PRL

TECHNICAL NOTE

: TN~-B86~52
COMPUTER AIDED LEARNING OF

FLOWCHARTING
'By
D.R. KULKARNT

JANUARY 1986

PHYSICAL RESEARCH LABORATORY -

AHMEDABAD~9

DOCUMENT CONTROL .AND DATA SHEET

B R g gt e S S St SN P A s A an e S 6t T T ey T it o e s S o b B Y Graad s A N fd et ot e S g e Srh P P i ot ad bl S AP hny S o ey Gmast Bt R ot wome B E

1. Report No. : ' 2 PRL —TN—86— 52

G G P et B? et e S Bt Gt T W e v B G ety Bt S S et P i At oy

e e e 0 o s G S g S e b G o e Pt Pt PRt B e o o S P 08 g St 9 s g

2. Title and Subtitle : 3. Report Date ¢ January 1986

'Computer aided 1earning 4. Type of Report : Technical
of flowcharting' : ' Report

ages s 30
r Unpriced

-
Q
)

8. Author(s) s R Kulkarni

9. A, Purpose To describe the package for
self-teathing of flowcharting

B. Useful for : One who wants to learn
programming
10, Orlglnatlng Unit/ ¢ Computer Centre
Division & Address Physical Research Laboratory
Navrangpura,Ahmedabad 380 009

12, Abstract = - - .. ¢ A drill-and-practice package
B T has. been developed for teaching
flowcharting. This package
. accepts the flowchart given .by.
:. the user as input. It.checks
its syntex and also lets
" the user know if it is- loglcally
correct by producing ‘the result
~for the data. The package allows
on-line editing of the flow-
chart if the user want's to
modify it. The package has been
operational at PRL Computer.
Centre and has been found to be
quite useful for beginners in
'learﬁihgfprogramming quickly.

13. Keywords . o Computer progrdmmlng,.
. ce e Flowchartlng,
Conmputed ailded lcarnlng,

Computer~aided Learning Of Flowcharting

D,R.Kulkarni

ABSTRACT

- A drill-and-practice, computedéaided leafniné package
CALFLOW has been developed to study a flowcharting which
'is a pictorial way of developing the logic of .a computer
program. For a beginner who-is absolutely new to a'COmputer
way of thinking, the flowcharting offers a basic undefe_
£tanding of how a machine is made to execute the steps
involving the primitive control structures such as éequenc;‘
ing and selection, leading to a solution of a given problem.
However, before he/she acquires this skill, one has to
undergn & process ef trial-and~error in which one draws
and redraws number of flowcharts,. Since the self-diognosis
of the error is very crucial in the fast learning of
flowcharting, the package can be gaihfully used after a
few hours of class—roomlteaching. The package accepts the
flowchart drawn by the student as an input and gives
him/her the final solution, alongwithAthe tracing of each
step In the flowchart. The package has four parts. The
first part allows the student to draw the flowchart on a
grapﬁics terminal.ffhe second part redraws the same flowchart,

A€ requireq, using' the data file generated in the first-parte ..

The third part allows the student to update interactively
any block in the flowchart independently.yThe fourth one
generates the FORTRAN program which can be executed ﬁo get
the tfacing and the final sqlutipn of the pfoblem.?Before
the FORTRAN program is genefated; ﬁhe package, however,
verifies 1f the flovichart is syntactically correct or not.
If ‘it is not correct, it points out explicitly all the
syntax errors in the flowchart. The package Has been -
developed on DEC-1091 system using PLOT-10 interactive

B ot 1

graphic package.

T e t 2t e B e, sty v o

T. INTRODUCTION :

A drlll-and~pract1cc, computed—alded lcarnlng (CAL)
package CALFLOW has been developed to study a flowchartlng
: whlch is a plCtOrlal way of dGVClOplng the . loglc of a
caomputer program. For a ‘beginner who 1o.completely new to
a computer way of thinking, the flowcharting offers a
basic undersfénding of how a machine is made to execute
the steps lnvolving primitive control strudtures;such as
Sequencing and selection, leading to avsoluticn:of‘ﬁ
given probiem. In fact to envisage the solution oF a
problem in t@rms of thesc control Structures is essentially
the art OF computer progra mmlng. Another 1mportant
_ constralnt whlch a beglnncr has to keep in mind while
dpveloplng the program logic is that the flowchartlng
Steps should consist of only those actions and 0pclatlons
which a computer is capable of performlng. These actions
broadly 1ncludc thc 51mplc input/output 1nctructlons, définin:
the varlablb through assignment and the evaluation of
expressions involving only arithmetic and relational

operators,”

It has becn observed that before a student develops
enough Sklll for logic bulldlng, he has to put in great _
amount of efforts to orlcnt hlmself to thls novel way of
‘thlnklng. Often he has to draw and redraw number of

flowcharts and convince himself that théy really depict

the computer way of thinking to obtain ﬁhe correct solutions
of the problemg. It has been Qkpérieﬁced that in this process
of trial-and-error, the self-diognosis of the errors plays a
very cruciél role as it accelérétes the learning process

nuch faster than a direéf suggestion from a teacher or a
colleague, The package’CALFde has been basically designed

to help fhe students at this stage. It is expected that a
student has.already undergone a few hours (usually 3 to 4
hours) of class~room teaéﬁiﬁg.to learn the rudiments éf
flowcharting before he &an acrue the maximum advantages

from this package.

