Energy Release Processes in Solar Flares

A THESIS

submitted for the Award of Ph.D. degree of

MOHANLAL SUKHADIA UNIVERSITY

in the

Faculty of Science

BY

Arun Kumar Awasthi

Under the Supervision of

Prof. Rajmal Jain

Physical Research Laboratory, Ahmedabad

Department of Physics

MOHANLAL SUKHADIA UNIVERSITY

UDAIPUR

Year of submission: 2013
DECLARATION

I, Mr. Arun Kumar Awasthi, S/o Mr. Onkar Nath Awasthi, resident of Room No. 105, PRL Students’ hostel, Thaltej Campus, Thaltej, Ahmedabad-380 059, hereby declare that the research work incorporated in the present thesis entitled, “Energy Release Processes in Solar Flares” is my own work and is original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required. I solely own the responsibility for the originality of the entire content.

Date: December 06, 2013

Arun Kumar Awasthi

(Author)
I feel great pleasure in certifying that the thesis entitled, “Energy Release Processes in Solar Flares” embodies a record of the results of investigations carried out by Mr. Arun Kumar Awasthi under my supervision. He has completed the following requirements as per Ph.D regulations of the University.

(a) Course work as per the university rules.
(b) Residential requirements of the university.
(c) Regularly submitted six monthly progress reports.
(d) Presented his work in the departmental committee.
(e) Published minimum of one research papers in a referred research journal.

I recommend the submission of thesis.

Date: December 06, 2013

Prof. Rajmal Jain
Professor
Physical Research Laboratory,
Ahmedabad - 380 009.

Countersigned by
Head of the Department
Dedicated to

My Family & Friends
Contents

List of Tables xvii
List of Figures xix
Acknowledgment xxv
Abstract xxix
List of publications xxxiii

1 Introduction 1
 1.1 The Sun .. 1
 1.1.1 The Solar Interior 2
 1.1.1.1 The Core 2
 1.1.1.2 The Radiative zone 3
 1.1.1.3 The Interface Layer (Tachocline) 4
 1.1.1.4 The Convection zone 5
 1.1.2 The Solar Atmosphere 5
 1.1.2.1 The Photosphere 6
 1.1.2.1.1 Sunspots : 6
 1.1.2.1.2 Active Regions : 7
 1.1.2.2 The Chromosphere 8
 1.1.2.2.1 Filaments/Prominences : 8
 1.1.2.3 The Transition region 9
1.1.2.4 The Corona .. 10
1.2 Magnetic Phenomena on the Sun 10
 1.2.1 Magnetic-field 10
 1.2.2 Magnetic reconnection 15
 1.2.2.1 Sweet-Parker and Petschek Models 17
 1.2.3 Particle acceleration 18
1.3 Eruptive phenomena in the solar atmosphere 19
 1.3.1 Solar Flares 19
 1.3.1.1 Solar flares in Soft X-rays 21
 1.3.1.1.1 Solar Flares in Hard X-rays 21
 1.3.1.1.2 Flare Classification 21
 1.3.1.1.3 Solar flares in Hα wavelength 22
 1.3.1.2 Temporal Evolution of flare energy release ... 23
 1.3.1.2.1 The Precursor Phase 25
 1.3.1.2.2 The Impulsive Phase 27
 1.3.1.2.3 The Gradual Phase 29
 1.3.1.2.4 Cooling of the Solar flare plasma 30
 1.3.1.2.5 Neupert effect in Solar flares 32
 1.3.1.3 Spectral evolution in Solar flares 34
 1.3.1.3.1 Thermal and Non-thermal contributions to a solar flare X-ray flux 36
 1.3.1.4 Models of energy release in Solar flare 37
 1.3.1.4.1 CSHKP model 39
 1.3.1.5 Conduction and Beam-driven chromospheric evap-
 oration ... 41
 1.3.1.6 Trigger mechanisms of energy release during
 solar flares 43
 1.3.1.6.1 Random motion of photospheric magnetic field 43
 1.3.1.6.2 Shearing of magnetic field 43
1.3.1.6.3 Emergence and cancellation of magnetic flux: 44
1.3.1.6.4 Kink Instability driven filament eruption: 44
1.3.1.6.5 Tether Cutting: 44
1.3.1.6.6 Magnetic Breakout Model: 45
1.3.1.6.7 Reconnection Inflows: 46
1.3.2 Coronal Mass Ejections (CMEs): 47
1.3.2.1 Flare-CME relationship: 50
1.4 Motivation and outline of the thesis: 51

