P-wave is equal to the angle of the incident P-wave and the
angle of the reflected S-wave still satisfies eqn. (6.31). The amplitude ratio
expressions can thus be reduced to

z To2(Ta1) 3(140"70 sin? 8y + A1k, sin? 8, + Agk; cos b sin 62)
+ E 701)2(722)*(Aoko sin 26y — A,k sin 26,

— Azkg cos® 83 + Azkysin® ;)
+ 2(732)3"':1 (Aoko cos® 8y + Ak, cos® 8

1
- "2'A2k2 sin 292) =0 (638)
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and

2(702)2( 1)2(A0k0 sin? 0o + A1y sin? 0, + Azkz sin 292)
+ Z 3(Aoko sin 285 — A, k1 sin 26,

— Ak, cos® 02 + Asks sin? 92)
+ ) (155)"(Aoko cos® By + A1k, cos® 6y — %Azkz sin 26) = 0.(6.39)

The ratios of the amplitudes of the reflected waves to the amplitude of
the incident P-wave have been plotted for varying angle of v and it was found
that the reflection coefficients are independent of the rotation angle of v and
the dependence of amplitudes of reflected waves on the incident angles is
exactly the same as in Sect. 6.3.1.

6.4 Reflection of an Incident P-Wave: Scale Analysis

The first order scale-accounting case is addressed next by choosing the order
of approximation M = 2. Referring to eqns. (1.12) and (1.40), the stress
relations may be reduced to

o 2. 7° Oe
0ji = 4o ZTaJ ( Tai€ 7701 TakTai axa) (640)

In this case, unlike the case of M = 1 in which the stresses are the
function of strain only, the stresses are the function of both strains and the
derivatives of strains. Following the same steps as the Case I, by employing
the stress-strain relation (6.40) and the stress free boundary condition (6.22)
and (6.23), the following relations are derived

91 = 90, kl = ko (6.41)
0> = sin™! (k! sinfy) (6.42)

where k = ka /ko.

With eqns. (6.41) and (6.42) and the stress free boundary conditions (6.22)
and (6.23), the algebraic equations for the amplitude ratios of the incident
and the reflected waves, A;/Aq and A3/Ay, can be expressed as follows,

3. V3T, 11 o7, A
[Zsmeocosﬁo—zl—dismeo—zﬂs—\/gTSmeocosZGO Ké—

[£ + £cos 2 8, +z—5——\/2+c03290

16 1
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5n A
—i>Z./2 + cos? 8 cos® Go] I?

Zsinfp +i~= ‘f% sin 8, cos? 6y, (6.43)
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Fig. 6.4. Real components of amplitude ratios of the reflected P-wave to the in-
cident P-wave in the scale case of M=2 with [, the dimensionless scale factor as a
parameter.

The ratios A; /A and A3 /A, versus incident angles are plotted in Figs. 6.4
and 6.5 for different values of scale factors | = A/n,, where X is the wave
length and 7, is the central distance of doublets as shown in Fig. 6.1. For | =
oo, the nonscale results of Sect. 6.3.1 are retrieved. In the figures throughout
this chapter, the following nomenclature is employed for the axis labels: the
letter(s) before the dash line indicates the types of incident wave and the
letter(s) after the dash line indicates the types of reflected waves. For instance,
a reflected P-wave due to the incident S-wave is identified as an S-P-wave.

From Figs. 6.4 and 6.5, it is observed that:
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Fig. 6.5. Real components of amplitude ratios of the reflected S-wave to the inci-
dent P-wave in the scale case of M=2 with [, the dimensionless scale factor as a
parameter.

(i) the amplitudes of the reflected waves not only depend on the incident
angle and material property & as in the nonscale case, but also depend on
the scale factor /, which reflects the size of the doublet; the dependence
is especially strong at wavelengths comparable to the particle size.

(ii) For incident angle 6y = 0, the reflected S-wave vanishes and incident
P-wave is reflected as a P-wave; the amplitude of the reflected P-wave
decreases sharply with {.

(iii) At grazing incidence ( 6y = 90° ) no S-wave is reflected and A, /Ay,
which is independent of scale factors at this angle, become unity.

(iv) Similar to the nonscale case, mode conversion occurs at two angles, but
the values of the angles vary with the scale factor I.

(v) the amplitudes of the reflected S-waves increase appreciably with the
decrease of [.

The curves for I = 2.5 in Figs. 6.4 and 6.5 exhibit features that differ
qualitatively from the other curves in the same figures, such as the intersec-
tion with curves corresponding to higher values of the dimensionless scale
parameters /. It is however noted that the plots correspond to | = 2.5, a
value outside the valid range of 5 < ! < 0o recommended for the second de-
gree approximation (Granik and Ferrari 1993), should thus be considered to
be poor approximations. For such scale ranges, use should be made of scale
approaches involving M > 2, following exactly the method of analysis pre-
sented above. Still, it is of interest to retain the case [ = 2.5 in our study, in
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that different quantities are approximated with different degrees of precision
for the same values of 1 and M. An example of this will be shown later.

85 — —r—7— .t

o
(=]
M |
1

Mode Conversion Angle (in Degree)
& 8
T M )

~ ~
o o
T
1. 1

-2}
v
T
i

- -]
(= B S ~ ]
T T T

W
o
¥

1 i i 1 i ] " 1 ]

0 20 40 60 80 100
Dimensionless Scaling Parameter

Fig. 6.6. Two mode conversion angles for an incident P-wave versus the dimen-
sionless scale factor !; — the first mode conversion angle, --- the second mode
conversion angle.

The two mode conversion angles for an incident P-wave are plotted in
Fig. 6.6 against the dimensionless scale factor l. In Fig. 6.6 and 6.11, the value
of | is taken within the range (5 < ! < o0) that DM theory (M = 2) applies.
From Fig. 6.6 it is observed that the first critical angle of mode conversion
increases sharply with ! when ! < 30 and changes slowly when 30 <! < 100,
and approaches the angle 60° of the nonscale case when [ > 100. The second
critical angle of mode conversion decreases moderately with the increase of [
and approaches the angle 77° of the nonscale case when ! > 100. It is shown
that the results of nonscale case are recovered at { ~ 100.

The phase changes of the reflected P-wave and S-wave with respect to
that of the incident P-wave are plotted in Figs. 6.7 and 6.8 against the angle
of incidence with ! as a parameter. The phase under consideration is defined
as

Im(A,, /Ao)
Re(A,/Ao)
where Im(A,/Ap) indicates the imaginary component and Re(A4,/4,) the

real component of A,/Ae with n = 1 for the reflected P-wave and n = 2 for
the reflected S-wave.

¢ = f,a,n'—1 (6.45)
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Fig. 6.7. Phase changes of the reflected P-wave with respect to the incident P-wave
in the scale case of M=2 with I, the dimensionless scale factor as a parameter
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Fig. 6.8. Phase changes of the reflected S-wave with respect to the incident P-wave
in the scale case of M=2 with I, the dimensionless scale factor as a parameter.
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The results of Fig. 6.7 and Fig. 6.8 show that:

(i)

(i)

(iv)

For a given wavelength, the particle size, as reflected by the scale factor,
has a significant influence on the phase change.

The phase change for ! = 100 is very close to that of [ = oo, which
indicates that for the value of [ greater than 100, the results of DM
theory are identical with those of classical theory; the phase changes for
the values of [ less than 100, unlike the nonscale case where the phase
difference is either 0 or 7, change continuously with the incident angle
and increase with the decrease of [.

The reflected P-wave has abrupt phase changes of 7 at about 60° and 80°
corresponding to the phenomenon of mode conversion of the reflected
P-wave shown in Fig. 6.4.

There is no phase difference between the reflected S-wave and the inci-
dent P-wave for the nonscale case for the whole range of incident angles.
For the scale case there is a phase difference between them, and the
difference increases with the decrease of scale factors l, indicating a de-
parture from the continuum approximation assumed in classical theory.
It is noted that the results corresponding to | = 2.5 are qualitatively
similar to those corresponding to larger values of [, for what pertains to
the phase change diagrams.

6.5 Reflection of an Incident S-Wave: Scale Analysis

For

an incident S-wave, there is a S-wave and a P-wave reflected at the stress

free boundary (Goodier and Bishop 1951). For this case we assign indices
n = 0 to the incident S wave, n = 1 to the reflected P-wave and n = 2 to the
reflected S-wave.

By strictly following the analogous procedure of the previous sections, we

obtain
kosinfy = ky sind; = ko sinf, (6.46)
kocr = ke, = kger (6.47)
Similarly, we can conclude from eqns. (6.46) and (6.47) that
ks = ko, 03 = 6o (6.48)
”Z_; - Z_": — ! (6.49)
sinf, = Ksinfy (6.50)

Though we will follow the same procedure to discuss the reflection of

an incident S-wave, it is worthwhile to notice at this point that there are
significant differences between the reflection of S-waves and P-waves. Since
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the velocity of propagation for the reflected P-wave is greater than that of the
incident S-wave, k = cg,/cr is always greater than 1; and therefore according
to eqn. (6.31), the angle of the reflected S-wave is always less than that
of the incident P-wave. By inspection of eqn. (6.50), however, the angle of
the reflected P-wave is found to be always greater than that of the incident
S-wave. Consequently, there will be a critical angle of incidence at which
the reflection angle of P-wave equals 1/(2x). For those incident angles being
greater than the critical angle, a reflected surface wave will be generated and
decays exponentially with distance from the free surface. The discussion of
surface waves is beyond the scope of this study. In what follows, the reflection
of incident S-wave is studied, only for waves with the incident angles which
do not exceed the critical angle.

By eqns. (6.48), (6.49) and (6.50) and the stress free boundary conditions
(6.22) and (6.23), the stress relation (6.40) for = v/3 can be reduced to

[—zg— 3sinfy +zﬁ—\/§sm90 cos? By
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From these equations, A, /A and A;/Ag versus the angle of incidence
with scale factor | as a parameter are plotted in Fig. 6.9 and Fig. 6.10. It is
found that

(i) there is a critical angle of approximately 35°, which is independent of
the scale factor | and consistent with that of eqn. (6.50);

(ii) at @9 = 0, the reflected P-wave vanishes, the incident S-wave is reflected
as a S-wave only and the magnitudes of reflected S-waves are same as
that of incident S-wave for all values of I;

(iii) mode conversion also occurs at two angles, as in the case of incident
P-waves, at which the S-wave vanishes and incident S-wave is reflected
as P-wave only;
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Fig. 6.9. Real components of amplitude ratios of the reflected P-wave to the in-
cident S-wave in the scale case of M=2 with [/, the dimensionless scale factor as a
parameter.
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Fig. 6.10. Real components of amplitude ratios of the reflected S-wave to the
incident S-wave in the scale case of M=2 with I, the dimensionless scale factor as
a parameter.
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(iv) the amplitude of the reflected P-wave increases appreciably near the
critical angle and reaches a maximum at the critical angle (twice that
of the incident S-wave).
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Fig. 6.11. Two mode conversion angles for an incident S-wave versus the dimen-
sionless scale factor I; — the first mode conversion angle, --- the second mode
conversion angle.

For ease of viewing the dependence of the mode conversion on the mi-
crostructural variables, the two mode conversion angle versus the dimension-
less scale parameter I, for an incident S-wave, are plotted in Fig. 6.11. It is
observed that both critical angles increase sharply with ! when ! < 30, vary
slowly when 30 < ! < 100, and reach a maximum value when ! = 100. The
classical case (nonscale) is again retrieved at [ greater than 100.

By employing equation (6.45), A¢ denoting the amplitude of an incident
S-wave, the phase changes of the reflected waves to an incident S-wave for
M =2 and & = /3 are plotted in Figs. 6.12 and 6.13. It is observed that

(i) phase changes of reflected waves to an incident S-wave are strongly in-
fluenced by scale factor I.

(ii) the reflected P-waves for ! > 100 always have a phase difference of = with
respect to that of the incident S-wave; the phase differences between the
reflected P-wave and the incident S-wave for other values of ! increase
with decreasing | and change continuously with the incident angle.

(iii) the reflected S-waves at ! greater than 100 also have a phase difference
of m with respect to that of incident S-wave and have an abrupt phase



120 6. Reflection of Plane Waves (M. Zhang and M. Ferrari)

4.5 T I T
o)
= -
T 4 DI—Z.S _
<
3
o
& 35 [_\5 T
53

10 -

& | 100
s
6 v
[ 3 - mﬁmty -
§
&

25 ] | |

0 10 20 30 40

Incident Angle (degrees)

Fig. 6.12. Phase changes of the reflected P-wave with respect to the incident S-
wave in the scale case of M=2 with [, the dimensionless scale factor as a parameter.
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in the scale case of M =2 with [, the dimensionless scale factor as a parameter.
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change of 7 around 30°-35°, at which the mode conversion of reflected
S wave occurs.

6.6 Closure

In this chapter, doublet mechanics has been used to analyze the elastic wave
reflection at discrete free-boundary interfaces. The amplitude ratios of re-
flected waves to incident waves and phase shifts of the reflected waves have
been obtained analytically. It was found that the results of first order ap-
proximation, which corresponds to the situation of nonscale, isotropic solids,
are consistent with those obtained using classical continuum theory.

Upon accounting for scale effects, novel results were established that have
no counterpart in classical elastodynamics. In particular, it was found that the
critical angle of mode conversion, the amplitude ratios, and the phase shifts in
reflection phenomena are dependent on a dimensionless scale parameter. Such
dependence is more pronounced at shorter dimensionless wavelengths, that
is, for larger discrete sizes for a fixed wavelength. The non-dimensionality
of the scale parameter renders the present results applicable to materials
with significantly different typical microstructural dimensions, as long as the
wavelengths are proportionately scaled. The classical elastodynamic reflection
results were found to hold as an excellent approximation in the wavelength-
to-discrete size ratio of order 100.



7. Surface Waves — Difference Equations

V.T. Granik

7.1 Introduction

The first study of surface waves dates back to the end of the nineteenth cen-
tury with an article by Lord Rayleigh (1885). He considered a plane wave
traveling along the free boundary of a solid half-space and decaying expo-
nentially with depth. The continuum solid was assumed to be linear-elastic,
homogeneous and isotropic. It was established that the velocity of such a
wave is independent of the wavelength, i.e., the classical Rayleigh surface
wave (RSW) is nondispersive. Because of propagating predominantly in a
thin surface layer, the RSW can travel over long distances without consider-
able attenuation. Due to this, and some other unique properties, the RSW and
other surface waves (SW) have found many uses in geophysics, seismology,
signal processing and nondestructive evaluation. A review of these applica-
tions can be found in the edited volumes of Miklowitz and Achenbach (1978),
Oliner (1978), Blakemore and Georgiou (1988), Mal and Singh (1991) Datta
et al (1990) and Achenbach (1993).

The technical and physical applications imparted a powerful impetus to
SW investigations. Since Lord Rayleigh’s seminal work, this scientific field
has been extended far beyond the classical half-infinite continuum, especially
over the past several decades. Now it includes solids of different shapes, sizes,
internal structures and physical properties. Basic aspects of the SW stud-
ies are covered in various monographs by Ewing et al (1957), Kolsky (1963),
Viktorov (1967), Pilant (1979), Achenbach (1980), Brekhoskikh (1980), Hud-
son (1980), Miklowitz (1980), Ben-Menahem and Singh (1981), Malischewsky
(1987) and others. The particular phenomena of the RSW propagation
(diffraction, reflection, refraction, scattering, dispersion) as well as higher-
order effects due to anisotropy, inhomogeneity, etc., are considered in numer-
ous articles.

Until now almost all theoretical researches into the SW have been under-
taken on the assumption of local elasticity. As has already been mentioned
in Chap. 3, the local theories of elasticity disregard the underlying discrete
microstructure of solids at all levels, from atoms in crystals to the grains of
bulk materials and the blocks of the Earth’s crust. Considering all solids as
continua, the local models are capable of revealing a macroscopic dispersion
that derives from finite macroscopic dimensions of both solids (rods, plates,
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shells, etc.) and their internal elements (layers, inclusions, cavities, cracks,
and so on). Due to this point, macroscopic dispersion is encountered over
the band of relatively long wavelengths which are comparable with the above
macroscopic dimensions.

There exists, however, another kind of SW dispersion, a microscopic one.
This kind of dispersion is induced by scale parameters of microstructure that
are small in comparison with dimensions of the solid. These parameters may
be small interatomic distances in crystals, or sizable grains in granular arrays,
or gigantic blocks of the Earth’s crust. A study of microscopic dispersion is
impossible by the local theories of elasticity.

Here we address the problem of the RSW on the basis of doublet me-
chanics (DM). Being a nonlocal theory of elasticity, DM enables one to take
into account the aforementioned scale parameters and, thus, open the way for
studying microscopic dispersion. It should be noted, however, that this chap-
ter is not an extended research on surface waves. It is to be regarded only as
an introduction to the subject limited to consideration of a typical problem:
the propagation of the RSW in an elastic half-space. But unlike the classical
continuum, this half- space is assumed to have a certain (in particular, a
simple cubic) microstructure.