..The package CALFLOW accepts the flowchart drawn by
the student as an‘inﬁut;'wi£hbthe help of this package
the student can immediately £find if the flowchart is both
syntactically dnd.lqgicaliy'correct or not. Fﬁfther‘the
package encourages £hé“studént to detect the logical

errors without,dny external help.,

To be precise the padkage CALFLOW helps the students

in the following four ways.

- i.) To a great'extent itﬂéssists the studunf to draw
interactively a syﬂtactically,correct flowchart. It_,

means that tﬁe package will not even allow various blocks-

in the flowchart‘to be connected wrongiy; It also indicates
to him/her in the end if;th@ flowchart is fullyAsyntacticaliy
correct or not., The syﬁtax érrors are pointed out explieitly

for correcting the flowchart easily.

ii) It pfovides the. student a versatile, interactive
update facility by which he can uﬁdate (viz. insert, delete
and modify) any block in the flowchart independently. It
.offers him the facility to redraw the same or the modified
flowchart quickly without repeating the process of drawing

anew,

1ii) If the flowchart is syntactically correct, it quickly
offers him the solution as he would have obtained'manually
using the flowchart for anv desgired data. This helps the

student to judge for himself if the flowchart is logically

correct or not.,

iv.) If ﬁhe flowchart is not logically correct, it supplies
him the step-by-step tracing of the flowchart. It is a
common knowledge that to obtain the complete tracing is
usually a very cumbersome and tiresome task. The complete
ready-made tracing enables him to detect the errors in the

.flowchart without any external help.

Thus the package CALFLOW assists the student to draw
the correct flowchart, indicates to him if the flowchart
is syntactically and logically correct and encourages him
to detect the logical bugs by himself. It,‘thus,,may prove

to be a very useful tool in teaching flowcharting.

IT. SYNTAX OF FLOWCHARTING :

In this section we describe the syntax considerations

for drawing and connecting various blocks in the flowchart

A IR

e el TR e

NRRIGE G R RRT

A

=
o

£

1nd their~cbnt6'*~;v The blocks to be included in the
flowchart are'shewn in flgurc 1. It may be mentioned
thaL Nhlle most of Lhe synt ax c0n51dcratlons are gencral

some of them are enforced by our package.

1. Begln Block (B block) 3

S i e ot e b ittt et e

This should be the first block in every flowchart.
There should not be more than one B block in the fléwchart.
It has a rectangular shape wlth curved edges and a word
VSTART inscribéd in it. The point P is the position with
respect to whiéh this block>is'drawn. The user has to
provide this poiht before he/she would give command for
drawing this block. This block indicates the beginning

oFf the flowchait.

..._—.—.-.-—_...—-—————-———.—-—-

2. End Block (L block) &

There should be at least one E block in every flowchart,
It indicates. the logical end of your flowchart. There cén be
more than one E block in the flowchart implying those many
pointé for logicél termination of the flowchart. The E
block has a shapé éimilqn to B block and_has a word 'STOP!
inscribed in it. The point P is the position with respect
to which this block is drawn as in the case of B block.

There can be maximum 5 E blocks in a given flothart.

3. Input Block (I block)

The input block is meant for accepting the data from

the external source. Unless there is an external file present .

containing thé;data, this blbcﬁAwiil not bé é#équted.

A flowchart ﬁéy'not have I.block'at‘ail“br it may

contain number of I blocks.dependingAqn your problem.

Its shape is a parallelbgram with:a slant on the
‘right;hand side. A word 'READ' is inscribed in it. The
Variablesft¢ be read appear in the lines followingvthis
words It con@ains maximum: £five lines, each of 30
characters. The variables in these lines are separated

by cormas. No continuation of the text is expected og
implied from one liﬁe to, the next line. In this.sense

.they are indepgndent.,@he points A, B, C, and D (see fig.l)
should bé provided by the user in this very order to éovér
the text éo that they can form a parallelogram. Thé.poiﬁtsv
are also provided to position the lines in the block. P

1s the point with respect fo which the whole block is
pqsitionéd. There can be maximum 5 input blocks in a given. .

flowchart.

4. Output_ Block (0 block) :

T et e it e it o i ikt T i S e et P et

The output block is-meant for outputting the result
on an exte:nél device which should be available at the
time of its:execution. Generally one can not conceive a
flowchart Without any O,block; Therefore one expects thaé
at least one 0 block is present in thc flowchart.
Syntactically, however, one can draw a flowcha:ttwithqut

any 0 block. Otherwise the hdesériptiOn of O block is

8

exact;y_same as that of I block except that a word 'WRITE'
is insc:ibed in it. ’> n |

5e Process Block (P block)

G o At et Bt . A 8 Grun 8 O 2o iy PO P e S Gt 0ot e P

Thelﬁkbéess blodk:in the flb&cﬁart is meant to store
the result of the expr0551on in a given memory 10cat10na
In other words 1t is similar to an a551gnment statement
in any programming language. Generally no meanlngful
flowchart can be drawn without uéingva single P block.
However, syntactically such a flowchart is a0céptéble.