2 Instrument and Data Analysis Techniques 53
2.1 Introduction 53
2.2 Instruments and Analysis techniques 55
2.2.1 Instruments for observing emission from photosphere 55
2.2.1.1 Michelson Doppler Imager (MDI) onboard SoHO and Helioseismic Magnetic Imager (HMI) onboard SDO missions 55
2.2.1.2 SolarSoftWare(SSW) 57
2.2.2 Instruments for observing emission from chromosphere 57
2.2.2.1 GONG Hα Network (GHN) 58
2.2.2.2 Solar Tower Telescope (STT, ARIES/Nainital) 58
2.2.2.3 Thaltej Solar Flare Telescope (TSFT)-PRL 59
2.2.3 Instruments for observing emission from corona 59
2.2.3.1 SOLAR X-Ray Spectrometer (SOXS) 59
2.2.3.1.1 The Solid-state Detectors: 61
2.2.3.1.2 Collimator and Filter: 65
2.2.3.1.3 Response Matrix of the SOXS instrument: 65
2.2.3.1.4 Onboard Radioactive Source: 67
2.2.3.1.5 Sun Aspect System SOXS Sun Tracking Mechanism (SSTM) : 68
2.2.3.1.6 Electronics : 69
2.2.3.1.7 Flare Triggering Logic : 71
2.2.3.1.8 SOXS Common Electronics (SCE) : 73

2.2.3.2 Reuven Ramaty High Energy Spectral Imager (RHESSI) : 73
2.2.3.2.1 RHESSI Imager : 74
2.2.3.2.2 Image reconstruction algorithms for RHESSI observations : 75
2.2.3.2.3 RHESSI Spectrometer : 78
2.2.3.2.4 Attenuators : 79

2.2.3.3 Object Spectral Executive (OSPEX) : 80
2.2.3.4 GOES : 81
2.2.3.5 Transition region coronal explorer (TRACE) : 82
2.2.3.6 Atmospheric Imaging Assembly (AIA) : 83
2.2.3.7 Automated technique for synthesis of temperature and emission measure 2D map : 83

3 Study of the Precursor and Main phases of Solar Flares : 87
3.1 Introduction : 87
3.2 Observations : 92
3.3 Multi-wavelength diagnostics of solar flare emission : 94
 3.3.1 Temporal and Spectral study of X-ray emission : 94
 3.3.2 Statistical study of flare plasma parameters in the precursor and main phases : 101
 3.3.3 Timing analysis of flare Temperature and Emission measure : 104
 3.3.4 Spatial Evolution of multi-wavelength emission during the precursor and main phases : 106
3.3.4.1 Morphological study of X-ray emission 106
3.3.5 Evolution of Photospheric magnetic field 109
 3.3.5.1 Measurement of magnetic flux 111
 3.3.5.2 Measurement of the magnetic field gradient 111
 3.3.5.3 Measurement of shear angle of the active region 112
3.3.6 Kinematics and Morphology of filament 113
3.3.7 Thermal and non-thermal characteristics of the precur-
 sor and main phases of April 22, 2011 M1.8 flare: A case
 study . 117
 3.3.7.1 . 119
 3.3.7.1.1 Spatial analysis 120
 3.3.7.1.2 Spectral and temporal evolution of the
 X-ray emission . 126
 3.3.7.2 Thermal and Non-thermal Energetics 130
 3.3.7.3 Temperature and Emission Measure evolution 132
 3.3.7.4 Hα emission and Filament morphology 135
3.4 Discussion, Summary and Conclusions 137
 3.4.1 Flare plasma parameters during various phases of emission138

4 Energy-dependent Heating and Cooling of the Plasma 143
 4.1 Introduction . 143
 4.2 Modeling the X-ray Flare 148
 4.3 Observations, Analysis and Results 149
 4.3.1 Spectral Analysis 150
 4.3.2 Temporal Analysis 153
 4.3.3 Generalization of Neupert effect 161
 4.4 Discussion . 163
 4.5 Conclusions . 166