The problem of propagating the RSW in media with cubic microstruc-
ture is not new per se. It first attracted attention about forty years ago when
Stoneley (1955) calculated secular equations of the RSW traveling in an elas-
tic cubic half-space assumed to be an anisotropic continuum. Within the
framework of continuum mechanics, surface waves in media with cubic mi-
crostructure were then considered by Gazis et al (1960), Buchwald and Davis
(1963), Rollins et al (1968), Chadwick and Smith (1982), Royer and Dieule-
saint (1984) to mention a few. In terms of continuum mechanics such media
prove to be nondispersive. Recently, a series of studies of the RSW dispersion
in so-called superlattices have been performed drawing on the conventional
(local) theory of elasticity. The superlattices consist of two different alter-
nating thin layers, each layer usually being a material of isotropic or cubic
symmetry. The number of layers is taken large enough so that the layer
thickness may be deemed as a scale parameter of the superstructure result-
ing in an intermediate (between macro- and microscopic) dispersion of the
RSW. Kueny and Grimsditch (1982) calculated the velocities of the RSW in
a superlattice of up to 1000 alternating layers of Nb and Cu deposited on
a substrate. Djafari-Rouhani et al (1984) addressed the propagation of the
RSW on a superlattice cut normal to its laminations.

Some researches on surface waves in cubic crystals with central inter-
atomic forces have been conducted on the basis of lattice dynamics (LD). Us-
ing an atomic model of LD, Dobrzynski et al (1984) studied surface-localized
phonons in a three-dimensional superlattice built up from two different alter-
nating simple cubic lattices. A number of surface wave problems were consid-
ered in the fundamental monograph on LD written by Maradudin et al (1971,
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Chapter IX and references therein). Within the scope of a nonlocal theory of
elasticity different from LD and DM, the problem of propagating the RSW in
a homogeneous isotropic medium with central binary interaction was treated
by Kunin (1983).

We now refer to the problem of the RSW in order to show the subtle
capabilities of DM which are inaccessible to local continuum theories. We re-
strict ourselves to the lattice model with nearest-neighbor interactions. Unlike
LD, the underlying particles of a solid have two independent degrees of free-
dom, translations and rotations. This makes the particles interact not only
through central but also through shear microforces. To obtain a solution of
the problem we apply a variant of DM: difference governing equations, in
contrast to differential governing equations in the previous chapters. These
doublet mechanical equations enable us to reveal the microscopic dispersion
of the classical RSW over the band of relatively short wavelengths. In pass-
ing, microscopic dispersion of plane P and S waves is established. We also
compare the results obtained with those yielded by the classical (local) theory
of elasticity, as well as by another nonlocal model of elasticity (Kunin 1983).

7.2 Geometry, Kinematics and Microstrains

In what follows we apply the notions, terminology, notation, summation con-
ventions and governing equations of DM as they are set forth in Chap. 1.
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Fig. 7.1. Elastic, half-infinite solid with simple cubic microstructure
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We consider an elastic half-infinite solid with a simple cubic lattice with
a parameter 7) (Fig. 7.1). The initial and current configurations of the solid
are identified in the rectangular Cartesian frame of reference {z;} with a
right-handed unit vector basis {e;} obeying the relations

e;-e; = d;j, (7.1)
e; = eijk ej X €. (72)
7o

@)

€, p p+1

€, X

Fig. 7.2. Underlying microstructural element (bundle of the solid consisting of two
doublets (A, B) and (4, C))

We consider a plane problem with a plane two-valence (n = 2) bundle T},
of doublets (4, B,), o = 1,2, or simply (4,B) and (4,C) (Fig. 7.2). The
unit vector-directors 7% of the bundle T, are, in general, determined as

For the cubic microstructure in question, the doublets (A4, B) and (4, C) are
parallel to the unit vectors e; and e, respectively (Fig. 7.2). Therefore in
eqn. (7.3) 75; = 0qi, which results in the relations

1'2’1) =e, -r(°2) = ey, 1‘?3) =0. (7.4)

Hereafter the numerical values of the Greek indices are placed between paren-
theses to distinguish them from the Latin indices.

The kinematics of an arbitrary particle A of the solid is determined by
the independent translations u and rotations ¢. In general,
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u=u;e;, ¢ = ¢;e;. (7.5)

In the plane problem, uz = ¢; = ¢2 = 0, and the relations (7.5) reduce to
u=1u;e + usesy, (76)
¢=ypes (7.7)

where ¢ = ¢3. When passing from particle A to the adjacent particle B, €
(A, By), the vectors u and ¢ gain increments Au, and Ag,, respectively.
The increments Au, and A¢, can be represented as

D, = Augie;, Apo = Ddaie;. (7.8)
In terms of eqns. (7.6) and (7.7), eqns. (7.8) take the form

Auy = Augr e) + Augses, (7.9)

Ady = Dp, e3. (7.10)

Now we consider the doublet microstrains of elongation €,, torsion p, and
shear v,. Given that the scale parameters n, = 1, a = 1,2, the magnitude
€q of the axial microstrain €, = €, TS is expressed by eqn. (1.11)

€a =1"" (Aua - T3). (7.11)
In view of the relations (7.1), (7.4) and (7.9), eqns. (7.11) become
ey =17 Buqy, €@) =1 D). (7.12)

The magnitude u, of the torsion microstrain g, = po 75 is determined
by (eqn. (1.16))

to =17 (Db T3). (7.13)

If we take account of the relations (7.1), (7.4) and (7.10), then eqn. (7.13)
reduces to the zero identity pu, = 0. So, in the plane problem, there are no
microstrains of torsion 4.

The shear microstrain v, is given by (eqn. (1.21))

Yo = [1/;0 - (qb + % Aqﬁ:a)] X To. (7.14)

In eqn. (7.14), 44 is a small angle of the initial vector-director 72 with its
actual position T,. Since the axial microstrains ¢, are assumed to be small
(leal < 1) and the scale parameters ng = 7, eqn. (1.9) takes the form

To =T+ 071 Au,,. (7.15)
With regard to the relations (7.7), (7.10) and (1.22), eqn. (7.14) takes the

form

1
Yo = [T: XTa — (‘P"‘ 5 A‘Pa) 93] X To (7.16)
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In eqn. (7.16) the double cross product (79 X To) X Tg can be written as
(TS X To) X T = (T3 T2) Ta — (To Ta) Ta = Ta — (To Ta) To(7.17)

Here the dot product 75 - 72 = 1 because |73 = 1. In view of eqns. (7.11)
and (7.15), eqn. (7.17) becomes

(TS X To) X 7O, =07  Aug — €4 T (7.18)
Substituting (75 x To) X T2 from eqn. (7.18) into eqn. (7.16), we have
-1 o 1 [
Ya=n""Aug—€6 T, — |p+ 3 Do, ) e3 x T (7.19)

Equations (7.2) and (7.4) bring about the following expressions for the last
term in eqn. (7.19):

(w + % Asou)) e X T( = (S" + % A%)) ez, (7.20)
1 1
(cp+ 3 A<p(2)> €3 X T(y =— <<p+ 3 Acp(z)) e. (7.21)
From eqn. (7.14) it follows that
Vo To = (['Pa— (¢+%A¢¢,)] xrg) -7 =0. (7.22)

This identity means that the microshear v, of any doublet (A, B,) is per-
pendicular to the unit vector-director 73 of this doublet: vo L 75. Along
with eqn. (7.4), the identity (7.22) also means that (1) L e; and 7y(z) L e3.
Hence the general representation of the vectors v,

Ya = Yoi € (723)
assumes the form
Y@ = Y1)z €2 Y(2) = Y@2)n er. (7.24)

Now the relations (7.9), (7.12), (7.20), (7.21) and (7.24) allow us to write
eqn. (7.19) as follows:

_ 1
Yy = 17" Dugys — (90 +3 A90(1)) , (7.25)

- 1
Y =1 ! Duz) — (SO + 3 AQO(z)) . (7.26)
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7.3 Microstresses and Constitutive Equations

Any deformation of a solid which induces the microstrains €4, o and vqi,
simultaneously generates corresponding microstresses p,, m, and tu;. The
relationship between the microstrains and the microstresses is given by the
constitutive equations (Chap. 2)

n
Pa=_ Aapes+Jab, (7.27)
p=1
n
me = Eagup, (7.28)
p=1
n
toi = Y lapij 1p;- (7.29)
p=1

We will apply these equations in a simplified form by taking the following
assumptions:

1. Thermal effects are neglected (J, © = 0).
2. Particle interactions are local (Aag = A 0ap;, Eop = Eabap, lapij =
I, 505 d; j).
With these two assumptions, eqns. (7.27)—(7.29) become
Pa = Ao €a, mq = Eq Has toi = In Vai. (730)

3. Particle interactions are homogeneous (the physical constants 4, = A,
E, = E,, I, = I, for any a = 1,2). Therefore, the elastic deformation of
the solid is defined by the three micromoduli of elasticity Ao, E, and L.
In view of this assumption, eqns. (7.30) take the form

Po = Ao €qa, ma = E, tq, tai = Io Yai- (731)

7.4 Difference Kinematic and Constitutive Equations

Consider an arbitrary bundle of the cubic microstructure in Fig. 7.2 and the
translations and rotations of the constituent particles A, B, C in Fig. 7.3.
For the doublet (A4, B), whose index a = 1, we have the following increments
of translations and rotations (Fig. 7.3):

Au(l)l UB - UA
AU(1)2 = VB - VA (7.32)
Dy $B~—¥A

For the doublet (4, C), whose index o = 2, we obtain
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q+li

P p+l

Fig. 7.3. Translations and rotations of the constituent particles of the underlying
bundle

Vip,q+l)

q+1

Vip+l,q)

¢(p+tl,q)
U{p+l,q)

Vip,q-1)
<P(P'Q‘l)

\ U(p,g-1)

p-1 P p+l

Fig. 7.4. Translations and rotations of the particles adjacent to an arbitrary par-
ticle A of the solid
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Augy Uc—Ua
AU(z)z = VC - VA (733)
Dpz) Pc —pa

Together with eqns. (7.12), (7.25) and (7.26), the relations (7.32) and (7.33)
determine the microstrains of elongation and shear of the doublets (A, B)

and (4,C):
€ L-feap | _1[Us—Ua 7.34
{6(2)}_{%0} n{UC—UA (734)
Y(1)2 } — { YAB } _1 { Ve —Va—(Pa+ @B) } (7.35)
Y21 J | vac n | Uc—Ua+(¢a+@c)
where @ = ny/2. Now we consider Fig. 7.4 which shows an arbitrary particle
A with the doublets that belong to it: (4, B), (4,C), (4, D), (4, E). In terms

of eqns. (7.34) and (7.35) and the discrete coordinates (p,q) (Fig. 7.4) we
obtain the microstrains of elongation and shear of all the adjacent doublets:

€AB . U &p + l,qg - ng, qg
_ Vip,g+1)~-V(p,q
E}={ ¢ 3} == P,q 7.36
{E} €AD n )] Ulp,g-Ulp-1,9) (7.36)
€AE Vip,9) - V(p,g—1)
YAB
= YAC
{ry = YAD
YAE

Vp+1,9) - V(p,q) — ¢(p,q) — (P + 1,9)
L] Ulpa+1)~Ula) +¢@:a) + g+ 1) L g 57y
n)| V9 -Vie-19-opq9-apr-19 '
Ulp,9) = Ulp,a—1) +¢(p,9) + (P, g — 1)
Equations (7.31) and the relations (7.36) and (7.37) result in the consti-

tutive equations for the microstresses in the doublets (A, B), (4,C), (4, D),
(AE): {P}=A.{E} and {T} = I, {I'}, or

PaB B ‘Ii gp + l,clzg - ggp, qg
— pba _ 1o p,q+ - D,q
{P}= pAZ " n ) Upa)-Ulp-1,9) (7.38)

PAE V(p’ q) - V(p’ q—= 1)
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taB
tac
T
{T} tab
tAE

Vip+1,9)-V(p,q) - #(p,q) — ¢+ 1,9)

_ L ) Ulpg+1)-Ulp,a) +&(p,q) + ¢(p,g+ 1)
n | Vipe)-Vip—1,9) - ¢(p,q) - ¢(p-1,9)
Ulp,q) - Ulp,g— 1)+ &(p,q) + @(p,q — 1)

(7.39)

.”L\
i C ; q+l
N(g+DA Q(q+1)
N
z n
Qp+1) 1
2 Nep-1) A A
P, = g
e (p’H )\\’/
Qlp- 1Y ’2'
Qla-H)
< n
%m)
n a
2 2
n 1
p-i p p+i

Fig. 7.5. Microforces acting upon an arbitrary particle A of the solid

The microstresses { P} and {T'} correspond to the internal axial and shear
microforces {N} = n? {P} and {Q} = n? {T'} respectively, 7? being the area
of the face of a simple cubic cell. We have (Fig. 7.5)

11:’;13 %gp'*' 1;
_ _ +1
WI=0 N (= ) Np-1)

N4k N(g-1)

g?+Lg—€%%

p7q+ - D,q

Aon Ulp,q) = U(p-1,q) (7.40)
Vip,9) - V(p,q—1)
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o || a6ty
_ _ qg+1
{0 = Qig =1 Qp-1)

Qak Qg - 1)

V(p+1,9) = V(p,9) — #(p,q) — ¢(p+ 1,9)
I n U((p,q + 1) - U(p7 q) + ¢(p’ Q') + @(pa q + 1) (7 41)
° Vip,9)—V(p—1,9) - @(p,q) — ¢(p— 1,9) '
Up,q) - U(p,q— 1)+ &(p,q) + ¢(p,q — 1)

7.5 Difference Equations of Motion

Let us return to an arbitrary particle A whose position in the initial configu-
ration is identified by the lattice coordinates (p,q). The equations of motion
of the particle can be written as

d*u(p,q;t)

F(p,g;t) =m iz (7.42)
Po(p.gt) _ .2 &@(p,g;t)
M(p, q; t) =J di? = Ja di? (743)

where t is time, m and J are the mass and the axial moment of inertia of
the particle, F(p,q;t) and M(p,q;t) are the total microforce and the total
micromoment of microforces acting on the particle. In the notations F(p, g; t),
M(p,g;t), u(p, q;t), ¢ (P, 4:t), @(p, g; t), the symbol ¢ is separated from p, ¢ in
order to emphasize an essential difference between them. The point is that the
functions F(p,g;t), M(p, q; ), u(p,¢;t), ¢(p, ¢;t), (p,g; t) are continuous in
t and discrete in p, g. Hereafter, for the sake of simplicity, the argument ¢
will generally be omitted, although implied. '

In the plane problem the vectors u(p,q), ¢(p,q), F(p,q), M(p,q) are
(Figs. 7.4 and 7.5)

u(p,q) =U(p,g)e1 + V(p,q) ez, (7.44)

¢(p,q) = ¢(p,q) €3, (7.45)

F(p,q) = [Np+1)-Np-1)+Q(g+1)-Q(g—-1)]e
+[N(g+1)—-N@g-1)+Q(p+1)-Q(p—1)]es, (7.46)

M(p,q) = 57lQp+ 1)+ Q= 1)~ Qg +1) - Qa~Dles.  (7.47)

Equations (7.46) and (7.47) are valid for any particle A inside the solid
when ¢ = 1,2,... or z2 = 1,2n,... (Fig. 7.1). If the particle is located on the
surface ¢ = 0 and z; = 0, the internal microforces N(g — 1), Q(q — 1) are
absent and eqns. (7.46) and (7.47) become
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F(p,q) = [Nep+1)-Np-1)+Q(g+1]es
+[N(g+1)+Q(p+1)—Q(p—1)] ey, (7.48)

M(p,q) = 37(Q(p+1) +Q(p~ 1) ~ Qg+ 1)]es. (1.49)

It should be noted that the vectors F(p,q) and M(p,q) have not included
external (body) microforces because they usually are unessential in the wave
studies.