We allow.méximum'lO'process blocks in the flowchart. Its
shape is either rectangular or square. Its text consisto.
of maximum 5 lines, each containing‘SO characters. Each
line accommodates one assignment statement-using.= (egual
signAas.an separator between the left-hand aﬁd the right-
hand sides. The right-hand side can be any REAL or
CHARACTER expression and the left-hand sideAcan be any
scalar/subscripted variable. The user has tb‘position
these lines appropriately along with the points A, B, C
and D (strictly in this order--see fig.l) to cover the
text to form a rectangle or square. P is the position with

respect to which the process block is drawn.

6o DECLSiOH Block (D blnck) :

The decision block in the £lowchart is the most
importént block as it decides the way program logic flows.

It resembles the selection contrbllStruCture.of'the_type

IF-THEN-ELSE, hcving botﬁ_true and false branches coming
. oct.explicitly,”As“iﬁ thé'casc ofvP blcck,‘one_can hardly
draw a meaningful flowchart without having a single D
block, We allow maximum 7 blocks in the flowchaft; A
decision block contains a”singlezrelational“expreSSicn
using the relational operators viz. . «GT., .GE., .LT,.,
aEQ., .NE. The result'of any relational expfcssioﬁ is
either true or false. The expression consists of maximum
30 characters. Thc snapc of the decision block is a
vertical rhombus in which the points A and C appear on
the same vertical line. A word 'IS' is inscribed in it.
The user has to define the position.of the expression as
well as the points a, B, C and D (strictly in the saﬁe
order-~see fig.1l) to cover the text of the block torform
a vertical rhombus; The complete block is pésitioned xwith

respect to a pcint P to be specified in:the beginning;

7 Arrow (A block)

The blocks described above are connected by afrows
in the flowchart. Thcsc wrlows indicate the scqucnce in
which the blocks w1ll be executed to lead us Lo Llnal
solution. Except the termlnal blocks (1e, B.and E blocks)
all blocks in the flowchart should have one or more number
of in~going arrows and only one Out~comiﬁ§ affow,HOWeﬁcf; the
decision block has two out-coming arrows. The bcqln block
will have no 1n~gclng and the end block will have no out-
coming arrows. The arrow can be defined bctwcén‘twoiblocks

in two ways.

10

1.) It can be defined by straight vertical and horizontal
lines connecting maximum six points between two blocks as
shown in figure 1.

ii.) It can be defined by using a connector block and the

two-point arrow as shewn in figure 1.

The connector block is simply a circle with a user-
defined number inscribed in it. If we want to have arrow

. using connector blocks, we require to draw two parts.

i.) Pirst part consists of arrow énd the connector
block to be defined using A and B (its centre) with a

given number inscribed in it.

ii) Second part consists of the ¢ block (with the sanc
number inscribed in it) defined by points A and B and the

arrow defined by the points A and C.

Thus block Pl is connected to a block P2. The package

allows maximum 20 arrows in the flowchart.

8. Variables :

The package allows scalar variablies as weli as array
variables having one or two dimensions. The variable can
hold a numeric valge of REAL type or it may hold a Qalue.
of CHARACTER type; The sympolic name (identifier) for any
variable is defined as a string of ‘maximum six alpha-numeri
characters with first character.to be alphabetic. The

identifier thus defined always corresponds to a REAL

11
variable. The identifier followed by a string tCH!

corresponds to a CHARACTER variable.

The one-dimensional array is read or written

syntactically as
XARRAY (1. .N)

where N can have maximum valuevZS; Note the two consecdtivé
dots between the lower limit of the sﬁbscript which is
always 1 and the upper limit of the subscript N which 18 -
either a pre-defined variable or a constant. Similarly

the two-dimensional array is read/written as
MAT (1..ROW,1..COL)

where the variables ROW and COL can not have values more
than 5. Note the presence of comma between the first and
second subscript ranges. In the flowchart these variables
are referred as the subscripted variables, the number of
subscripts being one or two depending on the dimension of

the array..

The package CALFLOW ensures that the flowchﬁrt is 1n,'
conformity with the syntax described in the section. If
not, it points out the blocks and text lines in which the
errors are committed. It may ba worth mmntlonlng that some
_syntactié considmrations such as maximum number of blocks
allowed, maximum va lucq permitted for each subscripts,
maximum number of lines of text allowed Ltc.Ahave been

mainly enforced keeping in view the llmlfcd comolexlty

12

of the clésswroom problems and the small screen Size of
the graphid terminal. They can, however, be easily
changed if required. In the next section we describe the.

broad features of the package CALFLOW.