5 Probing the Role of Magnetic-Field Variations 169
 5.1 Introduction . 169
5.2 Observations, Analysis and Results .. 171
 5.2.1 Magnetic field evolution .. 171
 5.2.2 Measurement of Magnetic-Field Variations 174
 5.2.2.1 Measurement of Magnetic Flux 174
 5.2.2.2 Measurement of Magnetic-Field Gradient 175
 5.2.2.3 Measurement of angular rotation of leading polarity 176
 5.2.3 The H_α Observations .. 178
 5.2.3.1 The Chromospheric Activity during 10-13 May 1997 178
 5.2.3.2 The Filament Activity on 12 May 1997 179
 5.2.3.3 The H_α Flare ... 181
 5.2.4 The Coronal Mass Ejection (CME) 185
 5.3 Discussions ... 187
 5.4 Conclusions .. 192

6 Self-organized criticality in Corona .. 195
 6.1 Introduction ... 195
 6.2 Observations and Analysis Techniques 199
 6.3 Data analysis and Results ... 201
 6.3.1 Probing the photosphere-corona coupling 202
 6.3.2 Evolution of photosphere-corona coupling 207
 6.4 Summary, Discussion and Conclusion 211
 6.4.1 Statistical study of Photosphere-corona coupling 211
 6.4.2 Evolution of photosphere-corona coupling during and prior to the flare 212

7 Summary, Conclusions and Future Scope 215
 7.1 Summary, Discussions and Conclusions 215
 7.1.1 Precursor phase emission in solar flares 216
7.1.2 Energy-dependent thermal emission and cooling in solar flares 217
7.1.3 Role of Photospheric magnetic field in producing flare and CME 220
7.2 Self-organizing critical state of the solar corona ... 221
7.3 Future Scope ... 223
 7.3.1 Evolution of the filament during the precursor and main phases of the flare 223
 7.3.2 Microwave emission during the precursor phase emission 223
 7.3.3 Modeling the thermalization time of the flare plasma 224
 7.3.4 Statistical survey of Magnetic-field parameters leading the corona to SOC 224
 7.3.5 Instrumentation for observing multi-wavelength solar atmosphere 225

A Thaltej Solar Flare Telescope (TSFT)-PRL ... 227
List of Tables

1.1 The X-ray Flare Classification ... 22

2.1 Key Parameters of MDI/SoHO and HMI/SDO 56
2.2 Special Features of the Si and CZT Detectors 60
2.3 Instrument Characteristics of SOXS/SLD 62
2.4 Specifications and Operating Conditions of SLED Characteristics 64
2.5 Grid parameters of RHESSI mission (Hurford et al., 2002) 75

3.1 Time characteristics and plasma parameters during various phases of flares during Year 2003-2005 96
3.2 Time characteristics and plasma parameters during various phases of flares during Year 2010-2012 97
3.3 Timeline of activities during the precursor and main phases of flare .. 118

4.1 Characteristics of Flare Plasma ... 152

6.1 List of the observing duration selected for the study of photospheric magnetic flux and coronal X-ray flux 199
6.2 Timing characteristics of Solar Flare 208

A.1 Specifications of Thaltej Solar flare telescope 230
A.2 Observation log of Thaltej Solar flare telescope 231
List of Figures

1.1 Overview of solar structure and associated processes. 3
1.2 Full-disk and high-resolution observation of the solar photosphere 7
1.3 Hα observations from Thaltej Solar Flare Telescope (TSFT) 9
1.4 Solar magnetic field presented in the form of magnet 11
1.5 Elementary picture of magnetic reconnection 15
1.6 2D steady magnetic reconnection scenario 16
1.7 Soft X-ray image from XRT/Hinode and 131 Å image from AIA/SDO 20
1.8 Intensity profile in X-ray emission during February 26, 2011 flare 26
1.9 Solar flare during the main phase observed by TRACE 28
1.10 Temporal evolution of SXR flux, its time derivative and HXR flux for the flares occurred on August 03, 2005 and September 17, 2005 33
1.11 Simulated X-ray photon spectra of the Sun in 1-100 keV 35
1.12 Physical processes during solar flares 38
1.13 Time evolution of the prominence eruption associated with solar flare 40
1.14 Flare trigger mechanisms 46
1.15 A halo coronal mass ejection observed by COR2 onboard STEREO-A satellite 48
2.1 SOXS detector package 61
2.2 The plot of effective area of the Si and CZT detectors of the SLED package. 66