We assume that the constituent particles of the solid are spherical, n being
their diameter. The axial moment of inertia J of such a particle is

2
_mn
J = 0 (7.50)
We take the mass
m=n’p (7.51)

where 1 is the volume of a cubic cell, p is the average mass density of the
solid. With regard to eqn. (7.51), eqn. (7.50) assumes the form
5

= (7.52)

7.6 Difference Governing Equations

The above relations suffice to obtain the governing equations of the solid in
terms of the particle translations and rotations. For this purpose, we substi-
tute into the equations of motion (7.42) and (7.43) the displacements u(p, q)
and rotations ¢(p, q) from eqns. (7.44) and (7.45), and the dynamic vectors
F(p,q) and M(p, q) from eqns. (7.46)—(7.49). Then, in view of the constitutive
relations (7.40) and (7.41), we obtain the difference governing equations:

1) For the particles inside the solid (¢ = 1,2,..., 2z = g, 21g,...)
Ulp+1,9) —2(1+9)U(p,g) + U(p - 1,9)
+9[U(p,g+1)+U(p,a— 1)+ @(p,a+ 1) - ¢(p,a - 1))

= (%)2 12.[%‘1_), (7.53)
Vip,g+1)-2(1+9)V(p,9) + V(p,g— 1)

+9[Vp+1,9)+V(p—-1,9) — @+ 1,9) + @(p - 1,q)]
Ulp,q+1)-Ulp,q—1)-V(p+1,9)+ V(p—1,9) + 4¢(p, q)

+3(p+1,9) + @lp—1,9) + ¢(p,q +1) + ¢(p,g — 1)

= —0.49"! (—2,-)2 fi-z“id(t%q—). (7.55)
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2) For the particles on the plane boundary of the solid (g =0, 23 = 0)

Up+1,9)~(2+9)U(p,q) +U(p-1,9)
+9[U(p,g+1) + @(p,q) + &(p,q + 1)]

- (%)2 9%, (7.56)
Vip,g+1)—(1+20)V(p,q) +9[V(p+ 1,9) + V(p—1,9)

-®(p+1,9) + ¢(p—1,9)]

- (3 L2 =
U(p,g+1)-Ulp,q) - V(p+ 1L,9) + V(p— 1,9) + 3¢(p,9)

+e(p+1,9) + p(p—1,9) + ¢(p,g + 1)

= 04971 (%)2 ‘F—“;(t’;@. (7.58)

In the above equations,

L [4,
9= C=y= (7.59)

where C is a velocity whose physical meaning will be discussed below.

7.7 Continuum Approximation

The governing equations (7.53)—(7.58) are represented in terms of the dis-
crete lattice coordinates (p,q). With respect to these coordinates the Carte-
sian coordinates (z1,z,) are x; = pn, 2 = qn (Fig. 7.1). Hence any lattice
functions f(p,q)—the translations U(p,q), V(p,q), the rotations @(p, q), and
the other—may be mapped into f(z1,z2): f(p,q) = f(z1,22). Analogously,
f(p+1,9) ~ f(zi+n,22), f(p,g+1) = f(x1,22+1n), etc. Beyond the lattice
points z, = pn, T2 = g, the functions f(z;,z;) are indeterminate per se and
might therefore be redefined. In DM the functions f(z,,z2) are supposed to
be continuous and repeatedly differentiable in all the region occupied by the
solid under consideration. Nonetheless, in this chapter such an assumption is
not necessary and we will take it for a while in order to compare the above
discrete governing equations with those of the classical elastic continuum.
The foregoing assumption permits expanding the particle translations and
rotations into finite power series
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where the differential operators [Ig';), L
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Ulp+1,qt) U(z; +n,2,t)
V(p + 11 q; t) = V((II] + 7, .’1)2,t)
Sa(p + 1, q; t) 95('771 + 7, .’L'z,t)
U(:L'l,.’vz,t)
= (1+£{) { V(or,z2.1) (7.60)
(p(xl,m%t)
Ulp-1,4qt) Uz —n,2,1)
Vip-1,¢t) = V(zy = n,29,1)
@&(p—1,q;1) @(x1 —n,22,¢)
U((IIl,:L‘z,t)
- (1 + cg;)) V(z1,22,1) (7.61)
@(xl’xmt)
U(p,q+1;t) U(zy,z2 +1n,t)
V(p,q + 1’ t) = V(x1a$2 + 7, t)
<,5(p,q + 1; t) ‘P(zlvxZ + 7, t)
U($1,.’L‘2,t)
= (1+£8) { V(zy,22.1) (7.62)
¢(.’D1,$2,t)
U(p,q—15t) U(zy, 22 —n,t)
V(p,q - 1;1) = V(z1,z2 — 1,t)
&(p,q—15t) @(z1,22 — 1, t)
U($1,$2,t)
= (1 + 4;)) V(z1, 72,t) (7.63)
Qb(.’l,‘l,.’l}z,t)

=) g, LS5 (M > 2) are defined by

12
") M e o
Ly = '; P (7.64)
(x) S
Ly = §(_1) W Bzt (7.65)
M . oe
gy = Kle—!(i : (7.66)
(x) S
Ly = ;( 1) a5 (7.67)
From eqns. (7.64)-(7.67) it follows that
£y +L5) = 26521@’ (7.68)
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£ — o) =237, (7.69)
£ 4 L8 =239, (7.70)
LY — () =28, (7.11)

Substituting the translations U, V and rotations ¢ of the mappings (7.60),
(7.61), (7.62) and (7.63) into the first set of governing equations (7.53), (7.54)
and (7.55). Taking into account eqns. (7. 64) (7.71) we come to the operator
representation of the governing equations in terms of the continuous functions
U = U(zy,22,t), V = V(21,72,t) and ¢ = @21, T2, 1):

2 (£ +9 S U0V o= =(2 0)2 %zg, (7.72)
2 (L5 + 9 L) v-20L0 Vg = (2 0)2 a;:, (7.73)
(E V-V (44 L5 + 7)o
=-0207' (& 0)2 (?;2 (7.74)
In view of the relation ¢ = np/2, these equations become
9 (L(Zn) _H9£(2n)) U+19n£(2'° D= (0)2 ?92;2]’ (7.75)
9 (ngln) _*_19[:(2&)) V- 1971[:(2:6 D= (0)2 %2;/, (7.76)

[’gz;x 1)U C(zn 1) Q (4+L(121n) +L(2n))

- () @' 5 @

Substituting the differential operators L3 o) Ja e is Y from
eqns. (7.68)~(7.71) into eqns. (7.75), (7.76) and (7. 77), and allowmg for
eqns. (7.64)—(7.67), we obtain

l\?

82U RU | dp L, 0

a '9(62+6_2>+O( =t (7.78)

8V BV By %

77t ( 527 5:71) +0() = C? 5, (7.79)
2

W _ ourou)=-Lorc2LY (7.80)

Oz 2 oz i p E 6t2
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where O(1?) denotes the terms of order n? and higher. In the continuum
approximation 7 — 0 and, hence, all the components O(n?) disappear. In
addition, the right-hand side of eqn. (7.80) also goes to zero. Dropping these
terms and eliminating ¢ we reduce eqns. (7.78)—(7.80) to

QU 98U 9 PV, _,0U
o2 t3 Oz t3 0z; Ozy a2’ (7.81)
BV 9V 9 PU ., _, 0
5] T 20 T 202,00~ OB (7.82)

We can now compare these differential equations with the similar Navier
equations of an elastic, homogeneous, isotropic continuum (Mal and Singh
1991). In our case of the plain problem (plain strain) Navier’s equations
assume the form

U u U  A+p OV 08U

0z  A+2u Oz + A+2p Bz, 0z, ° Bt (7.83)
BV 4 BV A+p BU 0
Oz2 gy 2u 8z A+2u Oz10zy e a2’ (7.84)

where A and p are the Lamé constants, C, is the velocity of compressional
(or P) wave defined by

A+2
Co= (A2, (7.85)
p
It is clear that the two sets of equations—both (7.81), (7.82) and (7.83),
(7.84)—have identical structure. They coincide if their coefficients are related
by

v_ __#

27 A+ (7.86)
9 A+p

2 A+ (7.87)
C = Co- (7-88)

The equality (7.88) attaches a definite physical meaning to the parameter C
introduced earlier by the micromechanical relation (7.59): C is the velocity of
the P-wave in an elastic, homogeneous, isotropic continuum. Equations (7.86)

and (7.87) yield
A=0, (7.89)
9=1 (7.90)
In view of eqns. (7.59), (7.85) and (7.89), eqn. (7.88) yields
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Ao =2p. (7.91)
This relation, along with eqns. (7.59) and (7.90), means that
I, = A, = 2p. (7.92)

Recalling that Young’s modulus E and Poisson’s ratio v are determined by
(Mal and Singh 1991)

_B(BA+2p)

B=25 (7.93)
A
v = m (7.94)

and comparing eqn. (7.93) with eqns. (7.89) and (7.92), on the one hand, and
eqn. (7.94) with eqn. (7.89), on the other hand, we find the elastic constants
to be

A, =1, =E, (7.95)
v=0. (7.96)
In view of eqns. (7.59) and (7.95), the velocity C is now expressed as
E
C=yf—. 7.97
- (197

We thus see that in a continuum approximation of the theory, the present
solid of a simple cubic microstructure is characterized by two different elastic
micromoduli A, and I,. It becomes an isotropic medium as soon as these
microconstants assume equal values, i.e., A, = I, = E. In such an isotropic
continuum, Poisson’s ratio v is equal to zero.

7.8 Steady-State Waves — General Solution

For studying wave propagation in a solid we will apply the difference gov-
erning eqns. (7.53)~(7.59). Some relations of the previous chapter will also
be referred to. With regard to eqn. (7.90), the governing equations take the
form:

1) For the particles inside the solid (g =1,2,...)
Ulp+1,9) —4U(p,9) +U(p—-1,9) + U(p,q + 1) + U(p,q - 1)

+o (p7q+ 1) — (ﬁ(p,q —_ ]_) = (%)2 dzU(p,q)

s (7.98)

V(p,g+1) -4V (p,q) + V(p,q ~ 1)

—p(p+1,9)+p(p~1,0) = (

+
n\2 d*V(p,q)
C ) ez’ (7.99)
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Ulp,g+1)-U(p,q—1)-V(p+1,¢9) + V(p— 1,9) + 45(p,q)
+p(p+1,9)+ @ - 1,9) + ¢(p,q +1) + ¢(p,g — 1)

= —04 (%) %. (7.100)

2) For the particles on the plane boundary of the solid (¢ = 0)
Ulp+1,0) - 3U(p,0) + U(p— 1,0) + U(p,1) + &(p, 0) + ¢(p, 1)

= (.g)z ﬂ_%(t%l), (7.101)
V(p,1) = 3V(p,0) + V(p+1,0) + V(p - 1,0)
- _ n\? d?V(p,0)
-o(p+1,0)+p(p-1,0)= (5) — (7.102)
U(p, 1)~ U(p,0) ~ V(p+1,0) + V(p ~ 1,0) + 3p(p, 0) + &(p + 1,0)
+¢(p—1,0)+ ¢(p,1) = —0.4 (%)2 EWT(ZQ’Q (7.103)

We seek a solution of eqns. (7.98), (7.99), and (7.100) in the form of a
harmonic, or steady-state, wave propagating in the z,- or p-direction along
the free surface of the half-infinite solid (Fig. 7.1):

U(p,q;t) U(g)
{ V(p,g;t) } = { V(q) } expli(knp — wt)]. (7.104)
?(p,q;t) ?(q)

Here, and hereafter, i = /-1, k = 2n/l; k, | and w are the wave number,
wavelength and circular frequency, respectively. Equation (7.104) results in

Ulp+1,g;t) U(q)
{ Vip+1,g;¢) } = { V(a) } exp{ilkn (p + 1) — wt]}. (7.105)

#(p+1,q;t) @(q)
Ulp—1,q;t) U(q)
Vip-Lgt) » =4 V(a) ¢ explilbn(p-1)~wi]}. (7.106)
@(p—1,4;1) ?(q)
U(p,q +1;t) U(g+1)

{ Vip,q+ L;t) } = { Vig+1) } exp[i(knp — wt)]. (7.107)
@(p,q + 1;t) P(g+1)

{ Ulp,q— 1;t) } { U(g—1) }
Vip,g—1;t) ¢ =4 V(g—1) ¢ expli(knp — wt)]. (7.108)
@(p,q — 1;t) ¢(g—1)

Substitution of eqns. (7.104)-(7.108) into eqns. (7.98), (7.99) and (7.100)
gives the following equations in terms of U(q), U(¢ + 1), U(g — 1), and so
forth:



78 Steady-State Waves—General Solution 141
Ulg+1)+a1U(q)+U(g—-1) +@(g+1) - plg—1) = (7.109)
Vig+1)+a V(@) +Vig—1) —iaplg) = 0, (7.10)
U(g+1)-U(g—1)—iaz V(g) +@(g+1) +as #(a) + §(g— 1) = 0.(7.111)

Similarly, eqns. (7.101), (7.102), (7.103) become

U(1)+ (14 a1)U(0) + §(0) + ¢(1) = (7.112)

V(1) + (1+a1)V(0) —iaz §(0) = 0, (7.113)

U()-U(0)—iaz V(0) + (as — 1)@(0) + (1) =0 (7.114)
where

a; = 2 costp—4+E2 92, ay =2 sinh, az = 2 cosyp+4+0.4£74%(7.115)

27 l
p=kn=, p=o, E=g, =

c
B c’
¢ being the wave velocity. The relations (7.109)(7.114) represent a set of
homogeneous linear difference equations in g with constant coefficients. To
elucidate the technique of solving such equations we proceed according to the
theory of difference equations (Brand 1966).

Let us introduce the difference operator £ by

W
- 7.11
., (7.116)

£ fla)= flg+1) (7.117)
Repetitions of £ are written as powers; thus,

E" f(q) = f(g+n). (7.118)
We also have

Ef@=r), E'fl@=1F-1. (7.119)

Given these definitions, we can write the difference equations (7.109), (7.110),
(7.111) as

L )-{s)
Fig] v(g) $={0 (7.120)
#(q) 0

where F[£] is the operator matrix

E+a,E+1 0 £ -1
F[E] 0 &2 +a1€+ 1 —z'azf,' (7.121)
82—1 —iazf,' 52+a38+1

The general solution of the homogeneous equations (7.120) may be written
as soon as the roots of the characteristic equation F({) = 0 are known.
Allowing for eqn. (7.121), we must solve the characteristic equation
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CH+a(+1 0 -1
F(¢) = det 0 C+a(+1 —tag( =0. (7.122)
Cz—l —tas (2+a3(+1
Equation (7.122) yields the two algebraic equations
G+a(+1=0, (7.123)
C+bi(+1=0 (7.124)
in which
2
by = dtamas+a; (7.125)
a; +as
Equations (7.123) and (7.124) have the roots
G —-a,/2—vD;
= 7.126
{ G —-a1/2+ VD |’ ( )
G2 —b1/2— VD,
= 7.127
{44} {—b1/2+\/_D2 ) (7.127)
where
2 2
-9 b
D, = 2 1, Dy = 1 . (7.128)

As seen from eqns. (7.126) and (7.128), the roots (;, {3 will be real if
D > 0 or |a;| > 2. In view of eqn. (7.115) the latter condition brings about
the following restriction imposed on the dimensionless (relative) wave velocity
&:
sin(w/2)
< = —.
§<&p my

The same reasoning for the roots {3, (4 on the basis of eqns. (7.127) and
(7.128) results in another limitation on the velocity §:

E<E =9 4 by — /6] —bs (7.130)

in which the parameters by and b are
by =T7.5+1.5 cosyp + 1, bs = 20 (1 — cos ). (7.131)

The quantities £p, £ may be defined as &p = Cp/C, & = Cs/C, where
Cp and Cs are the velocities of respectively P and S (shear) plane waves
in the solid with microstructure. These statements will be proven below.
According to eqns. (7.129), (7.130) and (7.131) both £&p and £s depend on
the parameter ¢ = 2/ and, thus, are functions of the relative wavelength
B =1/n &p = &(B), & = &(B). This means that P- and S-waves are
microscopically dispersive.

(7.129)
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The functions ép(8) and &s(B) are shown in Fig. 7.6. As seen from the
figure, at 3 = I /1 — oo the velocities £p(83) and £5(8) tend to certain limits:
€p(B) o> Ep=1land &(B) = & = \/li/i = 0.707107 (the exact values are
obtained in terms of eqns. (7.129), (7.130) and (7.131)). For any wavelength
l > 0, the limit I /n -+ oo is reached at n — 0, i.e., in a continuum approxima-
tion. It follows that {5 and £ are ultimate dimensionless velocities of P- and
S-waves in an unbounded linear-elastic, homogeneous, isotropic continuum
(&5 holds only with Poisson’s ratio v = 0).

The above microscopic dispersion is mainly pronounced over the bands of
relatively short wavelengths (Fig. 7.6):

— the velocities £ (8) depart from their continuum counterpart £ = 0.707107
by 1% and more at the relative wavelengths 2 < 3 =1/n < 5,

— the velocities £p () depart from their continuum limit £ = 1 by 1% and
more over the wave band 2 < § < 12 which is wider than that for S waves.

We now return to the relations (7.126) and (7.127). Assuming that the
restrictions (7.129) and (7.130) are valid, we get four distinct real roots n,, r =

1,2,3, 4, that generate four independent solutions of the difference equations
(7.120)

{Ur(Q)} [Ar 0 0]{(53}
Vilg) $=| 0 B. 0 ¢t (7.132)
¢r(q) 0 o0 G ¢

Here U,(q), V+(q), ¢(q) are the amplitudes of an r-mode of the wave at an
arbitrary depth of the solid z; > 0 or ¢ > 1; A,, B,, C, being the same
amplitudes on the free surface of the solid 3 = 0 or ¢ = 0 (Fig. 7.1). Thus,
any solution (7.132) describes an r-mode of the steady-state wave (7.104)
whose amplitudes either attenuate (if {» < 1) or grow (if { > 1) with the
depth ¢ without bound.