" IIT. GENERAL FEATURES OF CALFLOW :

The figures’2Aand 2B describe completely how the
package functions. The package consists of five important

‘modules

- &, Module DRWFLW
b. Module RDRWFL
¢+ Module MODFLW
d. Module GENPRG

€. Sub-module TSTPRG

In the following sections we describe each of these
modules separately in details. In this scction we will -

describe only the gencral features of the package.

Conventionally a flowchart need not declare explicitly
the type of inforhation it is processing. In our package,
however, since the flowéhart'gets.converted into a program
to be executed, it becomes necessary that the flowchart
should.explicitly indicate the type of the information it
wants to process. This practice in flowcharting imposed’
by the package di:ectly leads to the good programming

habit of declaring the types of variables explicitly.

LA I I
i " s
3 » ¢
3 4
K Ed -
H 3 :
H E
§ Semor
o ey
Z =
& EN
; e
R Tt 2
] e oyl s
3 3 ey -
i) =55 S 243 i N %
3z s ,.upuﬁ._..n.naé.ukww\unﬂ. [A e] =P
; = E E
;) e g % 3
Rl g e E
e Wﬁn..mu
2% St
e £% g%
v Ly : B
ipets s . 288 Tes
> . “mw‘ Py sy S B R &=
%, u.‘ 7 RS 3 2 il
.5.” o . 2 W P > ht"nu W.v\lw
E; R dndy s i i
i = P ol .z il
=oaEy FER Law Py - 4 m. T R
S £ 58 - : e
ol H&\ ey = E: i
P]
P
w 7 i
S 05 2
; P A <
g
- s
. . 5
o

| The flowchart is |
syntachically Correct, |

f

k

3
i Mﬁdu@ Q&NPR’*Q o
| generate a FORTRAN |
- program for the flowchart.)
{ Execute the FORTRAN |

{ progrom: to get result

| for the suitoble date.

| The ﬁawc:hmfig I
logically Correct.

1sTOP|

- Study the tracing of the|
flowchar? given by the
1 program 1o locate

| the logical error,

-%“—eg 28. This part z}? the gaaka@a checks if the
flowchart is logically Correct.

o~

13

The package permits the information-of both REAL and
CHARACTER types having maximumnm two~dimensioﬁalrarray

!
structure.

Sinée this packdge converts‘thé;ggven flchhart
into a FORTRAN pr@gfam it isvassiblé to ﬁsa\some_pre—
defined functions available in FORTRAN language as a
part of the text in the flowchart, In fact all the
functions which have érgﬁments of type REAL gnd
CHARACTER can be used in the text appearing in the f£low-
chartf This ehableslfhe user‘td generate.simplevmathemgticél
tables using flowcharting eveﬁ ;n.the egrly stage of
learning. This, in a way, enhances the enthusiasm of the
beginnef'and instils in Him‘fhe good habit of using the

efficient pre-defined functions offered by the compiler.

The package has been implemented using two terminals
viz. the graphic. terminal (Tektronizx 4012) and the video
terminal (VI~100). The video terminal is used for inputﬁing
énd outputting the non-graphic information and the graphic
terminal is me?nt exclusively £for grephic informaticn
only, The use;éf two terminals increases the operational
ease considerably. This is partiéulaflytso:as‘the tektronix
terminal 4012 useé the stbfége ﬁube and does ﬁot pérmit the
selective erasure on thelscreen; It,lhéwever, allgwsrthe
interactive graphic-input mode by di;plé§ing a cfcss—hair_

cursor on the screen.

14

Thé package'CALFwa functions in two phases; In the
first phasevthe package ensures that the flowchart is
fully correct syntactically. If the flowchart is wrong
it Wiil.explicitiy indicate the block and the text that
may be in error, In the second phése it generates the
program from the flowchart, which can be executed to get
 the results. These results will indicate to the user if
the flowchart is logically correct or not. The program
also generates the full step~by-step tracing of the
flowchart to enable the user to detect the iogiéal‘errors

in case the results are wronge.

The péckage has been developed on thé system DéC-lO
using interactive graphics package PLOT-10 offered by
Tektronix. It has been coded in FORTRAN~10, version-=7
which is similar to FORTRAN~77. It conéists of four main
programs and about 82 user—defined'subioutines. The total

code consgists of abkout 3600 lines,

Iv. MODULE DRWFLW : This module does three jobs.

s ot e P - vt Gy T gty

i It helps the user to draw the flowchart on graphic.

terminal.

ii. Tt checks if the flowchart is syntactically correct
or not using the subroutine TSTFLW.
1ii. Tt creatés the file X.FLW where X is any uscr-defined

file name. It contaiﬁs all the data pertaining to the

15

flowchart drawn on the screen.

When vou execute this module it will ask you to
specify the block type you ‘want to draw. The blocks
are specified by using the following codes.

B (begin block), E (end blocks), P (process block),

C (connector block), A (arrcow) , L(input O (output) .