2.3 In-orbit calibration test of the Si and CZT detectors in left and right hand panels, respectively. 69

2.4 The operation logic of the SLD payload. The temporal resolution during flare mode is 100 ms. 72

2.5 Schematics of the RHESSI imager-cum-spectrometer. 76

2.6 A cutaway of the Spectrometer showing the location of the germanium detectors (by number). (Lin et al., 2002). 79

3.1 Temporal evolution of multi-wavelength emission during various phases of April 22, 2011 flare 90

3.2 Photon flux spectrum of the flares occurred during year 2003-2004 and observed by SOXS. 99

3.3 Photon flux spectrum of the flares occurred during year 2005 and observed by SOXS. 100

3.4 Normalized frequency histogram of the temperature and emission measure ... 102

3.5 T versus EM plotted during the precursor and main phases 103

3.6 Temporal evolution of T and EM for the August 03, 2005 flare observed by SOXS mission 104

3.7 Histogram of time-delay (Δt) (in sec) between the peak of temperature (T) and emission measure (EM) profile. 105

3.8 Time series of images at the peak of the precursor and main phases of February 26, 2004 flare 107

3.9 Time series of images at the peak of the precursor and main phases on November 21, 2012 flare 107

3.10 Sequence of a high-resolution magnetograms of NOAA AR 11195 obtained by SDO/HMI for the period 20-23 April 2011 109
3.11 Temporal evolution of one hour cadence magnetic fluxes of leading and following polarities as well as total flux of NOAA 11195

3.12 Time series of 304 Å wavelength emission during the flare occurred on October 16, 2010

3.13 Temporal evolution of multi-wavelength emission during M1.8 flare on 2011 April 22

3.14 RHESSI X-ray contours of 30, 50 and 80 per cent intensity of the maximum of 6-10 keV energy band over plotted on the SDO/AIA 131 Å images

3.15 RHESSI X-ray contours of 30, 50 and 80 per cent intensity of the maximum of 10-14, 14-20 and 20-50 keV energy bands over plotted on the SDO/AIA 131 Å images

3.16 RHESSI observations of photon flux spectrum for 2011 April 22 flare

3.17 A sequence of images in 131 Å overlaid by contours of 30 per cent of the maximum intensity of co-temporal 6-10 keV energy band as well as in 94 Å wavelength

3.18 Temporal evolution of flare plasma parameters estimated from fitting RHESSI spectra

3.19 Temporal evolution of thermal and non-thermal energy release rate during various phases of the 2011 April 22 flare

3.20 Synthesized T and EM maps during

3.21 Sequence of images representing the filament activity prior to the onset of precursor phase

3.22 Sequence of Hα images (ARIES/Nainital) overlaid by the contours of log T=6.8 and log EM=22.5 drawn by red and green lines, respectively