Analysis of the real roots ¢, in terms of eqns. (7.126) and (7.127) and the
restrictions (7.129) and (7.130) show that ¢; < 1 and {; < 1, whereas (3 > 1
and (4 > 1. Since there are no energy sources inside the solid the growing
modes 3 and 4 are physical impossibilities and have therefore to be neglected.
As a result, eqns. (7.132) reduce to the two attenuating modes 1 and 2:

Ui(q) (A 0 0] (¢
Vilg) =] 0 B 0 &, (7.133)
@1(q) L 0 0 G\ G
Ux(q) [4; 0 0 ] Cg
Valg) b=| 0 B, 0 % (7.134)
@2(q) | 0 0 G|\ ¢

where the parameters of attenuation {; and ¢, are defined by eqgns. (7.126)
and (7.127) respectively. Allowance must also be made for eqns. (7.115) and
(7.116). The relationships (7.133) and (7.134) represent a general solution for
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the steady-state wave inside the solid where the discrete vertical coordinate
g1

It should be noted that eqns. (7.133) and (7.134) contain two unknown
discrete functions ¢; and (3. In view of eqns. (7.126) and (7.127) and
eqns. (7.115) and (7.116), ¢; and (; depend not only on the relative wave-
length 3 = l/n but also on the third unknown function, the relative velocity of
the wave £ = ¢/C. This velocity, too, depends on . Thus, we have three un-
known functions {;(8), (2(8), £(8) of the independent variable 8 that cannot
be unambiguously calculated in terms of only two algebraic equations (7.126)
and (7.127). There must be a third equation. Such an additional equation can
be derived by applying the boundary conditions (7.112)—(7.114). Before solv-
ing the problem, we will briefly touch upon P- and S-waves.

7.9 Steady-State P- and S-Waves

The above consideration has concerned waves with attenuation whose param-
eters (; < 1 and (3 < 1 are supposed to be unknown beforehand and must
therefore be calculated by using eqns. (7.123) and (7.124). There is, how-
ever, another approach. We may consider simpler steady-state waves, those
without attenuation. For such waves, the parameters (; and (; cease to be
unknown because they are taken beforehand as unity: {(;, = (s = 1. Then
eqns. (7.123) and (7.124) become

a +2=0, (7.135)
by +2 =0, (7.136)
and eqns. (7.133) and (7.134) reduce to

(e )-{2)
Vi) $=¢ B (7.137)
¢(q) o}

where A, B, C are constants. According to eqn. (7.137), the difference op-
erator £ by eqn. (7.117) becomes unity (£ = 1). Hence the operator matrix
(7.121) is transformed into

a + 2 0 0
F[].] = 0 a+2 —tas (7138)
0 —tay az+2

In view of eqns. (7.137) and (7.138) the governing equations (7.120) take the
form of homogeneous equations for the constants A, B, C

a+2 0 0 A 0

0 a1+2 —iay BY={0 (7.139)
0 —ia; az+2 ¢ 0



146 7. Surface Waves — Difference Equations (V. T. Granik)

or, equivalently,

(a1 +2)A=0, (7.140)

a;+2 —iay B 0
[ —iay a3+2]{é}‘{0}' (7.141)
Equations (7.139)—(7.141) can also be obtained without referring to the
operator equations (7.120) by substituting the assumed solution (7.137) into
the governing equations (7.109), (7.110) and (7.111) written in a conventional,
non-operator form. Due to eqn. (7.137), the sets of equations (7.140) and
(7.141) determine two independent waves: the first wave with U(q) = /:1,

V(g) = 0, @(q) = 0, and the second wave with U(q) =0, V(g) = B, #(q) = C.
Let us examine these cases.

1. Equation (7.140) has a nontrivial solution for A if @) + 2 = 0, i.e., when
eqn. (7.135) holds. Solving eqn. (7.135) we come to the wave velocity &p by
eqn. (7.129). We have already mentioned that £p is the velocity of P wave.
Now the statement can easily be proven. Indeed, the only displacements
U(g) = A do not attenuate with the depth ¢ and are parallel to the p-
direction along which the plane wave propagates (see eqn. (7.104)). These
properties determine a longitudinal, or compressional, or P-wave.

2. Equations (7.141) have nontrivial solutions for B and C if

ar+2 —ias
det [ —iay a3 +2 ] =0. (7.142)
Given the relation (7.125), eqn. (7.142) is identical to eqn. (7.136) whose
solution brings about the velocity £ according to eqn. (7.130). This veloc-
ity has been attributed to S-waves in advance. To prove this we take into
account that the remained translations V(g) = B and rotations @(q) = C
do not attenuate with the depth ¢, and that V'(gq) is perpendicular to the
p-direction of wave propagation. These properties are the salient features
of S-waves. It should be added that unlike P-waves, S-waves cannot travel
along the free surface of a half-infinite solid; they do not satisfy the bound-
ary conditions (7.112), (7.113), (7.114) in view of eqn. (7.141). S-waves can
propagate in any direction only in unbounded media.

7.10 Steady-State Surface Wave

We now seek a steady-state wave different from a P-wave but which might,
nonetheless, be able to travel along the free boundary of the present half-
infinite solid. The features of P- and S-waves suggest that a presumable solu-
tion may be found only in terms of waves with attenuation. Thus, we return
to the attenuating modes 1 and 2 defined by eqns. (7.133) and (7.134) and
assume the solution to be their linear combination:
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U(q) Ur(q) Ua(q) A A ]
V@ 1=1 Vil 148 Gl b= | B B | { G o
?(9) ¢1(q) ?2(q) C G ?

The parameters of attenuation {; and (; in eqn. (7.143) are now determined
by eqns. (7.123) and (7.124), respectively, or

Gt+a¢i+1=0, (7.144)
G+hig+1=0 (7.145)

Upon substituting U(q), V(q), ¢(q) from eqn. (7.143) into the governing
equations (7.109), (7.110) and (7.111) for the particles inside the solid, we
obtain (¢ =1,2,...)

(A @+m G+ )+G(E-1)
+¢7 (A (@ +aG+)+ G (G -1) =0, (7.146)

- (Bl (G+aa+1)—iCra Cl)
+ (Bz (G+aG+1)-iCra Cz) =0, (7.147)

(4@ -1)-iBia G+ 6 (G asGi+1))
+ (;11 (G-1)-iBray(a+Ca(G+as Gz + 1)) =0. (7.148)

Since {1 # (2, these equations are satisfied at any ¢ = 1,2,... if all the
expressions in the large round brackets are equal to zero. Thus, we come to
the two new sets of independent homogeneous algebraic equations:

G+a+1 0 ¢-1 A
0 G+ai+1 —taz (1 B,
G-1 —taz (1 Gtasi+1 o

0
={ 0 } (7.149)
0

Gtaa+1 0 G-1 fiz
0 Gtaia+1 —iay (o B,
-1 —iaz Gtaz(e+1 Cs

0
={ 0 } (7.150)
0

Solving these equations in view of eqns. (7.144) and (7.145), we obtain
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~ cx (-1

By = —iA 2, 7.151
! MG ( )

¢, = 0, (7.152)
; s G-1

A = 7.153
2 Bee azy’ ( )

6 = -ip@tuhtl (7.154)

az (2

Due to eqns. (7.149) and (7.150), the number of unknown constants is reduced
from six (A, By, C1, Az, By, C3) to two (A, By). Substituting eqns. (7.151)-
(7.154) into eqn. (7.143), we come to the solution in terms of the two constants
A and By

U(q) Al (i;
[}l 58)
where
1 i(¢3 —1)/(a22)
D)= | —i(¢~1)/(a2G) 1 (7.156)
0 -i(G +a1 ¢z +1)/(az ()

It is worth reminding the reader that all the above relations—from
eqn. (7.144) to eqn. (7.156)—stem from the governing equations that are valid
inside the solid. Now we turn to the governing equations (7.112)—(7.114) for
the particles on the boundary of the solid. For convenience, we rewrite the
equations as

U(0) U(1) 0
[Do] [ v(0) ] +[D1] [ V(1) ] =[2] = [ 0 ] . (7.157)
(0) (1) 0
Here
a +1 0 1 1 01
[Do] = |: 0 a; + 1 —i az :l ) [DI] = [ 010 ] . (7158)
-1 —1 ag asz — 1 101

On the basis of eqn. (7.155), eqns. (7.157) become

el { 5, }+[D11[1>1{A*<1} {2}. (7.159)

Multiplying the matrices [Dy] [D] and [D1] [D] according to eqns. (7.156) and
(7.158), we bring eqns. (7.159) into the final form

g1 A1 +g12 B, =0, (7.160)
g21 A1 + 922 By =0, (7.161)
931 A1 + 952 B, =0, (7.162)
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where

g = G+a+l], (7.163)

g = ———(GHa+1)(F-1), (7.164)
az (1

g1 = —Cl;l, (7.165)
G

giz = a:@ [(G+a+1)(¢ -1)— (G +1)(¢G +a1é+1)],(7.166)

g = —Cl—z [G+aG+1—(G+ai+1)¢], (7.167)

g2 = — i (G -1)(¢e—1)—ad ¢ (7.168)
az G2
—(G+as—-1)(G+ar & +1)]. (7.169)

We have obtained a specific system of three equations (7.160), (7.161) and
(7.162) for only two unknown constants A, and B,. To deal with the system,
we must take into account its essential feature. Suppose that we have only
two equations (7.160) and (7.161). Such a system has a nontrivial solution
for fil and B‘g only if its determinant is equal to zero:

g1 G2
g21  g22

We may also consider the other two equations (7.161) and (7.162) and get,
similarly,

=911 922 —gn g2 =0. (7.170)

ge1 922
g3 932

At last, we can choose eqns. (7.160) and (7.162) and, thus, come to the third
characteristic equation:

=ga19s2 — 931922 =0. (7.171)

g qi2
= - =0. 7.172

g gs gs2 911 — Gi2 931 ( )
In terms of eqns. (7.170) and (7.171) we have

gu = 921912, ga1 = M- (7.173)

922 g22

Substituting g;; and g3; from eqn. (7.173) into eqn. (7.172), we obtain

932 911 — 912 931 = 32 (M) - g12 (M) =0. (7.174)

922 g22

The identity (7.174) means that there are only two independent characteristic
equations, the third one is satisfied identically. Due to this feature, the system
of equations (7.160)-(7.162) has a nontrivial solution if any two of the three
characteristic equations, for instance eqns. (7.170) and (7.171), are satisfied.
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We now return to the main problem of a surface wave that is described
by three functions: the two parameters of attenuation (1(3), (2(8) and the
relative velocity of the wave £(3). To compute these functions we have four
equations: (7.144), (7.145), on the one hand, and (7.170), (7.171), on the other
hand. The system is redundant and must be reduced to three equations. This
can be done as follows. Remember that the relations (7.144) and (7.145) stem
from the equations of motion inside the solid. Therefore they both must be
taken into account in any wave problem. At the same time, eqns. (7.170) and
(7.171) are specific only to the boundary problem and are to be added to the
main equations (7.144) and (7.145). But because adding them simultaneously
is impossible, we are forced to join them one by one. Thus, we come perforce
to the following two variants of relations determining a possible surface wave:

— Variant 1 made up of eqns. (7.144), (7.145) and (7.170),
— Variant 2 made up of eqns. (7.144), (7.145) and (7.171).

Denote the sets of solutions (1(8), (2(8), £(8) stemming from Variants 1 and
2 by I, and 7o, respectively. If these sets intersect, i.e., T = I; NIy #
@, then the intersection Z contains at least one system of the functions
{¢(8),¢2(B),£(B)} defining a surface wave.

Variants 1 and 2 were solved numerically. Each of them has yielded only
one and the same system {(1(8),¢2(8),€(8)} € I, = I, = Z. This system
characterizes a new surface wave (NSW).

7.11 Discussion

The parameters of attenuation ¢;(3), (2(8) and the relative velocity £(3) of
the NSW are shown in Fig. 7.7, along with those (1r(8), (2r(8), &r of the
Rayleigh surface wave in the classical elastic continuum. Before analyzing the
plots in Fig. 7.7, we will briefly explain the way the RSW parameters {;r (),
¢ar(B), &€r have been obtained.

The displacement field of the RSW is expressed by (Bedford and Drumheller
1994)

U(z1,22,t) = (ikAe P2 4+ h,Be ™ "%2) expli(kz; — wt)], (7.175)
V(z1,22,t) = (~hAe "2 4ikBe ") expli(kz; —wt)] (7.176)

where the notation is partially changed to be consistent with that in this
chapter. In eqns. (7.175) and (7.176), A and B are constants, attenuation be-
ing included by the multipliers exp(—h z2) and exp(—hs z2). The parameters
h and hg are taken initially as

h=1lk2—2,  hy=,[k?—=. (7.177)
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Here C and C; are the velocities of the P- and S-waves, respectively. If Pois-
son’s ratio v = 0 (see eqn. (7.96)), then

c=E, cszgc. (7.178)

In view of eqn. (7.178), the expressions (7.177) can be easily transformed into

h=kyJ1-€,  ho=ky/1-282 (7.179)

where ég = Cr/C = 0.618 and Cp is the velocity of the RSW. Setting
z3 = qn (Fig. 7.1) and taking into account eqns. (7.116) and (7.179), we put
the above exponents exp(—h z2) and exp(—hs z2) into the form exp(—h z2) =
(1p, exp(—hs z2) = (Jz which is in agreement with eqn. (7.155), the trans-
formed parameters of attenuation (;r, (2r of the RSW now being functions

of 3
Gr(B) = exp (—?ﬂi 1-53), (7.180)

Gr(f) = exp (—%ﬂ/l—zsg). (7.181)

The variables {1r(8), (2r(8) of eqns. (7.180) and (7.181) and the constant
&r = 0.618 of the classical RSW are shown in Fig. 7.7 to compare them with
the characteristics {1(8), (2(8), £(8) of the NSW. In addition, Fig. 7.8 plots
the ratios ¢1(8)/¢1r(8), (2(8)/¢2r(B) and £(B)/€r on a percentage basis.

Both Figs. 7.7 and 7.8 display an appreciable departure of the functions
¢1(8), 2(B), &€(B) from their continuum counterparts (1r(8), (2r(B), £r over
the band of relatively short wavelengths 8 = 1/n < 18. The strongest depar-
ture is intrinsic in the second parameter of attenuation (3(3), the other two
characteristics (;(8) and £(8) diverge to a lesser extent. Since the dimension-
less velocity £(3) of the NSW has a pronounced dependence on 3, the NSW
is microscopically dispersive. As [ increases, the difference between the sys-
tems {¢1(8),¢2(8),£(8)} and {Cir(B), 2r(8),€r} gradually diminishes and
completely vanishes as # — oo when the dispersive NSW transforms into the
nondispersive classical RSW.

Thus, whereas the theory of the classical RSW loses its applicability be-
yond the range of infinitely long waves (3 — 00), the theory of the NSW holds
for almost the entire Brillouin zone (Brillouin 1963), i.e., from the infinitely
long waves (8 — oo) down to the waves whose wavelength [ is three times
the interparticle distance n (8 = 3, not shown in Figs. 7.7 and 7.8). There is
only one exception. Unlike P-waves, the NSW cannot propagate at the right
edge of the Brillouin zone where g = 2. It follows that the NSW theory is an
extension of the classical theory of the infinitely long RSW traveling in a half-
infinite continuum to the surface waves of almost any wavelength that may
propagate in a half-infinite discrete microstructure {here, the simple cubic
one).
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It is also interesting to compare the microscopic dispersion of the NSW
with the macroscopic dispersion of the RSW brought about by the effects of
gravity and curvature of a linear-elastic, homogeneous, isotropic solid. The
seminal results in the area were established by Bromwich (1898) for incom-
pressible spheres and half-spaces and by Love (1911) for the compressible
ones. Later on Sezawa (1927) and Oliver (1955) considered the influence of
cylindrical curvature. According to these studies, the phase velocity of the
RSW changes as follows:

— due to gravity in the half-space, it increases or decreases (depending on
Poisson’s ratio) by approximately tenths of a percent,
— owing to curvature, it increases by up to 10%.

Figure 7.8 shows that due to the microscopic dispersion, the phase velocity
of the NSW is less than that of the RSW at any wavelength. Over the band
of relatively short wavelengths (18 > 3 > 3) the decrease ranges from 0.36%
to0 10.35%. Thus, the effect of microscopic dispersion proves to be comparable
with the influence of macroscopic dispersion caused by curvature and is far
more perceptible than that induced by gravity.

The problem of the RSW was also touched upon in the monograph by
Kunin (1983) in terms of a nonlocal model of a medium with binary (central)
interaction characterized by one elastic modulus. In such a medium the Lamé
constant A = p and consequently Poisson’s ratio v = 1/4. As follows from
Sect. 5.4 this particular case corresponds to a solid with a plane hexagonal
microstructure. Referring to the so-called “approximation with respect to
the first root,” the author reports to have obtained “the new surface waves,
which are absent in the classical theory” and which “decay in the case of
large wavelength, at a distance of the order of the radius of interaction.” At
the same time the very dispersion law that is to be the main goal of the study
and that requires “cumbersome computations” is not obtained.