The code S is specified to terminate the process
cf drawing. It may be noted that the C block can not be
drawn _independently. It is drawn when twe blocks are
joined by arrows with C blocks as shown in fig.l. The
module further wants vou to confirm the blpck by pPressing
the return key once more. This may be necessary if you
happen to press wrong key»accidéntly. As each block is
being drawn a label 1s generated by the module and is
‘diéplayed along with the .block.vThe labgl contains the
block code and the number of its cccurrence in the»flowchart.
For example the second pf@cess block in the flowchart is
labelled as P2, Tﬁese labels are used forhupdating}the
blocks and for drawing the arrows connecting them. Before
drawing théiblocks B, E, P, D, I, and O the package asgks
the user to position it on the screeﬁ using the cross-hair
cursor. The data rega;ding the . block such as the co~'
ordinates Of the vertices, line positions etc. are stored
felative to this point so thatvit.cah be positioned anywhere
while redrawing. The point lbcated on the screen using the

cross=hair cursor is marked by a dot(.).

16

The pockage offers the number of wavs.for the user to
chncel the block when 1t is still being Jrawn. This
facmllty, in practlc has been proved to be quite

useful especially for the beginners. Even the current
llne of the text .in the block can be cancelled if |
rcqu;rud. All these facilities save Lot “of trouble of
redrawing‘the figure again and again in.case éfﬂmihor
mistakes committed @ﬁring the proceés of.drawing. The‘
‘pachage 1nteract1vely ‘gives the appruprlate 1nqtructlons

to guide the user to take proper actlons.

While drawing arrow the_package’will,not,aliow
yeu to draw more than one arrow emnating ftom:the sémeA
block (with the exception of D block which has two arrows
emnating from it). It will alsc not allow any’ arrow to

start fraom E block or to terminate on B block,

Tne termlnal blocks (B or E) contain the flxeﬁ text

'_aﬁl hence they are Jrawn automatlcally by thu package
‘w1th Fixed dlmen51ons. The othet blocks (I, O, Band D)

contalns varylng user—qgflned text They are therefore,

drawm by the user to covbr the text apprOhrlately.
It has been mentlonoﬂ earllur thﬁt thr 1nformatlon

regardlng p031t10n1ng the blocks anJ the tcxt thereln

,-). .
b ,,

hﬂs been stored 1n relut1VG conordlnatos to fac1lltgte

the redranng of these blocks. Howover, 1t, in turn;

A 4;;‘-[’”3{, (}
nf)acf ¥

sHhiup od

o

wolls oo Lliw Ai‘:’)'{f_ﬁ’i?'?{ DEG D rfj

implies thaL the arrows connecting he paleze b
SmEs o3 moii prikdhame worlis eno 9s 4R oL SR AT ? 85y

fixed length. Therefo th ackq e _does not., store. any
'Ewniﬂp O ugﬁ dw)wr'djurg Fo PR ﬁ?’)n Brtl s B9 TR0 B

& . ,
“information that is required. for dra wm hesa v
oF wonas van wolls Fom quired,for, 4raving fhesapreYeume

Conbqujent :a;hﬁy haxi ,}%\[. Mﬁ% “(.flll%il\r@h)ﬁ j,g.ﬂ:glg\l‘y‘ %q*gl}@i Fe

e
LS o)

tlmqiof redra in

apanndg

al;;@.wawpuo)h, aqwﬁch

aloue and t}_’le, cedc,cC IShows: tha_tmlt'yb@ awnd ug 1nq'»bbth
ol Y”ET ot lvos Doroldooam ':gd asrl 1

A5G BLoCKs s Pugthdr gnithé daseélofiovodere el

adt bae 2onld add priaobiieog P'Ubiﬂ 3L

from:ithe. block ito. vG blodk.iist 1nd10.ated
[) -ja e jl[I[‘_‘ }

Torm G blé-‘ck

el

571]

I3 Y \u'd “

to éth/‘e'r biock by S code.
B A T 2 i

hlS 1nformatq_on 10 obta.lned from Lhe codes F.Or; Su, i

X3 T
B oyl RN ¢

Sk In or:lcr o run thlS modulei two! teriiihalgl ard” madet”

l‘sx

JThe: graph

i8

Appendix I gives the list,Of all sﬁbroutines referenced
by the module DRWFL, The list exmcludes the graphic
routine used from PLOT- li package. Appendix II gives the

list of monitor commands dn-the file DRWPLW;MIC e L

uscd in DO commcnd glvcn nbovo.