4.1 Illustration of the insensitivity of bremsstrahlung spectrum to the temperature of the source plasma
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Theoretical line and continuum X-ray spectral evolutions of isothermal flux in the energy range 4-15 keV</td>
<td>150</td>
</tr>
<tr>
<td>4.3</td>
<td>Spectral evolution of the 19 November 2003 flare event in the energy range of 4-25 keV</td>
<td>154</td>
</tr>
<tr>
<td>4.4</td>
<td>Temporal profiles in 13 energy bands</td>
<td>155</td>
</tr>
<tr>
<td>4.5</td>
<td>Spectral evolution of the 19 November 2003 flare event in the energy range of 4-25 keV</td>
<td>156</td>
</tr>
<tr>
<td>4.6</td>
<td>Illustration of a flare loop</td>
<td>158</td>
</tr>
<tr>
<td>4.7</td>
<td>Observed normalized time delay</td>
<td>160</td>
</tr>
<tr>
<td>4.8</td>
<td>Temporal evolution of 7-10 keV soft X-ray flux F_{SXR}, time derivative of F_{SXR} and 15-56 keV hard X-ray flux F_{HXR}</td>
<td>162</td>
</tr>
<tr>
<td>4.9</td>
<td>Ratio of time-derivative of SXR and HXR plotted and fitted with the exponentially decaying function</td>
<td>163</td>
</tr>
<tr>
<td>5.1</td>
<td>High-resolution magnetograms of NOAA AR 8038 obtained by SOHO/MDI for the period 11–12 May 1997</td>
<td>172</td>
</tr>
<tr>
<td>5.2</td>
<td>Temporal evolution of eight hour averaged magnetic fluxes of leading and following polarities of NOAA 8038</td>
<td>178</td>
</tr>
<tr>
<td>5.3</td>
<td>High resolution Hα filtergrams, one for each day for the period 10–13 May, 1997</td>
<td>180</td>
</tr>
<tr>
<td>5.4</td>
<td>Sequence of Hα filtergrams showing filament activity on 12 May 1997 prior to CME-flare eruption</td>
<td>181</td>
</tr>
<tr>
<td>5.5</td>
<td>A sequence of high-resolution Hα filtergrams of the 1B flare observed in NOAA 8038 on 12 May 1997 by SOON</td>
<td>182</td>
</tr>
<tr>
<td>5.6</td>
<td>The three-seconds X-ray flux measurements in 1-8 Å by GOES 12183</td>
<td>183</td>
</tr>
<tr>
<td>5.7</td>
<td>Speed of separation of flare kernels of two opposite flare ribbons and estimated reconnection electric field</td>
<td>183</td>
</tr>
<tr>
<td>5.8</td>
<td>SOHO/EIT 195 Å running-difference images of large-scale wave transient moving out as a CME.</td>
<td>186</td>
</tr>
</tbody>
</table>
5.9 A schematic drawing of the evolution of the active region in the framework of Flare–CME event .. 188

6.1 Cellular automaton model with magnetic fluxtubes as the lattice points .. 197

6.2 Temporal evolution of Coronal X-ray flux and photospheric magnetic flux over the period of October 2003 203

6.3 Coronal X-ray flux for October 2003 plotted as a function of photospheric magnetic flux. .. 204

6.4 Temporal evolution of Coronal X-ray flux and photospheric magnetic flux over the periods of August 2004 and September 2005 . 205

6.5 Photospheric magnetic flux versus coronal x-ray flux combined for the months August 2004 and September 2005. 206

6.6 Coronal X-ray energy loss rate in 1-8 Å and photospheric magnetic flux plotted for the M6.7 flare occurred on September 08, 2011 .. 209

6.7 Coronal X-ray energy loss rate in 1-8 Å plotted versus photospheric magnetic flux for the M6.7 flare occurred on September 08, 2011. .. 209

A.1 Thaltej Solar Flare Telescope of Physical Research Laboratory operating at Thaltej campus. ... 228

A.2 The sequence of photographs of Venus Transit captured by TSFT229

A.3 Full disk image of the Sun obtained by TSFT/PRL on 11 April 2013 .. 232
Acknowledgements

Since the very outset to the accomplishment of my research during PhD, I pay my sincere and deepest gratitude to Prof. Rajmal Jain, my supervisor who has introduced me to the marvelous world of solar physics. His vast experience and knowledge has helped me immensely in learning the subject. He always gave importance to my understandings towards various aspects of subject which gained precision while fruitful discussions with him. I consider myself fortunate to have him as my supervisor.

I thank Prof. J. N. Goswami, Director; Prof. Anjan Joshipura and Prof. A. K. Singhvi, former Deans, and Prof. Utpal Sarkar, Dean of PRL and Prof. T. Chandrasekhar and Prof. P. Janardhan, former and current A&A division chairmen, for providing necessary facilities to carry out research work.

Being a part of an international collaborative project during my PhD, I have seen various crucial dimensions of research. For this I wish to convey my sincere gratitude to Prof. W. Uddin, PI of the project and Acting Director, ARIES, Nainital and Prof. P. K. Manoharan, Head, RAC-TIFR, Ooty. It will be injustice if I do not convey my sincere thanks to Dr. N. V. Nitta, Prof. M. Aschwanden, Prof. N. Gopalswamy, Dr. A. K. Srivastava and Dr. R. Chandra for fruitful suggestions during the project.