7.12 Closure

In this chapter we have developed a new theoretical approach to the study
of a surface wave propagating in an elastic solid with cubic microstructure.
The approach has enabled us to reveal a new surface wave with microscopic
dispersion pronounced over the band of relatively short wavelengths. In a
continuum approximation the new wave reduces to the conventional nondis-
persive RSW. Thus, the new surface wave is a generalization of the classical
Rayleigh surface wave.

The proposed difference method is mathematically precise. As shown in
Sect. 7.7, the classical theory of elasticity is a first (nonscale, nonlocal) ap-
proximation of the difference model. The second and further differential ap-
proximations include scale parameters to increasing powers and hence are
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able to approach an exact solution to a sequentially increasing degree of ac-
curacy.

The difference model of DM is evidently simple and can easily be extended

to a study of more intricate boundary problems that involve solids with a
variety of different microstructures:

G N

o

8.
9.

Hexagonal, b.c.c, f.c.c, etc.
Isotropic in a continuum approximation, with Poisson’s ratio v # 0.
Anisotropic in a continuum approximation.

Multilayered.

. Inhomogeneous geometrically (when parameters of the underlying Bravais

lattice are dependent on the lattice coordinates (p, q)).

With particles of different types (e.g., “diatomic lattices”).

With linear but nonlocal and inhomogeneous nearest-neighbor interactions
(see Sect. 7.3).

With nonlinear nearest-neighbor interactions.

With farther than nearest-neighbor interactions, and so on.

Solutions of these new problems are expected to bring about the discovery
of new microscopic wave phenomena.



8. Isotropic Plane Elastostatics

J.C.Nadeau, A.H. Nashat and M. Ferrari

8.1 Introduction

We begin with a uniqueness theorem in linear elastic doublet mechanics. With
this tool in hand we present two methods of obtaining solutions. The first
stems from a correspondence between problems in doublet and continuum
mechanics which allows the generation of a solution in one theory given a
solution in the other. The second methodology involves combining the micro-
stress equilibrium and micro-strain compatibility requirements into a single
condition, from which stems a micro-stress function (MSF) analogous to the
CM Airy stress function (ASF). While an admissible ASF is any bi-harmonic
function, the equation governing the MSF is a more general fourth order
differential equation dependent on the lattice geometry. We show that for a
specific choice of the DM lattice the MSF a bi-harmonic function.

We illustrate the advantages of the two methodologies by solving several
problems in plane elastostatics. We begin by considering homogeneous defor-
mations and then obtain solutions to the classical problems of Flamant and
Kelvin. Finally we obtain the stress concentrations due to a circular hole in
an infinite plate subjected to bi-axial tension. Qur purpose is not to provide
a catalog of solutions in DM, but rather to elucidate the techniques.

As an application, Granik and Ferrari (1993) considered the DM equiv-
alent of Flamant’s problem: a concentrated force acting normal to the free-
surface boundary of a planar elastic half-space. Though the qualitative de-
scription of the existing DM solution is accurate, its quantitative inconsis-
tencies are corrected in this chapter.

DM is a scale dependent theory but for the purposes of this chapter we
consider only the non-scale subcase.

8.2 Uniqueness Theorem

The objective of this section is to establish a uniqueness theorem in linear
elastic DM. Consider a DM body B with boundary 8B. The body B is sub-
jected to a body force field b. The boundary is partitioned into {08,,0B8r}
such that the displacement field u is prescribed on 0B, and tractions T are
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prescribed on 6By. Similarly, the boundary is partitioned into {884,8Bwu}
such that the infinitesimal rotation vector field ¢ is prescribed on 8By and
the couple traction M is prescribed on 0By.

The kinematical vector fields u and ¢ give rise to the micro-strain quan-
tities €4, Uq, and 7y, corresponding to elongation, torsion and shear, respec-
tively, of the doublet. The work conjugate micro-stresses p,, m, and ty, cor-
responding to elongation, torsion and shear, respectively, are assumed to be
derivable from a stored strain energy function W = W (eq, fta, Yai) to exclude
the possibility of generating energy through a closed cycle of deformation.
Unless otherwise noted, Latin subscripts will denote the component of the
quantity expressed with respect to a Cartesian coordinate system. For exam-
ple, 74: are the Cartesian components of vy, with respect to the orthonormal
basis e;. For the most general linear elastic response, the micro-stresses are
related to the micro-strains through the linear constitutive relations (2.78),
(2.79) and (2.80). For material stability we take the strain energy function
W to be non-negative at all points for all compatible micro-strain fields. We
shall return to this point below. Due to the resulting quadratic form, W
achieves a minimum when ¢, = 0, yo = 0 and v4; = 0; Without loss of
generality we take this minimum to be zero. It follows that W = 0 if and
only if €4 = g = Yai = 0.

The internal energy Wip; is given by (Granik and Ferrari 1993)

2Wine = Z/ (pa € + Mg o + ta '70) av (8'1)
a=1"8
and the external energy Wey is given by
2Wext=/b-udV+/ (T-u+M-¢)dS. (8.2)
B o8B

At equilibrium, Wi,y = Wey.

Let {u',¢',ul, 7}, ph,mi,th} and {u?,¢7, pd,v2,ph,m?, 3} denote
two sets of fields which satisfy the governing equations. Furthermore, let
(*) denote the difference in the quantity (-) between the two solutions. For
example, 1 = u? — u'. It follows that

ZWext:/f)-ﬁdV+/ (’i‘-ﬁ+1\71.33) ds =0. (8.3)
B o8B

Thus, at equilibrium Wint = 0 from which it follows that €5 = fiq = Ja: =0
which then implies that the micro-strains and thus also the micro-stresses
are the same for the two solutions, i.e., €}, = €%, ...,7}; = 72;. It follows that
the two sets of kinematical fields differ by at most a motion which is strain-
free. That is, the micro-strains associated with the kinematical fields @ and
&J are zero. We call these micro-strain—free motions rigid body motions. The
infinitesimal displacement u and rotation ¢ fields are thus unique to within

at most a rigid body motion. This concludes the uniqueness proof.
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It was mentioned above that we demand the strain energy function W
to be greater than or equal to zero when evaluated at any point within the
body for all admissible motions. This was to assure material stability. In other
words, W is to be non-negative for all physically realizable occurences of it
arguements, the micro-strain.. In the realm of linear elastic CM, the strain
energy functional W¢ is taken to be a function of the linearized CM strain
measure £;;. To determine over what set W*° must be non-negative consider
an sx € Ré. We now ask if there exists a displacement field u$ which when
evaluated and some point yields the strain measure sx" The answer is in
the affirmative; Take the displacement field u§ = ¢ z; Wthh yields a strain
measure £;; at all points in the body. Thus, W* must be non-negative for all
gij € RS. The quadratic form of W¢ in linear elasticity allows one to stipulate
that W€ = 0 if and only if £f; = 0. As a result, W* is required to be positive
definite. In DM (€q, fta, Vai) € R®" but it is not clear that it is necessary to
demand that W be non-negative with respect to R¥*—though this would be
sufficient.

8.3 Inversion Technique

In this section we develop a connection between solutions in DM and CM.
This connection proves useful in that it allows, given a solution in one realm,
the generation of a solution in the other realm. Below we present conditions
which are sufficient to allow for this connection.

Consider two mathematical models of the same physical body, one linear
elastic DM and the other linear elastic CM. For the DM model we consider
the non-scale theory with no infinitesimal rotational kinematical vector field
¢. We assume the material to be incapable of supporting micro-torsional and
micro-shear stresses. The equilibrium equations for the DM model are

n
Z Tai TajPa,j+bi=0 in B (8.4)
a=1

where p, j := Opa/Ox; and 72; is the direction cosine of the 72 doublet with
the z;-axis. The boundary conditions are

n; Z Tai aJp T; on OBt (85)

and
ufl = U on 9B, . (8.6)

where 0By and 0B, form a partition of the boundary OB and T; and ;
denote prescribed quantities. The micro-constitutive relation is



160 8. Isotropic Plane Elastostatics (J. C. Nadeaw, A. H. Nashat and M. Ferrari)

n
Pa = Z Aspep (8.7)
p=1
where A,p is symmetric and positive definite. We shall often make use of
the nonpolar form of this constitutive relation, eqn. (5.3). We shall make
use of the nonpolar constitutive relation (5.3). Compatibility is given by the
identity

5(111,22 - 28(112,12 + 6(232,11 =0. (8.8)

where €f; = (uf; + ug,)/2.
The equilibrium equations for the CM model are the familiar equations

o5;;i+tbi=0 in B. (8.9)
The boundary conditions are

afin; =T, on OBr. (8.10)
and

us = @ on 0B,. (8.11)
The constitutive relation is

oij = Cijki €k (8.12)

where Cjjri = Criij = Cjirt and C is positive definite.
The transition from micro- to macro-stresses is given by the relation

n
a:.ij = Z Tgi ngpa- (8.13)
a=1

As noted by Granik and Ferrari (1993) it is possible to define equivalent
macro-stresses and -strains in terms of the micro-stresses and -strains, re-
spectively. The micro- to macro-strain relation is given by

€o = Toy Tay Usj. (8.14)

The micro- to macro-stress relation (8.13) permits a convenient represen-
tation of the DM governing equations. Substituting eqn. (8.13) into the DM
equilibrium equation (8.4) yields

o8 +bi=0 in B (8.15)
provided that the doublet directions do not vary spatially. Substituting
eqn. (8.13) into the traction boundary condition (8.5) yields the expression

o'?j nj =T;. on OBr. (8.16)

The form equivalence between egns. (8.15) and (8.9) and between eqns.
(8.16) and (8.10) gives rise to the following result. If o§; is an admissible stress
field then any set of micro-stresses p, which yield o?j = 07 satisfy both the
micro-stress equilibrium and the micro-stress traction boundary condition.



8.3 Inversion Technique 161

Conversely, if {p,} is an admissible set of micro-stresses then o§; = o¢

1
admissible CM stress field. !

Similarly, if €f; is an admissible strain field then micro-strains obtained
from eqn. (8.14) using s’;llj = ¢f; is an admissible micro-strain field. Con-
versely, if €, is an admissible micro-strain field consistent with the equivalent
macroscopic strain field aj-ij then £f; = s?j is an admissible CM strain field.

We now introduce some matrix notation which will allow for convenient
representation of some of the above relations and later manipulations. Let
&:= {e1,€2,...,€,}T be the column vector of axial micro-strains and let p :=
{p1,p2s.--,pn}T be the column vector of axial micro-stresses. The micro-
constitutive relation (8.7) may thus be expressed as p = A €.

We now restrict attention to planar problems. The developments below,
however, are easily extended to three dimensions. In this context, let & =
{011,022,012}T be the column vector of in-plane stresses. Likewise, let & :=
{e11,€22,€12 + €21} 7. The constitutive relation (8.12) takes the form ¢ = Ce
where C is the appropriate matrix representation of C for the type of planar
problem under consideration, i.e., plane strain or plane stress.

The micro-macro relation (8.13) may be expressed as

6%=Mp, (8.17)

which implicitly defines the 3 xn matrix M. Similarly, the micro-macro strain
relation (8.14) can be expressed as

e=MTed (8.18)

jlsan

From the developments given above it follows directly that
p=M16° (8.19)

is an admissible micro-stress field provided that of; is admissible and M is
invertible. The matrix M is invertible if n = 3 and none of the three doublets
are collinear. For n = 3, M is given by
(2 () ()
M=1 (rh)" (15)° (m3)° |. (8.20)
THTie TaiTa Ta1Ta
Furthermore,
e=MT & (8.21)

is an admissible micro-strain field provided that &f; is admissible. Thus,
if €f; and of; are the equilibrium solution fields to the CM problem then
eqns. (8.19) and (8.21) yield admissible micro-stress and micro-strain fields,
respectively. In order for these micro-strain and micro-stress fields to be the
solution to the DM problem they must be related through the constitutive
relation (8.7) or equivalently,

MAMT =C. (8.22)
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The proof follows by substituting eqns. (8.19) and (8.21) into p = A & which
yields

6°=MAMT¢ (8.23)

which is true if M A MT = C. If the micro-constitutive relation is non-polar
then it can be proven that M A M7T = A, MMT is isotropic for all values of
6 if and only if v = 7/3.

In summary, if we desire a DM solution to a planar problem with three
doublets and y = 7/3 then the solution can be calculated directly from the
associated CM problem with an isotropic material. Again, we emphasize that
this method of inversion of the macro-stresses has been presented only for the
planar case but it is applicable to 3-D problems as well. It should be noted,
however, that there is no arrangement of 6 doublets in 3 dimensions that
with a non-polar micro-constitutive relation yields MAMT to be isotropic.

8.3.1 Homogeneous Deformations

In this section we present some homogeneous deformations of discrete ma-
terials. We begin by considering n = 3 with v = «/3. Consider a plate of
DM material modeled with three in-plane doublets with a structural angle of
v = n/3 (cf. Fig. 8.1). We now subject the material square to uniaxial tension
(cf. Fig. 8.2) and pure shear (cf. Fig. 8.3). Using the method of macro-stress
inversion the micro-stresses can be computed for arbitrary angles of 6—the
inclination of the 73 doublet with the z;-axis. The results are presented as
follows. In Fig. 8.4 the micro-stresses are presented for uniaxial tension as a

T2

Fig. 8.1. Doublet geometry for homogeneous deformations

function of the angle §. Note that compressive micro-stresses are achieved in
distinction to the macroscopic principal stresses which are everywhere non-
compressive. In Fig. 8.5 the micro-stresses for the pure shear loading case is
presented. Note that the micro-stresses exceed the magnitude of the applied
shear stress.

We now consider the effect of v # 7/3 for arbitrary 6. To simplify the
presentation of results we will consider the energy stored in a plate of material
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UNI-AXIAL TENSION

NORMALIZED STRESS

s . . . ; A . A , .
® 01 02 03 04 05 06 07 08 09 1
THETA (P! Radkans)

Fig. 8.4. Normalized micro-stress of a plate under uni-axial tension: solid-line is
p1/0; dashed-line is py /o; dotted-line is p3 /0.

NORMALIZED STRESS

04 0.5 0.6 07 8 0.9 1
THETA (Pi Radfans)

15 1 L . '

] 0.1 02 03

Fig. 8.5. Normalized micro-stress of a plate under shear: solid-line is p; /o; dashed-
line is py /a; dotted-line is p3 /0.
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subjected to shear. The stored energy is indicative of the magnitude of the
stresses in the set of doublets. It is observed that 4 has a significant effect on

ENERGY/Ao
2]

0 005 01 015 02 025 03 035 04 045 05
GAMMA (Pl Radians)

Fig. 8.6. Stored energy in a plate under shear for different values of § (degrees).

the micro-stress field. In general, the energy grows unbounded as v = 0 and
as v = ©/2 indicating that at least one of the micro-stresses grows without
bound. When ~ = 7 /3 the internal stored energy is the same for all angles 6
thus all curves illustrated in Fig. 8.6 pass through the point (1/3,4/3). For
each value of 8 there exists an angle v which minimizes the internal stored
energy. For a given value of 6 the value of v which minimizes the stored
energy varies with the state of applied tractions.

8.3.2 Flamant Problem

Consider the classical problem of Flamant: A penetrating point force P acting
normal to the straight boundary of a semi-infinite plate of isotropic material.
The classical CM solution is characterized by a stress field whose principal
stresses are everywhere non-positive. In this section we consider the DM
solution to Flamant’s problem with three doublets with a structural angle of

= /3 and for arbitrary 6. This problem has been treated previously by
Granik and Ferrari (1993) for the case § = 0. Their solution contains some
quantitative inconsistencies which are corrected here.

Since the DM domain consists of three doublets with v = 7/3 we can use
the classical result of Flamant to obtain the DM solution using the method
detailed in Sect. 8.3. Flamant’s solution reads

2P zlz

o= Ay (8.24)
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P
Ty
VAV A A A A eeed
T2
Fig. 8.7. Doublet geometry for Flamant’s problem
oo = o = P_maT (8.25)
= Gy |
2P z3
< e S
022 T (.’B%-{-.’L‘%V (826)
and
uj = Liy arctan 22 ) — Z + Ll (8.27)
V7 omu (M4 T 2 22 + z2 )
c P [ N+2u 2 2 z?
Ug _ﬁ [2()‘, +[.t) log(zl + (L'z) + m . (828)

where ' := 2Au/(A+2y) and A and p are the Lamé constants of the isotropic
continuum.

The micro-stresses for § = 0 are evaluated to be
4P z3(V321 + 22)

o= - i (.’E% T .’B%)z (8.29)
_ APa}(V3z —m) (8.30)
PTGl '
2P 2 _ 2

3Ir (g2 +22)?
The classical solution due to Flamant is characterized by a stress field
for which the principal stresses are nowhere tensile for a penetrating applied
load. Unlike the Flamant stresses, the micro-stresses are found to be tensile
within particular regions of the domain. For instance, the ps micro-stress
associated with the 73 doublet is tensile within the sector defined by z; >
V3|z)|. The p; and p, micro-stresses are also tensile within specific regions.