V. MODULE RDRWFL H

This module is used for rndraW1ng the same or the
modified flowchart using thc file X.FLW created by the
module DRWFLW, Before it draws the flowchart it indicates
to the user if the flowchqrt is Syntactlcally Correct or
not. The blocks in the file are drawn in the same seguence
@5 given in the module DRWFLW. Before it draws a block the
module will ask you to»position it on the_screen.vlt is
relative to this point that the block is drawn. The blocks
drawn Dby this module are E, B, I, O, P and D. The dsta For |
'drawing the arrows connecting thcse blocks is not stored
in the file X FLW as explalncd in module DRWFLW, However;
the file does contain the 1nformatlon regardlng various
arrows that exist and thelr mode of draw1ng. Since there is
freedom for stltlonlng the blocks the lengths of the
arrows are likelyAto_be changcd. Hencc'they are to be
drawn explicitly.after the blocks are suitably positioned,
Using this module one can reproduce the complex blocks in

the flowchart,quickly.v

19

In order to use this module user just tyvces

DO RDRWFL 211,102 n,Elom
Whére n is tﬁe graphic.'tgrmiﬁalfnumber and £1lnm is the
name of thé file generateﬁiby ﬁﬁe module DRWFLW. The

name does not include the extension .FLW.

Appendix.I gives the list of all éﬁbr@utines (other
than graphie routines) referenced by the module RDRWFL.
Appendix IY describeé the file RDRWFL.MIC used in the DO
comméﬁd gi%en above. . o

VI.MODULE MODFLW :

—__..._.—-—_._.—--.._...

”:Thié:mOduleiis used. to update the flowchart stored in
the file X.FLW and to create another file MX.FLW contain-
iﬁg £hQ updated flowchart. X and MX are the names of the
files before. and after updating the flowchart. The module
allows three‘update operations viz. ia) inserting (1) the
block ii.) mollfylng (M) the block iii.) deleting (D) the
bloc? The letters in the . brﬂckbts indicate the valld

update codes. The upﬁate code 'S' indicates that the

updates.are over and the updated file be created.

The deule allows only the bldcks I; 0, P, and D
containing thé vafying text to ke modified. It permits
only the blocks i, D, P, D, E, énﬁ A to be inserted or
‘adﬂed. It can delete any block from the flowchart. While

modifying or deletlng the block it is identified by its

20

label. When you insert the block you have to specify only
its type and the label of the block after which it-is to
be inserted. When you.want télmodify é particular block'
the module will help you to draw a.modified block alone
on the screen to feplace the 0ld one. When you want to
delete a particular block the moduie will just keep a

- suitable flag against it to indicate that it is dedcted.

When you want to insert a block you must be little
mere careful. For example if you want to insert a block

12 between the blocks P1 and P2 you must do as follows.

a.) Delete the arrow connecting the blocks P1 and P2.
b.) Insert the block - after the block P1,
c.) Insert the arrows L=tween the blocks PL & I2 and T2 .

& P2.

_Wheq you -delete aéblock"agl th¢ ar rows startlng anJ
ending Qn i§'a:¢Ldeleteﬂ,.These:ﬂeletlons,further necessitate
starting or ending. CO?}.sec.wen»lY the .,number F’f: b.ls?;r—*;ks. wbich
are properly connected to each pther before deleting the
blockﬁareﬁqow,igglaped;and’the:ﬁlowqhartwchomesﬂgyntaqﬁ—
ically wrong. Hence the deletion of a single block may

Bl
cause dlsturbnncc in many Othar bloc?s.

Whlle executlng Lhc moLulg 1t roqullos at the outqet

the 1nput as thp names oOf the filp to bc upjited and thc

L

upﬂatmd fllc. Tha module prevmnts wny quatcs mado ‘on the

blocks whlch are not dcf n;@gglreﬂdymwihgﬂgqg@; for. thel ,

Bt ST S K TR R NS Y "

v

s .-.‘ ;l H”w 1’3.’,1 55 (1 e i .‘.L
tYPG Of blOcks does not oxcge

In ordor to Lun thls modulb Jpgt typ
LY L3 - { 1 [t i

{2

whero;! n11§‘ﬂhé graphic ?£>fmiha
17 “ l‘

VI'_I‘-'.'“@Ql_jg@é“*GENPlgG' A o

Ve

_flrgL chncks 1f thc flcwchart 1s S‘ntactlcally

_subroutlne TSTFu . If the flowchart

corLPct nr not by uslnu

modulg USEQ the flowcnalt flle X. FLW to

creat' a filc X. FORrwhlch contalns th FORTRAN 77 -program .

o v
Ly

gcnerat ¥\ by thc module. AS statod h ? re X is. any user—‘hy

deflnpd valli fllenamen._ The progrﬂm in the file Xa FOR ;-

I RAARE

is execute& for dnyqdeoireﬂédata tQ”Cé?vﬁh@fg@ég&tg,ﬁ?idmgq}

g L

these. results the user can judgéff@rzhiMSelfﬁif'th@”flbWCHaft

R

22

istlogicaily cdrrect:érIﬁdﬁ; In case it.is notsthe user
cah stﬁdy the step~by~stép tracing of the flowchart
generaﬁéd by the program to detect the logical bug. Thus
the module enables the user to find if the flowchart is
correct or not. It also encoura ages him to'ﬂctect the
errors by supplying him the complete trncéng oi all the

flowcharting steps.