I have also imparted significant time of my PhD tenure in the development of a 10 cm aperture optical telescope in Thaltej Campus, PRL. Although I learnt a lot during the development and post-installation exercise of this task, it would have never been a successful without continuous monitoring of the development and effective advices from Prof. Rajmal Jain, my supervisor and my collaborators Prof. Y. Hanaoka, NAOJ, Japan and Prof. Y. Deng, NAOC, China. Moreover, I wish to acknowledge timely support received during installation of telescope from PRL members namely Arvind Rajpurohit, Sharad C. Tripathi, Jayesh Khunt, Raj Laxmi Singh, Pooja D. Gadhiya, Kyaw Min Tint, Arvind Rao, Khushbu Ajmera, V. D. Patel, Vishnu Patel, G. P. Ubale
and H. Kaila.

Till masters, we have never undergone through formal courses of Astrophysics which is the foundation of research. This essential need is fulfilled via very effective course work formulation and executing faculties from PRL. In this regard, I sincerely acknowledge the efforts of Prof. R. Ramesh, Dr. R. Rengarajan, Dr. S. Mohanti and Dr. B. Bapat.

I thank academic committee, PRL for critically reviewing my development in research time-to-time and giving me a supportive platform. In addition, I want to pay my special gratitude to Prof. N. M. Ashok, Prof. P. Janardhan and Dr. Bhuwan Joshi who critical reviewed the work conducted by me during thesis whenever needed. Moreover, I specially thank Dr. Sachindra Naik for his farsighted suggestions and critics which always advanced my research.

In this petabyte era of observational capabilities, data handling has been a very crucial but tedious task. In this regard, I thank all the staffs of PRL computer center for providing excellent computational and internet facilities. Especially, I must acknowledge the help received from Jigar Raval, Hitendra, Alok and Tejas, members of computer center and Shashi Prabhakar, student, PRL. In addition, I express my appreciation for the co-operation and help extended ever-willingly by the library and its staff members in general and Ms. Nistha and Pragya in particular.

Administrative matters have been such a relief because of the dedicated support from Mr. Senthil, Mr. Pradeep, Mr. Bharat M. Joshi, K. J. Shah, V. D. Patel, Murli Ji and Bhagirath. I sincerely thank PRL Admin for helping me in associated tasks.

Good company played a very important role in the life. Firstly, I am thankful to Amrendra, Susanta, Vivek, Sid, Sunil, Koushik, Chinmay, Reddy, Abhishek and Yogita, my batch mates, for helping me in keeping pace with research and daily life developments. Specially, mere acknowledgement seems insufficient for the time-to-time company of Amrendra and Raj Laxmi which made my life very systematic and happening. I express my sincere acknowled
edgments to Medha for showing me the way to the God of music, my tabla teacher. In addition, I thank Sharad and Raj Laxmi for accompanying me and pushing me whenever I seemed to lose my interest in music.

I enjoyed the company of Ram Krishna Da, Blesson, Ashish, Tapas, Vishal, Sunil, Susanta, Tapas, Priyanka, Anjali, Tanmoy C., and Gaurav for the fruitful discussion and suggestions. I enjoyed the company of Ashish, Arvind, Pankaj Sharma, Tanmoy C. and many more during the volleyball and badminton time in thaltej, PRL.

This thesis is incomplete if I do not acknowledge Google, ARXIV, SAO/ADS abstract service as well as open access data policy of several space and ground-based solar observatories. It always made my life easier like a true friend.

Finally last but not the least, I express my whole hearted gratitude to the support in the form of love and affection I got from my parents, my brother, sister, cousins and my family members. This is something beyond acknowledgements. They were always with me and the encouragement I received from them will never fade away.

Arun Kumar Awasthi
ABSTRACT

The study of multi-wavelength emission during solar flares has enormous potential towards understanding the underlying physical phenomena occurring in the solar atmosphere. Our Sun presents nearest laboratory to us where various plasma processes in the extremely severe magnetic environment occur. These processes need complete understanding with the help of continuous monitoring in view of their proximal hazards. Therefore, in general, the focus of this thesis is to understand the open issues in the energy release processes during solar flare using high temporal, spatial and spectral observations from various space and ground-based observatories.