8.3 Inversion Technique 167

To graphically illustrate these characteristics it is convenient to normalize
eqns. (8.29)—(8.31). Let Z := z; /. It follows that eqns. (8.29)-(8.31) can be
recast in the following form:

37z V3z+1
Pl = Fpl = —(1 T :i2)2 (832)
_ 3mzy V3z -1
P2 = 1P P2 = 327 (8.33)
37 2o 1-3z2
P3 = 1P ps = 2(14_3?2)2P3. (8.34)

In addition, the only non-zero principal macro-stress o? can be expressed as

._ 3 xo p_ 3
S:= 1P oP = M+ 5 (8.35)
The normalized quantities P1, P2, P3 and S are presented in Fig. 8.8 for
8 =0.

—

FLAMANT PROBLEM: THETA = 0 (60) DEGREES

NORMALIZED MICRO-STRESS

L

3 4

B E

a
Y
(335
EN
-3
-
o

Fig. 8.8. Normalized micro- and macro-stresses for the Flamant problem with

8=0(0=n/3).

We now provide the in-plane displacement field. Using the non-polar con-
stitutive relation it may be verified that the components of the in-plane dis-
placement field are given by

2P z T 2nx
d 2 172
= arct —_—— .
“ 3rdo [ cran (zl) 5+ z? + z%] (8:36)
2P [3 212
d _ _ o 24 .2 1
Uy = g [2 log(zf + z3) + oo x%] . (8.37)
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In eqn. (8.37), log denotes the natural logarithm. We note that the displace-
ment field does not tend to zero at infinite distances from the point of ap-
plication of the load as is the case in the Flamant solution (see e.g., Love
(1944, p.211)). In general, the displacement field given by eqns. (8.36) and
(8.37) is not the same displacement field as the Flamant solution. This ob-
servation is intuitive since the material domain of Flamant is characterized
by two constitutive parameters while the microstructured material consid-
ered herein is characterized by only one constitutive parameter, namely A,
while the stress field is independent of the constitutive relation. Let (), 1) de-
note the Lamé constants of the elastic continuum utilized be Flamant. When
(A u) — (34,/4,34,/8) (i.e., Poisson’s ratio is 1/3) it may be shown that
the two displacement fields are equivalent.

To illustrate the effect of § on the micro-stresses, plots similar to that
in Fig. 8.8 are given for 8 = 15, 30,45, degrees, in Figs. 8.9, 8.10 and 8.11,
respectively. Closed form expressions for the micro-stresses in terms of 6

FLAMANT PROBLEM: THETA = 15 DEGREES

T —r

T

NORMALIZED MICRO-STRESS

3 4

o R
4 3 2 1 0 1 2

Fig. 8.9, Normalized micro- and macro-stresses for the Flamant problem with
0 = 15 degrees.

are very lengthy but for special values of 8 simple expressions do exist. We
have seen this above for § = 0. When 6 = /6 similar expressions exist. The
normalized micro-stresses when 6 = 7 /6 are given by

3rz,  %V3+3)

Pl PP = (8.38)
3m 3y 72-3

P2 = S5R=yiiayp (8.39)
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FLAMANT PROBLEM: THETA = 30 DEGREES

NORMALIZED MICRO-STRESS

Fig. 8.10. Normalized micro- and macro-stresses for the Flamant problem with
0 = 30 degrees.

FLAMANT PROBLEM: THETA = 45 DEGREES

NORMALIZED MICRO-STRESS
in o

-

15 A

-3

Fig. 8.11. Normalized micro- and macro-stresses for the Flamant problem with
0 = 45 degrees.
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3rzy _ #V3-13)
P T iyaye
These are the functions plotted in Fig. 8.10.

We note that the components of the displacement field for the DM solu-
tions for all values of 6 are given by eqns. (8.36) and (8.37).

P3 (8.40)

8.3.3 Kelvin’s Problem

The problem of Flamant treated in Sect. 8.3.2 is a Green’s function for elastic-
ity problems with normal surface tractions. We now present another Green’s
function: a point force acting in the plane of an infinite plate, originally solved
by Lord Kelvin. This solution enables one to solve problems with arbitrary
body force distributions by integration. In particular, let us apply a point
force of magnitude P at the origin of the plate in the negative z, direction,
with the z;- and z2-axes lying in the plane of the plate (cf. Fig. 8.12). From

T2

T3

Fig. 8.12. Doublet geometry for Kelvin’s problem

classical CM mechanics, the macrostress state is given by (Love 1944)

P Ty ] T2 2]
C —-_— —— a—— ——— —
M= T3 -7 6 ( . ) | (8.41)
Pz [, rz2\2 ]
c - — — — —
% = g0 ( : ) 1 (8.42)
c P Io [ Ty 2 ]
oy = g;f‘—z 6 (7) +1 (843)

where r? := 22 + z2.



8.3 Inversion Technique 171

The micro-stresses are obtained by substituting the CM macro-stresses
(8.41)-(8.43) into eqn. (8.19) yielding

P
P2= g [”’:i’ —52195 —TV3ala, - ‘/5“’3] (8.45)
Pzx
ps = 12“;4 [1127 ~ «f] (8.46)

where we have assumed a three doublet DM lattice with v = n/3 and 6 = 0.
Expectedly, eqns. (8.44)—(8.46) satisfy the equilibrium eqns. (8.4), and the
microstrains derived via eqn. (5.3) satisfy the equation of compatibility (8.8).

8.3.4 Stress Concentration

In addition to obtaining DM Green’s functions, the Inversion technique can be
used to find microstress concentration factors. As an example, we consider
a circular void within the infinite plate subjected to hydrostatic tractions,
T = on, at infinity, as illustrated in Fig. 8.13. The CM solution in polar

-— 2 R

o o 4

-— Ti T2 .

— ~ —

-— o~ _

—_ 3 —

.~ =

-— R —_—

Fig. 8.13. Circular hole in an infinite plate.

coordinates is given by
of = a[l—(R/r)Y (8.47)
ofg = o[l+(R/r)? (8.48)
Uig = 0 (8-49)

where r and 6 are polar coordinates and the circular void is centered at r = 0
with radius R.

To obtain the microstresses from eqns. (8.47)—(8.49) we must first rewrite
the macrostresses in terms of Cartesian coordinates, since the DM lattice is
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defined with respect to this latter coordinate system. Equation (8.19) can
then be utilized to give the microstresses around the void

2_0’ [ R2 (l‘%—2\/§xla¢2—$¥)]

o= 1

3 - (8.50)

[ R? (23 +2V3zi 20 — 23
po= [ B s n s 1)

3 r4
2¢ [ 2R? (22 — 22
ps = 1———(ri—i) : (8.52)

Comparison of the macro- and microstresses shows that while CM pre-
dicts solely compressive principal stresses arising from applied compressive
tractions, the microstresses are tensile in certain regions adjacent to the void.
It should thus not be surprising if a granular body under hydrostatic pres-
sure develops tensile openings, analogous to the paradox associated with Fla-
mant’s Problem. We find that the microstresses in the vicinity of the void
vary from —1 to 3 times the far-field microstresses while the macrostresses
vary between 0 and 2 times the far-field equivalent macro-stress.

8.4 Micro-stress Function

Consider a non-polar medium with no body forces and with lattice geometry
as shown in, Fig. 8.1a. The equilibrium eqns. (8.4) take the form

(p1+p2+ csc? Yp3s)i+tany(pz —p1)2=0 (8.53)
(p2 —p1),1 + tany (p1 +p2) 2 = 0. (8.54)

The Integrability theorem applied to eqn. (8.53) implies the existence of a
function ¥ = ¥(xy,z2) such that

¥, = tany(pz—p1) (8.55)

@y = —(p1+pz+csc® yps), + tany (pz —p1). (8.56)
Similarly, the Integrability theorem applied to eqn. (8.54) implies the exis-
tence of a function & = @(z1,z2) such that

O, = —tan’y(p1+ps) (8.57)

62 = tany(pz—p1) (8.58)
From eqns. (8.55) and (8.58) follows the relation ¥ ; = @ 5 which itself implies
the existence of a function x = x(x1,22) such that x; = © and x2 = V.

Solving for the micro-stresses in terms of the second partial derivatives of x
yields
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1
o= -3 cot®y (tany x,12 + X,11) (8.59)
1
pr = —gzcot’y (tanyxaz —xu) (8.60)
ps = cot’y (cos2 YX11 — sin? X,zz) (8.61)

The micro-stresses (8.59)—(8.61) thus satisfy equilibrium for a sufficiently
differentiable function y. Compatibility is now addressed. Compatibility in
terms of the micro-stresses is obtained by substituting the constitutive rela-
tion p, = Ao €q into eqn. (8.8):

0 = [sec® v (p1 + p2) — 2 cot? v ps] 1112 p3,2aFescy secy (p1—p2),12-(8.62)
Substitution of the micro-stresses (8.59)-(8.61) into the compatibility rela-
tion (8.62) yields

0 = cot? ~ csc? Y1+ cos* )X 111 + csc? y(1-4 cos* )X 1122

+2cos’y X 2222 (8.63)

Any function x which satisfies eqn. (8.63) thus yields a micro-stress field
which satisfies equilibrium and compatibility. When v = «/3, eqn. (8.63)
simplifies to

0= x,1111 + 2 X, 1122 + X,2202 =2 V7 - V2x =2 V¥ (8.64)

which is the bi-harmonic equation.
Substituting the micro-stresses (8.59)—(8.61) into the micro- to macro-
stress relation (8.13) yields
d

o = X2 (8.65)
oh = far (8.66)
oy = —Xu12 (8.67)
where ¥ := — cos? vy x. Equations (8.65)—(8.67) are form equivalent to the

equations for the classical continuum stresses in terms of the Airy stress
function. When v = 7/3 the connection between DM and CM is further
elucidated, since x is governed by the bi-harmonic equation, as the stresses
are obtained in CM from equations which are form equivalent to eqns. (8.65)—
(8.67).

In Sects. 8.4.1 through 8.4.4 below, we investigate the solutions gener-
ated by the family of third-order polynomial x(z;,z2) functions, and we
present the MSF for the problems solved above via the inversion technique
of Sect. 8.3.

8.4.1 Third-Order Polynomial x-Functions

Considering the combined equilibrium/compatibility relation (8.63) shows
that any third-order polynomial x(z;,x2) represents an admissible DM solu-
tion. Let us consider the DM lattice with ¥ = n/3 and postulate a MSF of
the form:
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x(z1,72) = A1+ A2l + Asad+ Bizy+ Byl 4+ Byl
+Crz129+Co a:f o+ Cs51 .’L‘% + D. (868)

We substitute eqn. (8.68) into eqns. (8.59)-8.61 to obtain the resulting mi-
crostresses:

1
pr = —5 [(\/502 +3A3) I+ (\/503 +CZ) z2
+ ‘/7501 +A2] (8.69)
1
ps = 5 [(\/§C2 —-3A3) T+ (\/503 _CZ) T2
+ B - Az] (8.70)
1
ps = 5[3(4s~Cs) 1+(C2~9Bs) 22~ 3By + Aq]. (8.71)

Substituting eqns. (8.69)-(8.71) into the relation (8.13) yields the equivalent
macrostresses:

1
‘7‘111 = 3 [C3 21 +3 B3 z2 + By (8.72)
1
o = —5BAs21+Crmy+ A (8.73)
1
oy = 7RGz +2Cs2:+Ci). (8.74)

Analysing either the micro- or macrostresses, we see that y given by
eqn. (8.68) will provide solutions to problems with homogeneous or linearly
varying stress states. Examples include uniaxial or biaxial tension and com-
pression, pure shear and beams under pure bending. Note that shear stresses
arise only from the seventh through the ninth terms of eqn. (8.68). Hence, if
the three C; coefficients are zero, the z;- and zs-axes are the pincipal axes;
and conversely, states of shear are given by only the non-zero Ci’s. The co-
efficients A;, B; and D have no effect on the stress state and thus represent
superfluous information.

8.4.2 Flamant’s Problem

The family of third-order polynomials given by eqn. (8.68) represents only
a subset of admissible x functions. We now consider a more involved MSF
containing a trigonometric term:

4P$1
71'

x(z1,22) = [1 — arctan(z,/z,)] (8.75)

which represents an admissible DM solution when v = 7 /3. The microstresses
derived from eqn. (8.75) are identical with eqns. (8.29)-(8.31), indicating that
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we have found the MSF for Flamant’s Problem. Note, however, that for this
particular application of the MSF a slightly varied form of eqns. (8.59)—(8.61)

is necessary, since the coordinate system has been changed to that shown in
Fig. 8.7.

8.4.3 Kelvin’s Problem

The point force in the infinite plane is a similar problem in some respects
to Flamant’s Problem. Hence, we start our search for the appropriate MSF
with modifications to the family of arc tangent functions. The final result is

P
x(z1,z2) = yp [z log(a? + #3) + 8 zp arctan(zi/z2) —821] . (8.76)

Substituting eqn. (8.76) into eqns. (8.59)—(8.61) yields microstresses identical
to eqns. (8.44)—(8.46).

8.4.4 Stress Concentration

The problem of a circular void within the hydrostatically stressed plate is the
superposition of a homogeneous stress state with the concentration stresses
arising around the hole. Thus, the MSF should be a sum of a second-order
polynomial and a term or terms that account for the effects of the void. The
result we find is

x(z1,22) = ~20 [2? + 23 — R? log (2} + 23)] (8.77)

which exactly recovers eqns. (8.50)-(8.52). Expectedly, the logarithmic term
acts to satisfy the zero-traction boundary condition at surface of the void.

8.5 Closure

We initiated our study by presenting a uniqueness theorem in linear elastic
DM. We then developed two methods for obtaining solutions in isotropic,
plane elastostatics.

In the first, we noted a correspondence between DM and CM for specific
DM lattice geometries, namely, a three doublet arrangement with v = n/3.
The result of this connection between DM and CM is that given a solution
in either one of the two regimes, one can generate an equivalent solution
in the other. We demonstrated the utility of this technique by obtaining
DM solutions to homogeneous deformation problems, the classic problems
of Flamant and Kelvin, and stress concentration around a hole. In the first
two applications, we extended the study to a lattice rotated by an angle 8
with respect to the original coordinate system. In the case of homogeneous
deformations, we also analyzed the general three double lattice where v #
n/3.
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The second technique which was developed arises when the micro-stress
equilibrium and micro-strain compatibility requirements are manipulated to
yield the microstress function (MSF). In illustrating the use of this second
technique, we studied the solutions generated by the family of third order
polynomial MSF’s, and we derived the MSF’s corresponding to the three
problems considered via the inversion technique.



9. Multi-scale Solutions

M. Ferrari and A.Imam

9.1 Introduction

The governing field equations in doublet mechanics involve scaling parame-
ters n, which, for every doublet a, represent the distance between two ad-
jacent nodes in the underlying Bravais lattice comprising the body. Here,
a = 1,...,n, where n is the valence of the Bravais lattice. We expect the
physical response of bodies modeled by doublet mechanics, such as partic-
ulate and granular media, under various types of loading to depend on the
scaling parameters 1),. Therefore, it is of interest to obtain solutions in dou-
blet mechanics that exhibit dependence on scaling parameters.

In some of the previous chapters, particularly in Chap. 8, solutions to var-
ious boundary value problems were presented in which the governing equa-
tions were based on the first level of approximation in doublet mechanics.
At such a level of approximation, the scaling parameters do not appear and,
consequently, the solutions are scale-independent. Indeed, the governing field
equations at the first level of approximation for non-polar media correspond
to those of continuum elasticity in which it is well known that no scaling
parameters are present.

At higher levels of approximation, the doublet-mechanical solutions gen-
erally involve the scaling parameters. In this chapter we present a formulation
whereby doublet-mechanical solutions for the second level of approximation
can be obtained. In Sect. 9.2 we recall the general field equations and bound-
ary conditions from Chap. 1. Then by expanding the displacement field in a
convergent power series, we develop governing equations along with appro-
priate boundary conditions whose solutions represent the displacement field
at the second level of approximation. These equations indicate that it is pos-
sible for a boundary value problem at the second level of approximation to
have a solution which is independent of the scaling parameters.

The expansion of the displacement field gives rise to a series of equlibrium
boundary value problems whose well-posedness is examined in Sect. 9.3. In
particular, we show that the necessary conditions for existence of solutions for
such equilibrium boundary value problems are satisfied. Finally, in Sect. 9.4
we solve a particular boundary value problem in order to illustrate the ap-
plication of the present formulation in obtaining multi-scale solutions.
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It is also possible to treat multi-scale problems within the context of
generalized theories of continuum mechanics. A comparative study of such
theories and doublet mechanics is presented in Chap. 4 of this monograph.