‘This module takes each block separately and simulates
it by generating the suitable sequence of FORTRAN 77
statements for it. The executable block I, 0, P and D start
with a dummy étatement CONTINUE and terminate with the GOTO
étatemert to stabllsh llnks with other blocks, The block
E also starts Wlth CONTINUE but enﬂs Wlth STOP statembnt
The CONTINUE _statcment in each type of block bears a
pre—determined label for easy branching. The B bléck starté
with ﬁROGRAM'statement followed by declarétion of array and
CHARACTER variables. These variables obtained by scanﬁing
the text in the klocks I, 0 and P are declared in the
DIMENSION and CHARACTER statements immediately following
‘the PROGRAM statement. Besides simulating each block the
package generates some additional statements preceding .
every T andlo-blocko.These sfatements instruct the.user
regarding what input ié.expebtéd and whaﬁ output is

génerated by the prbgram.

23

The program thus generated may give syntax error at
the- time of complldulon 1f the exprqulono in the text are
not wrltten properly° There is olgO a minor restriction
‘that the 1nd1V1dual arlay elemente are not read or written
in the Eiowchart S It is the complcte alray that needs to

be read or prlnted
In order to run this module, type
DO GENPRG {211,102 | £1nm

‘where flnm is the:name of the file containing the
. syntactically correct flowchart. The name does not include
the extension FLW. In order to get the hard copy of the

iresults'end the tracing of the flowchart, Eype ;
DO HDCOPY' 211, 102} £1nm

“where flnm is the name of the prOgram fllCo This file has
an ex+rn51on «EXE which is not 1ncluded in the name. This
will create a flle flnm.RES which may be printed to get

‘a hard copy of the results and the tracing,

mhe_eppendlx I glVCS the .ligt of all the subroutines
(excludlng the graphic rout;nes) . referenced by the module
GENPRG. The appendlx IT gives.the_monitdr_ealls contained

in the MIC files GENPRG.MIC and HDCOFY.MIC..

VIIT., 6UBROUTINF TSTFLW-

This subroutine checks”ifiﬁhefflowdhert fed by the.

user 1is syntactically correct and gives out the message

24

accordingly, This subroutine calls 15 other subroutines
listed in. the appendix I.

The subroutine checks if there is at least one E

blOck‘denétingrthe Iogical téfmination of ' the fldWChart.
It also ensures that there is only Qné B block present in
the flowchart. It verifies that the,bibcks P, I and O have
at least one in-going arrow and only one out-coming arrow.
The block D has only two out;coming arrows and at least
one in-going arrow. There should bé no in-going arrow for

B block and no outecohihg one from E block.

Beéides verifying the general structure of the
flowchart this subroutine also scans the text in the
blocks I, O, P and D and validatcs ite In thé‘blocks I
and O it separates the variables from’fhe text. For each
variable it picks up the identifiér eand its dimensionality,.
The'dimensionality is -1 for tHe-litéral constant, O for
the scalar variable and i and 2 for one and two dimensional
array variables.. B It alsb ﬁicks up the lower and upper
values of each subscript range for all array variables

in I and O blocks.

For P block it separates the right—hand side and
the left-hend side of each line of text1by.séa:ching
for equal to.(:) Sign;fItfaisoiidentifies if there are

any array variableé on the left-hand side, which are not

25

noticed eérlier;AIt choéké that the parentheses are
balanced on'botﬂ the Sides;indépendcntly.~ﬂoﬁeﬁer the
expression on the right~hand sidé.islﬁOt'fﬁilv'ehecked
for its validity in this Subroutinc as an 1nval1
expression invariably causes the error whlle compiling
the generated program, The usgual errqr that a beginner
is apt to make .is that he/she may no£.put the arithmetic
Operator explicitly in the ekpressioh. Iﬁ is therefgre
recommended that a beginner should expiicitly write all
the operators in the éxpressién WEich should contain \

enouch number of parentheses to avoid any ambiguity.

For D block it separates the rlght ha nd and left-
hand operator._It verifies that the parentheses are balanced

on both the sides independently.

Finally it checks if £he shape of each block is
according to syntax or not. If there is a considerable
deviation from the prescribed shape it gives the message
accordingly along'withﬂthe sﬁatement.describing the correct
shape. The shapé éonsiderafiohé are valld only £or the
blocks I, 0, P and D, which a user draws on. the screen

to cover the varying Eext,

IX. CONCLUSIONS :

s bt s ot et S bt et et

The package has bcen already. Operatlonal at Phy51cal
Research Laboratory, Ahmedabad. It has been te sted on a few

students who were exposed to the discipline of programming

.fof the”firSt time;iAfter'four hours of class—room
teaching tﬁey were endouraged to use the ﬁackage to tést
their flbwcharts. After ovefcoﬁing«the initial fear and
diffidence to work on the terminals the students could
sooh start using package effectiveiy to test theif flow-
charts. They could decide for themselves if the flqwchart
is correct or not. The ready-made,step~by-step tracing.
has helped them to get the insight into theif flowcharts
and thus encouraged them to locaﬁe’the logical errbrs that
have crept-ini It can thus be éaid that this experience
has been very encou:aging so far as the purpose of the

package is concerned.