Time evolution of emission from solar flare is categorized in three phases viz: precursor, impulsive and gradual. The impulsive and gradual phase of energy release in solar flares are studied in greater detail while the underlying processes causing the precursor phase is not yet explored owing to the lack of high spectral and temporal cadence observations. In order to explore the responsible underlying processes during the precursors and their role in producing impulsive phase, quantitative study is carried out employing multi-wavelength emission from fifty flares occurred during year 2003-2012. We do not find loop-top or foot-point hard X-ray (HXR) signatures during the precursor phase. Moreover, our investigation revealed thermal origin of the emitting plasma. A few of the well observed flares revealed the presence of coronal soft X-ray (SXR) sources during the precursor emission which suggests thermal conduction to be a possible mechanism of energy release. In addition, we find that main phase of all the flares can be fully explained by the CSHKP model. Based on this study, we propose a unified scheme for energy release during the precursor and main phases of emission.

The solar flare plasma is traditionally treated to be of isothermal nature. However, this assumption does not seem to be physically acceptable due to involvement of multiple-loop scenario having multiple temperatures as revealed
from the observations. In this regard, we study high cadence temporal and spectral mode observations of ten M-class flares observed by SOXS to study the isothermal or multi-thermal nature of the plasma. Firstly, we modeled the spectral evolution of the X-ray line and continuum flux during flares by integrating a series of isothermal plasma flux. The differential emission measure (DEM) power-law index of the integrated modeled flux, when compared with that obtained from fitting the observed X-ray spectra revealed flare plasma to be of multi-thermal nature. Moreover, energy-dependent timing delays of temporal evolution of X-ray emission have been studied. This study led to the estimation of thermal to non-thermal photon crossover energy (break energy).

Further, as the solar flare plasma cools simultaneously with the heating, we study the effect of cooling on Neupert effect, a causal relationship between SXR and HXR. This enabled us to propose a generalized Neupert relationship involving time-dependent exponentially cooling as previously suggested by Aschwanden (2005).

It has been widely accepted that the surplus energy released at the time of the flare and Coronal Mass Ejection (CME) in an active region is derived from the gradually stored energy from surrounding non-potential magnetic fields. However, the observations do not show any drastic change in the magnetic field at the time of the flare in an active region. Rather it has been revealed that stresses in the coronal magnetic fields may build up in response to the changes taking place at the photospheric level, such as sunspot rotation, flux emergence, submergence and cancellation. In this regard, we carried investigation of multi-wavelengths emission during a flare-CME system occurred on May 12, 1997. We quantify the temporal evolution of magnetic field parameters namely magnetic flux, gradient and sunspot rotation which revealed that free energy was being stored up into the corona several hours prior to the onset of flare. The slow low-layer magnetic reconnection was proposed to be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual
eruption. Further, magnetic-field gradient and sunspot rotation have shown continual increase till the flare event and then later decreased. Based on the observations and analysis we propose a qualitative model suggesting the mass ejections, filament eruption, CME and subsequent flare to be connected with one another in the framework of a solar eruption.

Akabane (1956) found the statistical behavior of power-law distribution of flare frequency versus respective energy released was found to be scale-invariant (see also, Dennis, 1985) etc. Jain and Bhatnagar (1983) correlated temporal evolutions of photospheric magnetic-field evolution with related X-ray and Hα emission and suggested a “Magnetic Complexity Number” as a cut-off magnetic field for flares of various intensities. As individual solar flare originates from a completely independent magnetic-field configuration from other flare, the aforesaid statistically independent behavior of flares has been posing questions on the understanding. Lu and Hamilton (1991) explained this by proposing solar coronal magnetic field which produces flare happens to be in a state of self-organized criticality (SOC; Bak et al., 1987). As the magnetic-field parameters are found to be a good proxy for build-up and trigger of flare energy release, we explore the SOC occurrence in the corona by employing photospheric magnetic-field and coronal X-ray flux. Firstly, we explored long-duration statistical photosphere-corona coupling through studying the active region independent full-disk magnetic-field parameters and co-temporal disk-integrated coronal X-ray flux. In addition to this, the relationship between flare-associated active region’s magnetic flux and coronal X-ray flux has been investigated. We found a strong power-law relationship between the photospheric magnetic flux and coronal X-ray flux in the former case. In the latter case also, power-law relationship between photospheric magnetic flux and coronal X-ray flux is found to hold. In addition, we have also noticed a photospheric magnetic flux over which the flare X-ray flux undergoes avalanche. This magnetic flux is termed as critical magnetic flux.
LIST OF PUBLICATIONS

1. Publications related to the thesis work

A. Referred Journal

B. Conference Proceedings

2. Other Publications