9.2 Field Equations and Boundary Conditions

We represent a body B by an array of nodes whose interactions are purely
central so that the torsional and shear microstresses vanish everywhere. Fur-
thermore, we assume the interactions are local and homogeneous. The former
implies that the elongation microstress p,, in a typical doublet (A, By ), de-
pends only on the elongation microstrain €, and is independent of the elon-
gation microstrains in the other doublets emanating from the same node A.
For homogeneous interactions, there is only one micromodulus A, and, as a
consequence, the constitutive relation is expressed by

Pai = A, €aiy (91)

as elaborated in Sect. 5.2.

The linearized field equations of doublet mechanics are given by eqn. (1.33).
This equation was expressed, after some manipulation, as eqn. (5.13) which is
subsequently used in this chapter. For the equilibrium problem, this equation
is rewritten as

n R
(na) aéuj
Ao E TS, E e Top, —————— =0, 9.2
= Tai Taj e s T"‘k‘ Taks Oxp, ... 0T, (92)

where summation convention is implied only for repeated Latin indices.

In what follows, we restrict the analysis to the lowest level of approxi-
mation containing the scaling parameters n,. In eqn. (9.2), this corresponds
to R = 4 which we will refer to as the second level of approximation. As a
result, the expanded version of eqn. (9.2) can be written as

1 n2
Ao Z Tai a] ak (2' Uikl + = 4! apTaq uj,klPQ) =0, (93)

where comma signifies partial differentiation.

Next, the constitutive equation in eqn. (9.1) is written in terms of the
displacement field. To this end, we note that the microstrain €, is given
as a function of the displacement in eqn. (1.12), wherein the second level
of approximation corresponds to M = 2. Using this equation, eqn. (9.1) is
rewritten as

Pai = Ac€a To; = Ao Ta; Ta 7' ok (uj,kl + %‘:— T;kz Uj’klkz) . (9.4)

We consider a boundary value problem where the traction vector T is pre-
scribed everywhere on the boundary of the body, denoted by 8B. The appro-
priate form of the traction boundary conditions was developed in egns. (1.35),
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(1.37) and (1.38). Here, since M = 2, r has a value equal to 1 and, conse-
quently, eqn. (1.37) implies

n
fa o OP
nkl Z Tgkl ( i ™ 2(: aksy ama') :111.' (9-5)
a=1

Substituting p,; from eqn. (9.4) into eqn. (9.5) and making some simplifica-
tion results in
2

n
o ,0 ,0 o0 Mo o o _m
Aomy Z Tal Tai Toj Tak, (uj,kl - T Taks Taks Ui,k kzks) =T. (96)
=1

We also assume that the separation between adjacent nodes of a doublet
is the same for all the doublets originating from the same node. That is,

=1 a=12...n (9.7

which results in a single scaling parameter 7.

Now, let the applied traction vector have a convergent power series ex-
pansion, in the small scaling parameter 7, whose first three terms are given
by

T=TO 4+ 5T® £ P2 TO, (9.8)

Then, we assume that the displacement field of the above traction boundary
value problem admits a convergent power series expansion in 7, whose first
few terms are given by

u=v+nz+nw. (9.9)
Substituting eqn. (9.9) into eqn. (9.3) results in

n
1
Ao E Toi Taj Tak Ta [2, (viet + 12k + 1 w.h“)
=1

2
'*'% Tap Taq (”J',“Pq + 1 Zj kipg + '72 “’J’,klpq)] =0, (9.10)

from which three equations, corresponding to the first three powers of 7, are
found to be

Ao ) TaiTai Tak Tarvikt = 0, (9.11)
a=1
4o Z Tai Taj Tak Tat Zikl = 0, (9.12)

1 o o
Ao Z o T Tak (wj,kz + 5 Tor Taq vj,kzpq) =90. (9.13)
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Similarly, when eqns. (9.8) and (9.9) are substituted into eqn. (9.6), three
equations corresponding to the first three powers of 1 are found to hold on
the boundary of the body. They are given as

Aonu Y | 7o Tai Tag Tak ik = T, (9.14)
a=1
Aoy Z Tol Tai Taj Tak ik = Ti(l)a (9.15)
a=1
- 1
o ,0 ,0 0 o o 2
Aoy az=:1 Tal Tai Taj Tak (wj,k - Z Tap Tag 'Uj,kpq) = T,'( )- (9.16)

Expressions (9.11)-(9.13) represent three field equations for the displace-
ments v, z and w, respectively, subject to the traction boundary conditions
given in eqns. (9.14)-(9.16). Once these are solved, the actual displacement
field u is determined, using eqn. (9.9), to within the accuracy of terms of
order n°. However, usually, the tractions prescribed at the boundary are such
that T = T(®) which, using eqn. (9.8), implies that

T =7 =, (9.17)

Then it follows from eqn. (9.15) that z = 0 is a solution to eqn. (9.12).
Therefore, there are only two unknown displacements, v and w, to be solved
for.

We note that v represents the solution in the special case where no scal-
ing parameter is present and, as such, corresponds to the classical elasticity
solution. Indeed, such a correspondence, in the case of planar problems, was
shown to hold in Chapter 8 where several boundary value problems were
solved. Once v is evaluated, it will serve to determine a body force term
in the governing equation for w given in eqn. (9.13). It will also provide a
surface traction term in the boundary condition for w as is evident from
eqn. (9.16). Thus, the lower order solution will contribute to the determi-
nation of the higher order one. This approach has some resemblance to a
method of solution in nonlinear elasticity, known as the method of successive
approximations, due to Signorini (Green and Adkins 1970). However, what
we have presented here is entirely within the context of doublet mechanics
which makes it essentially different from the method of successive approxi-
mations.

Furthermore, not all the solutions at the second level of approximation are
scale-dependent. For instance, when a doublet-mechanical body is subjected
to a uniform hydrostatic pressure the displacement field v is linear in the
spatial coordinates X. As a result, the body force term in eqn. (9.13) and the
surface traction term in eqn. (9.16) vanish, implying that w = 0 is a solution.
This reasoning could be generalized to show that the terms involving higher
powers of 7, in a power series expansion of u, also vanish, resulting in a
solution which is independent of the scaling parameters.
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9.3 Aspects of Well-Posedness of the Field Equations

One of the criteria that bears upon the question of well-posedness of a bound-
ary value problem is existence of solutions. It is well known (Love 1944) that
the necessary conditions for existence of equilibrium solutions, to a purely
traction boundary value problem, are that the forces and moments acting on
the body be self-equilibrated. That is,

/Fdx+/ Tds =0, (9.18)
B 8B

/xdex+/ x x Tds =0, (9.19)
B B

where T and F are the prescribed surface tractions and body forces, respec-
tively.

In the context of the present problem, with no prescribed body forces, we
assume that T satisfies the above equations. Then, since eqn. (9.17) implies
T = T®, it is clear from eqns. (9.11) and (9.14) that the conditions for
existence of v are automatically satisfied. Therefore, we only need to consider
the corresponding conditions for w. To this end, we rewrite eqns. (9.13) and
(9.16), respectively, as

Ao E Tai a] ak Tal Wy ki + Fi = 0, (920)
n
Aoru Y 1075 Tow T wik = T, (9.21)
a=1
Fi= Z Tai Taj Tak Tal Tap Tag Vikipe (9.22)
=1 A° ™ E Tak 1Ta ap T;q Yj,kpg- (9.23)

Integrating eqn. (9.3) over the volume of the body and using the diver-
gence theorem, we obtain

2
7 o
Ao / n E Tai a] Tak T, (Uj,k + 12 Tap T;q Uj,kpq) ds=0. (9.2¢4)
In addition, integrating eqn. (9.6) over the boundary of the body yields
7,
nl Z Tak (Uj,k 4 orp Taq Uj,kpq) ds

= [ Tids=0, (9.25)
OB
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where the last equality is the result of the assumption that T is a self-
equilibrated vector field. Subtracting eqn. (9.25) from eqn. (9.24) results in an
expression involving u; pq Which, upon using eqn. (9.9), results in two equa-
tions corresponding to two different powers of 1. The first of these equations
is found to be

A, nl Z i Tok Tal Tap Tag Vi kpg d8 = 0. (9.26)

a=

From eqns. (9.23) and (9.26) it follows that

/ T;ds = 0. (9.27)
8B

Then, upon using the divergence theorem again, the above expression implies
that

/ Fids =0. 9.28)
B

In view of eqns. (9.27) and (9.28), it is clear that eqn. (9.18) is satisfied and,
as a result, the first necessary condition for existence of w is verified.

We verify the second existence condition, given in eqn. (9.19), in a similar
fashion. First, we take the cross product of x with eqn. (9.6) and integrate
the resulting expression over the boundary of the body to find

2
n o (o]
AO/ €ori Tr N E Toi To T (Uj,k - Z'rap Taq Ujkpq ds

= / €sri TrTids = 0, (9.29)
8B

where €;;;; is the permutation tensor and the last equality follows from the
assumption that T is a self-equilibrated vector field. Then, we take the cross
product of x with eqn. (9.3) and integrate over the body to find

7
A, / €sri zrz ToiTe 7' <u1 ki + 12 u]"klpq) dz
= 4, / €sri Tr Y Z Tai Taj Tak (uj P+ T uj,k,,q) ds
n?
-4 / €sli Z Tak (U]k + 19 ap Tag Uj,kpq) d(l?(930)

-

= A, aBem- T,y Z ToiTaj Tak Ta (u, E + 12 ap Taq u]-,kpq) ds

= 0. (9.31)
Subtracting eqn. (9.31) from eqn. (9.29) we obtain
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AO 637’1 Try Z i T Tak T(!p Taq uj,kpq ds = 0. (9.32)

Substitution of eqn. (9.9) into eqn. (9.32) results in two equations corre-
sponding to two different powers of . The first of these equations is found
to be

A, / €gri Tp T Z oj Tk Tal Tap Taq Vikpg 48 = 0. (9.33)
Comparison of eqn. (9.23) and eqn. (9.33) yields
/ €sri Tr T;ds = 0. (9.34)
8B
Finally, using the divergence theorem, the above implies that
/ €eri Tr Fidz = 0. (9.35)
B
It is evident from eqns. (9.34) and (9.35) that eqn. (9.19) is satisfied, thereby
resulting in verification of conditions for existence of w. This establishes one

of the main criteria for well-posedness of the boundary value problems which
appear in the present formulation.

9.4 Kelvin’s Problem in the Plane

T2

5]

Fig. 9.1. Doublet geometry for Kelvin’s problem

In order to illustrate an application of the present formulation in obtaining
multi-scale solutions to boundary value problems, we solve Kelvin’s problem
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in the plane. Namely, we consider a force of magnitude P acting at the origin
of the plane in the direction of negative z;-axis as shown in Fig. 9.1. We take
the number of doublets to be three and their angle of separation to be « /3.

The governing equation for v, obtained in eqn. (9.11), can be rewritten

as
Cijkivey; =0, (9.36)
where
Cijkt = Ao Z T T TS (9.37)

subject to the boundary condition given in eqn. (9.14).

Equations (9.36) and (9.14) have the same form as the governing equations
and boundary conditions for a traction boundary value problem in elasticity
with the major difference that the elasticity tensor, given by eqn. (9.37), is
a fourth order tensor possessing symmetry with respect to any permutation
of its subscripts. On the other hand, for the particular geometry of the dou-
blets considered here, C is an isotropic tensor. Then, the symmetries of the
elasticity tensor, as shown in eqns. (5.69) and (5.70), result in the equality
of Lame’s constants for the doublet-mechanical body. That is, A = p which
in turn gives the value of 1/4 for Poisson ratio. By equating the expression
given in eqn. (9.37) to the one given in eqn. (5.69), it can be shown that
A=3A4,/8.

Therefore, to find the solution to eqn. (9.36) we set the Lame’s constants
equal to each other in the elasticity solution of the planar Kelvin’s problem
as given in Love (1944, pp. 209-210). The result is

z T1T2

z
=G logr +cy r—;, Vg = C3 —;—2——, (938)
where
p C1 C1
- _P_ = — 9.39
Mg 2T @ 2 (9:39)
The governing equation for w, given in eqn. (9.20), is rewritten as
Cijriwg; + Fi =0, (9.40)
where
F’ =D ijj = 12 Z Tai aJ akT lTap aq Uk,lpgj> (941)
and
Dij = 12 Z ai a] Tak T Tap T:zq Uk,ipq> (9.42)

subject to the traction boundary conditions in eqn. (9.21).
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We note that eqn. (9.40) has the same form as eqn. (9.36) with the ad-
ditional presence of the body force F. To find w, in analogy to what was
done for v, we solve the boundary value problem in elasticity subject to the
body force F and traction boundary conditions in eqn. (9.21) and equate the
Lame’s constants in the solution.

To this end, we first compute the tensor D as given in eqn. (9.42). On
expanding eqn. (9.42), component D;, is found to be

A,
Dy, = 12 [(£0)? (7)1 + 2 (1) Ty w02 + (771)? (152) w122
+ (9P vz + 2(m0)? (152) P v1022 + T (152)? v1 222
+ 75 (1) w11 + 2 ()% (12)? w2011 + 711 (112)° w222
+ (191) (150)? va 11 + 270 (75)% v2,201 + (712)" v2,220)
+ (150)% ((r50)* w1011 + 2(151)* 15y vi112 + (75)? (752) vr 122
+(151)° Top v1,112 + 2 (151)% (152) w1122 + Toy (755) w1 222
+ 755 (151)P v2,111 + 2(751)? (152) 2 v2,211 + 73y (75) va2m
+ (151)? (r2) va 211 + 275, (155)° V2,221 + (752)* v2,222)
+ (1502 ((50) vi11 + 2(750)% T2 v 112 + (751)% (752) 01,122
+ (150)3 T vi12 + 2 (75))? (752) % w1122 + 751 (75)° va 202
+ 755 (T3 P v211 +2(15))? (152)? va .11 + 751 (15)° w202
+ (1512 (152) va 011 + 275, (755) v2201 + (755)  v2022)] . (9.43)
Given the doublet geometry in Fig. 9.1, the components of the doublet vectors

are
1 o \/g o 1 ) \/5

™ = 3 T2 = 50 Toy = 2 Tog = - T =1, T =0 (9.44)

Substituting eqn. (9.44) into eqn. (9.43) we find

A,
D, = 138 (11vy 111 + 301,122 + 3v2.211 + 3vz,222). (9.45)

Other components of D are found in a similar manner. Omitting the details
of the expansions, they are given as

A,
Dy = 128 (Bur,112 + 3v1 222 + v2,111 + 9v2.221), (9.46)
Dy = 128 == (v1,111 + 901,122 + 92,211 + Y va222). (9.47)

Now we can compute the components of the body force F. Using eqns. (9.38),
(9.41), (9.45) and (9.46), the first component is given by
_ A,
ho= 128(

6 4 3
= ZAO Ca (64— - 104— + 44"— - 7‘—4) . (949)

11vy 1111 + 6v1 1122 + 4v2 2111 + 301,220 + 1202 2991)  (9.48)
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Similarly, the second component of the body force, using eqns. (9.38), (9.41),
(9.46) and (9.47), is given by

— Ao
F, = 128(41)1 1112 + 1201 1202 + 18v2 2211 + V21111 + Yv2.2222) (9.50)
3 5
— T122 Ty z,z5
= 64ocy (2 12 g1 g T ) (9.51)

The traction boundary conditions for w, given in eqn. (9.21), can be
rewritten as

Aoy Z Toi Taj Tak Tal Wik = 3 Djin. (9.52)

The components of D, given in eqns. (9.45)—(9.47), vanish as r tends to
infinity. Therefore, the tractions are zero at the boundary.

In order to obtain a solution for eqn. (9.40), we use Papkovich-Neuber
displacement potentials denoted by ¢ and 1. When these potentials satisfy

st _ 2, F 9.53
¢;JJ 2(1_,/) 3IJ » ( . )
Fr 2 -
= —t =2 F, .
¢ »J7 2(1 _ V) 3 (9 54)
with Poisson ratio v = 1/4, the displacement field w is given by
4
wi = =7 (9, + 2 ¥ji — 29). (9.55)

Given the body force field in eqns. (9.49)-(9.51), particular solutions for
eqns. (9.53) and (9.54) are found to be

1z, 3z22 x2% 2z28
6 =—-24, c2<48 hochn,an Snm), (9.56)
1 1 72% 1l1z3 _ af
¢1=§A°02('§3‘zr4+3re‘2r—s ! (9.57)
3 717, 4 zy23 123
2= Ao 02( Tt e ) (9.58)

Substituting eqns. (9.56)-(9.58) into eqn. (9.55), we find the displacement
field w to be

6 4 2
_ T x5 z5 5
w=-3 (128 ~3322 432072 — 1002 + r—2> : (9.59)
7 5 3
_ Cy Z’z Ty :I)2 )
w2—§$1(64m—96r—8+32r—6+;§). (960)

Thus, the displacement field of the original problem is expressed as
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u=v+nyiw, (9.61)

where v is given by eqn. (9.38) and w is given by eqns. (9.59) and (9.60).
The displacement field u represents the doublet-mechanical solution of the
planar Kelvin’s problem, at the second level of approximation, to within the
accuracy of terms of order n°.