The list of all,non~graphics'routines-uégd in the

CALFLOW.

A, MODULE DRWFLW

P et et e i sy et B ot Pt e

1) Main

5) sub.

8) sub.’

. 11) suby
14) Subi
17) sub.
20) sub.
23) sub,
26) sub.
29) sub.

B. MODULE RDRWFIL

T e e et e vt Bt ey Sy

1) - Main
2) sub.
5) sub.
8) sub.
11) sub.
14) sub.

17) sub.

APPENDIX T

module DRWFLW

TBLK
ARROW
DRAWC

DRAWAC

PNTOK

CHECKT

DRAWO

CHECKP

CHECKD

TSTFLW

35
6)'

9) -

12)

155

18)

21)
24)
27)

30)

program RDRWFI

RDRAWT
RDRAWT
GETPNT
PNTOK

MDRAWP

LOwIup

3)
6)

9)

- 12)

. 15)

Sub.

‘sube.

sub.

sub.

Sub,

sub.
sub.
sub.
sub.

sSub.

sub.
sub.
suba.
sub.

sub,

DRAWT
DRAWA
CHKIN

TOBLK

GETPNT

S

CHECKO
PBLK
DBLK
BACK

Lowrup

RDRAWP
RDRAWO
DRAWT

MESDIR

DRAWC

4)
7)

10)

13)
- 16).

19)

22)
25)

28)

4)
7)
10)
13)

16)

sub.

sube

suba.

sub.

27

paékage

ABLK
CHECKB
DRAWAP

COLIND

BLOCKDATA

sub.

sub,
sub.
sub,
sub,

sub,

DRAWI

" DRAWP

DRAWD-

PACK

RDRAWD
MDRAWA
ARROW

YESNO

TSTFLW

1)
2)
'5)
8)
11)
14)
17)
20)
23)
26)
29)

32)

iy

o
~—

5)
- 8)

11)

1)
2)
5)
8)
11)

14)

MODULE_MODFLY

Main program MODFLW

sub. FINDSQ“ 3)
sub. MDRAWI 6)
-Aéub. GETENT 9)
‘sub. OKBLK 12)
sub. MODD 15)
sub. IOCOD - 18)
sub. ADDP 21)
sub. DRAWD 24)
sub. CHECKO - 27)
sub. MABLK 20)

sub, LOWIYP

MODULE GENPRG

N 0 e s e Yt et v v ot

Main program GENPRG

sub. SIMB 3)
BLOCKDATA 6)
sub. SIMP 9)
sub. LOWIUP 12)

MODULE TSTFLW

e et et g et it bt St 5ot

Subroutine T&TFLW

sub. VLDFLW 3)
sub. VLDTD 6)
sub. SEPVAR 9)
sub. TSTVAR 12)
sub. PACK 15)

sub,
sub.
sub;
sube.
sub.
sub.
sub.
sub,
sub.

sub.

sub.
sub.
sub.,

sub.

sub.
sub.

sub.

fun.

sub.

MODIFY
COLIND
MODO
MODP
MDRAWD
ADDT
ADDD
CHECKB
CHECKP

CHKIN

SIMI
PACK

SIMD

TSTFLW

GETVAR .

SHAPE

FINDIM

DIGIT

VINTNP

4)

7)
10h
13)
16)
19)
22)
25)
28)

31)

4)
7)
10)

13)

4)

7)
10)

13)

16)

sub.
sub,
sub.
sub.
sub,
sub.
sub.
sub,
sub.

sub.

sub.
fun.

sub.

sub;A

sub.

sub.

sub.
fun,

sub.

28

MODT
PNTOK
MDRAWO
MDRAWP
DELETE

ADDO

ADDE

CHECKI

CHECKD

GENAWC

SIME
VINIPT
FNDBR

SIMO

VLDTP

MPACK
GETPAR

ALPHA

GANGLE

- 29
APPENDIX ITI

The list of monitor commands in various MIC files used in

the pdckage CALFLOWa

1) Pile pruFmWMIC 2) File RDRWFL.MIC
.DEAS o ~ .DEAS
JASS TTY 50 .ASS TTY 50
L ASS TTY'a TTY - LASS TTY'a TTY
RUN DRWFLW | 211,102} ' .RUN RDRWFL [211,102]
o .
3) File MODFLW.MIC 4)’Flle HDCOPY . MIC
- .DEAS : .DEAS
<ASS TTY 50 |) . ASS TTY 50°
<ASS TTY'a TTY .RUN ‘'a.EXE

.RUN MODFLW | 211,102
w1l - |

*leo

5) Flle GENFRG.MIC

0 DEAS

LASS TTY 50

.ERROR s

.RUN GENPRG [?11, 10%}'
Kla S

,IF (NOERROR) .GOTO‘éTARTl

lError while running the program GENPRG

A
STARTY :3:.error 2
.DEAS

.ASS TTY 80

~LOAD 'a

IF (noerror) .GOTO START2

!Exrror while loading the generated program

START 232 .SAVE 'a

30