9.5 Discussion

Having determined the displacements v and w, other field quantities such as
the microstresses and the macrostresses can be readily evaluated. We recall
that the elongation microstress po; is given by eqn. (9.4). The relationship
between the microstresses and the macrostresses was developed in eqn. (1.40).
Writing this expression, at the second level of approximation, yields

U Opai
Oji = 0' Z ( ai 2 Tak 8:Ek ) (9.62)

Now, both the microstresses and the macrostresses can be written in terms
of the displacements. When eqn. (9.9) is substituted into eqn. (9.4), and terms
of order 1 are neglected, we find

Poi = Ao 1878573, (Vi + 5 Tal Vil +1° wjk) - (9:63)

Similarly, when eqn. (9.63) is substituted into eqn. (9.62) we find, to
within terms of order n?, that

2
n
gji = Ao Z Taj Tai Tok Tal (Uk,l + 7)2 Wk~ 'ZTap aq ”k,lpq> . (9.64)

As expected, the displacement field w has a singularity at the origin due
to the application of the point force. This singularity, however, is stronger
than the one shown by v since the former is of 1/r? type, whereas the latter
is of the type logr. It is for this reason that v grows unboundedly as r — oo,
while w approaches zero asymptotically.

Although, in the foregoing development we determined an expansion of u
up to the terms involving second power of 7, the formulation can be extended
in an obvious way to any arbitrary power of 1. The characteristic feature of
this formulation is that the lower order terms in the expansion of u contribute
to the determination of the higher order terms. Thus, the displacement field in
doublet mechanics, at the second level of approximation, can be determined
to within any desirable accuracy in the terms involving the scaling parameter.



10. A New Direction: Nanotubes

Nasreen G. Chopra and A. Zettl

10.1 Introduction

The recent discovery of various stoichiometries of B,C, N nanotubes provides
an interesting application for the formalism covered in the previous chapters.
A nanotube can be described as a long thin strip, cut out of a single atomic
plane of material, rolled to form a cylinder with a diameter of nanometer
scale and a length on the order of microns. This chapter will discuss the
discovery of tubes of various layered materials, give a theoretical formulation
of the cylindrical nanostructures, show some experimental work done on the
mechanical behavior of carbon tubes and provide possible applications of this
material in the future.

10.2 Discovery

10 nm

Fig. 10.1. Transmission electron micrograph of a single-wall carbon nanotube. Line
drawing shows the cross section of the structure.

Carbon nanotubes (z = 0, y = 1, z = 0) were first discovered by lijima (1991)
while performing transmission electron microscopy (TEM) on a fullerene sam-
ple taken from the chamber where Cgg is produced. Fig. 10.1 is a micrograph
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10 nm

Fig. 10.2. Transmission electron micrograph of a multi-wall carbon nanotube. Line
drawing shows the cross section of the tube, emphasizing the relative positions
between the walls.

of a single-wall carbon nanotube. The dark line contrast comes from the sin-
gle atomic layer thickness of the tube wall while the gap, which is 1.28nm,
represents the inner diameter. Carbon nanotubes can also have more than
one wall. Multi-wall nanotubes are hollow cylindrical structures with several
concentric layers, as seen in Fig. 10.2. On either side of the gap, there is an
equal number of lattice fringes indicating the number of walls of the tube.
This particular multi-walled tube, for example, has 10 walls and an inner
tube diameter of 1.6nm. Tubes with over 30 walls have been observed. How-
ever, the spacing between the multiple tube layers is always about the same
as the interplanar distance in graphite, ~ 3.44, as pointed out in Fig. 10.2.

Inner diameters of single-wall and multi-walled carbon nanotubes range
from 0.7 to 1.5nm and 1.3 to 4nm, respectively, while their lengths are com-
monly on the order of microns. Fig. 10.3 is a lower magnification TEM mi-
crograph of a multi-walled carbon nanotube sample with several tubes which
have lengths exceeding a micron thus leading to aspect ratios of over a thou-
sand. The tubes are closed structures, capped off with some arrangement of
carbon atoms which involves pentagon or heptagon formation along with the
rest of the hexagonal network. It is possible, however to open and fill the
tubes as Ajayan and lijima (1993) have shown.

Carbon nanotubes are synthesized by arcing a graphite rod against a
cooled electrodein a helium atmosphere. Although the growth kinetics are not
well understood for the uncontrolled dynamics of the arc-discharge method,
Ebbesen and Ajayan (1992) found the optimum parameters for multi-walled
tube growth yielding approximately 50% tubes and the rest of the graphite
turning into other layered nanostructures and nanoparticles of carbon. Single-
wall tube growth results when a metal catalyst such as iron or cobalt is intro-
duced in the arc-discharge chamber, as shown by lijima and Ichihashi (1993)
and Bethune et al (1993). Since these initial studies, various other techniques
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Fig. 10.3. TEM image of multi-wall carbon nanotubes on a holey carbon grid
which is used to support the structures for TEM analysis. In general, nanotubes
have high aspect ratios. This image also shows the layered spherical nanostructures
that are produced while synthesizing carbon nanotubes.
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for both single and multi-walled tube growth have been successful, including
vapor condensation (Ge and Sattler 1993), laser ablation (Guo et al 1995)
and electrolytic method (Hsu et al 1995).

Fig. 10.4. TEM image of multi-wall BN nanotube produces by arcing a BN-filled
tungsten electrode. The metal particle seen at the end is believed to help nucleate
or terminate tube growth.

Weng-Sieh et al (1995) and Stephan et al (1994) synthesized tubes with
z =1,y =2, z = 1 stoichiometry of boron, carbon, and nitrogen, namely
BC;N. Most recently boron nitride (z = 1, y = 0, z = 1) nanotubes have
been discovered both multi-walled (Chopra et al 1995b) and single-walled
(Loiseau et al 1996). All varieties of B,C,N, nanotubes which exist so far
have been formed in the arc-discharge chamber using different materials and
operating conditions. Fig. 10.4 (Chopra et al 1995b) shows a multi-walled
BN nanotube produced by using a BN filled tungsten electrode; tubes syn-
thesized by this method can have a metal particle at the tip which is believed
to aid in nucleation or termination of BN tube growth.

10.3 Theory

The theoretical approach to nanotubes begins with defining indices relative to
the lattice vectors on the hexagonal plane from which the tubes are formed.
Fig. 10.5 shows the simplest hexagonal lattice made from a homogeneous
material, simulating the case for carbon. The other, more complicated, ma-
terials will have bigger unit cells but can be treated with a similar approach
because they are also planar, hexagonal materials in bulk. However, for the
sake of simplicity, we consider the case where each vertex is occupied by the
same kind of atom, for example carbon atoms in graphite. A tube is formed
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C=nja;+nja)

Fig. 10.5. Hexagonal network of atoms defined by indices relative to the lattice vec-
tors. By cutting a strip (dashed line in figure) of this hexagonal sheet and mapping
the origin to some (ny,n2), a tube is formed, uniquely defined by its circumference
vector, C.

by defining a particular circumference vector C = n; a; + ny a; where n;
and ng are integers and a; and a; are the unit vectors (the same notation as
used by Saito et al (1992)); having defined the width of the strip with C, we
can form the tube by mapping the origin to the point (n;,n2) and the cor-
responding points down the length of the tube. Thus tubes will have several
different chiralities, depending on the circumference vector, C, as seen in the
examples of Fig. 10.6a-c.

Calculations of the density of states for carbon nanotubes indicate that the
electrical properties of the tubes will range from semi-conducting to metallic
depending on the chirality and the diameter of the tube (Saito et al 1992).
Miyamoto et al (1994) have performed similar calculation of the electrical
properties for BC;N tubes and have found that they also range from semi-
conducting to metallic like carbon nanotubes, but all BN nanotubes are pre-
dicted to be semi-conducting independent of their chirality and diameter
(Blase et al 1994).

10.4 Mechanical Behavior

The unique size of these nanostructures leads to interesting questions about
their mechanical behavior. Can the tubes be treated as continuos hollow
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Fig. 10.6. Theoretical examples of tubes with different chiralities. (a) (4,4) arm-
chair chirality tube (b) (8,0) zigzag tube (c) (7,2) tube. The names for the chiralities
come from the arrangement of atoms at the cross-sectional edge of the tube as seen
in the figure. (Courtesy of Vincent H. Crespi)
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cylindrical structures or does their nanometer size call for a more discrete
treatment? A doublet mechanical analysis of the mechanical properties of
nanotubes has the potential to answer such a question. Meanwhile, energetics
and Hamiltonian formulation predicts that carbon nanotubes will be 30 times
stiffer than a steel rod of the same dimension (Ouverney et al 1992).

Much of the experimental work carried out on nanotubes has concen-
trated on carbon nanotubes. Analysis of high resolution TEM micrographs
of some of these structures reveals defects in the cylindrical shape of the
tube. Hiura et al (1994) found tube cross-sections that were slightly ellipti-
cal, and Ruoff et al (1993) have seen tubes with deformed walls which locally
change the inner diameter by a small amount. Tubes with localized kinks
and bends have also been observed in carbon nanotubes (Endo et al 1993,
Despres et al 1995). We expect, then, in following with analogies of hollow
cylindrical structures, to see nanotubes which have totally collapsed. Indeed,
such structures have been observed and characterized for carbon nanotubes
and an example is given in Fig. 10.7 (Chopra et al 1995a). On initial inspec-
tion collapsed carbon nanotubes resemble a ribbon-like structure with two
distinct regions: a flat region where the wide part of the flattened tube is in
the image plane and a twist region where the wide region is perpendicular to
the imaging plane. High resolution TEM images of these two regions reveal
the following: when the flat part is in the imaging plane two parallel sets of
equal-numbered lattice fringes, separated by a gap are observed; and when
the width of the ribbon is perpendicular to the image plane the same total
number of lattice fringes are seen but with no gap. These features are char-
acterized in the insets in Fig. 10.7 in order to give a clear representation of
the geometries. Careful analysis of the structure including an in situ rotation
study proved that the projected diameter of the collapsed structure changed
as the sample was rotated in contrast to the conventional inflated tube where,
as expected, the projection did not change with rotation of the sample.

10.5 Applications

The study of nanotubes is of interest to a variety of researchers from different
fields mainly because of the potentially wide reaching effect these structures
could have on various areas of technology. The most exciting and realizable
potential from the electronics industry is to look at single-wall nanotubes,
some of which are predicted to being metallic, as nanowires. The forefront
of the microchip industry produces micron scale circuitry; nanotubes boast
the ability to reduce the scale by a factor of a thousand. In fact, due to the
semiconducting nature of BN nanotubes, theoretically, it is possible to dope
with different substances to achieve p-type and n-type doping leading to the
eventual revolutionary idea of having whole circuits on single nanotubes.
Also the predicted high strength, high flexibility of these nanostructures
makes them candidates for building blocks of extremely strong, versatile ma-
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Fig. 10.7. TEM micrograph of a collapsed carbon nanotube. The insets (not
to scale) emphasize the unique features of a flattened multi-wall nanotube. This
ribbon-like structure has two distinct regions: a flat part, as illustrated in the lower
inset, has an equal number of lattice fringes on either side of the gap, while the
twist part has the same total number of lattice fringes but no gap (top inset).
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terials. Presently graphite fibers are widely used in industry for their high
performance; carbon nanotubes with their mostly defect free, crystalline walls
are likely to be a vast improvement upon them.
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A. Micro-macromoduli Relations

K.Mon

Fig. A.l. Planar n = 3 DM lattice.

The purpose of this appendix is to provide numeric values for the doublet
mechanical micromoduli used in microconstitutive relations of the form

Pa = Z Aqpep, (A1)
B=1
where A,p is a matrix of micromoduli. Use is made of the isotropic n =
3 doublet planar hexagonal (v = 60°) lattice (Fig. A.1), and the micro to
macro moduli relation:

C=MAMT (A.2)

defined in eqn. (8.22). In terms of the Lamé constants, A and u, the form
of € appropriate for a macroscopically isotropic material undergoing plane
strain is
A+2u A 0
C= A A+2u 0 |, (A.3)
0 0 7

such that macroscopically the in-plane stress-strain relation is
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& =Ce, (A4)

where 6 := {011,092,012}F and é := {e11,€22,€12 + €21} The form of ¢
appropriate for a macroscopically isotropic material undergoing plane stress,
which we elect to call Q, is

Aty 2Au
4 ( ,\+2y) ( A+2u) 0

0 = 2) A+ .
Q () w(ZE) of (A.5)
0 0 7
such that macroscopically the in-plane stress-strain relation is
6= Qe (A.6)

and we define a micromoduli matrix B,g, analogous to Aqp in eqn. (A.1),
by the relations

~

Q = MBMT, (A.7)
Pa = Y Bages. (A.8)
p=1

The matrices Ay and B, obtained from eqns. (A.2) and (A.7) using macro-
moduli matrices (A.3) and (A.5) are both of the form

a b b
b a b |. (A.9)
b b a

and are independent of in plane rotations of the DM lattice vectors (7, in
Fig. A.1) relative to the macroscopic coordinate system (x and y in Fig. A.1).
Relation (A.9) is also in complete agreement with the constitutive restrictions
obtained on DM linear elasticity in Chaps. 2 and 3. Thus, for each type of
planar problem, only two micromoduli (a and b) are needed. For the case of
plane strain, the components of A,z are such that

4

a = §(A + 5p), (A.10)
4

b = §()\ — 1), (A.11)

while for plane stress, the components of B,g are such that
4 (TA+10pu
- = ! A2

o = tu(5H2). (A12)

4 [A-2u

Table A.1 provides a listing of values for a and b for a variety of materials.
One could use the ratio a/b as a quantitative guide to the applicability of
the more simple constitutive relations
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Po = Aota, (A14)

Pa = DBoea, (A.15)
using eqn. (A.14) or eqn. (A.15) instead of eqn. (A.1) or (A.8) only when
a/b>> 1 (usually when v 22 1/4 or A 2 4 for plane strain, v 2 1/3 or A = 2y
for plane stress).
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Table A.l. Isotropic micromoduli for plane strain (A,3) and plane stress (Byg)
problems with macroscopic isotropy and the planar hexagonal DM lattice.

Material E v Aqp (GPa) B.s (GPa)
(GPa) a | b a | b
Ag 82.7 | 0.367 | 104.3 23.7 | 8238 21
Al 70.3 | 0.345 | 83.9 142 | 70.3 0.62
Au 78.0 | 0.44 148.5 76.2 79.1 6.9
Bi 31.9 [ 0.33 37.0 50| 319 | —0.08
Cd 49.9 | 0.30 55.4 43| 500 -1.2
Cr 279.1 | 0.21 2034 | — 14.1 | 2835 | — 24.1
Cu 129.8 | 0.343 | 154.3 25.4 | 129.8 0.95
T (cast) 152.3 | 0.27 | 1645 46 [ 1530 | =69
Mg 44.7 | 0.29 149.2 3.0 44.8 - 14
Mo 275.8 | 0.32 314.7 36.1 | 275.9 - 29
Ni (unmag.) 219.2 | 0.306 | 245.3 21.5 ] 2194 — 44
Pb 16.1 | 0.44 30.6 15.7 16.3 1.4
Pt 168 | 0.377 | 218.7 56.0 | 168.4 5.7
Pu 96.5 | 0.18 101.1 — 8.0 989 [ — 10.2
Sn 49.9 1 0.357 | 61.3 1221 49.9 0.90
Ta 185.7 | 0.342 | 220.3 35.8 | 185.7 1.2
Th 58.6 | 0.27 63.3 1.8 58.9 — 2.7
Ti 115.7 | 0.321 | 132.2 154 | 115.7 - 11
U 165.5 | 0.21 | 1740 | —84 ] 168.1 | — 142
\% 127.6 | 0.365 | 160.0 354 | 127.7 3.1
\\% 411 ] 0.28 447.6 19.5 | 4123 | — 15.9
Zn 108.4 |1 0.249 | 115.6 | — 0.15 | 109.2 — 6.5
Brass (Zn — 30 Cu 100.6 | 0.35 121.4 22.1 | 100.6 1.3
Constantan 162.4 | 0.327 | 1874 24211624 | — 0.77
Invar 144 | 0.259 | 154.4 1.9 | 1448 —7.6
Mild Steel 2119 | 0.291 | 233.2 14.3 | 212.3 —6.5
Stainless Steel 215.3 | 0.283 | 235.1 11.3 | 2159 -7.9
WC 534.4 | 0.22 563.2 | — 209 [ 5416 | — 424
Crown Glass 71.3 | 0.22 751 | —28 | 723 -5.7
Fused Quartz 73.1 | 0.17 66| —6.7| 751 —82
Heavy Flint Glass 80.1 | 0.27 86.5 24| 804 —3.6
Polyamide 207104 3.0 1.0 21 0.1
Polyethylene 0.69 | 0.46 1.7 1.1 | 0.70 0.07

! James, A. and Lord, M. (1992), Index of Chemical and Physical Data, MacMillan
Press, Ltd., New York, New York, p. 20-21.

% Handbook of Tables for Applied Engineering Science, 2nd Ed. (1973), CRC Press,
Inc., Boca Raton, Florida, pp. 68, 117.
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