TN-85-43 A CMOS MICROCOMPUTER BASED ON CDP-1802 By R.N.MISRA March, 1985 Physical Research Laboratory Navrangpura Ahmedabad-9 # DOCUMENT CONTROL AND DATA SHEET | 1. | Report No. | | PRL = TN = 85 = 43 | |-----|---|----------|---| | 2. | Title and Subtitle: | 3. | Report Date : March 1985 | | | A CMOS Microcomputer | 4. | Type of Report : Technical Report | | | based on CDP-1802.' | 5. | Pages : 19 | | | | 6. | Price : Unpriced | | | | 7. | No. of References: 9 | | 8. | Author(s) | * | R.N. Misra | | 9.A | .Purpose | C & | Design details of CMOS micro-
computer card based on CDP-1802. | | В | .Useful for | 6
0 . | Control applications requiring low power operation. | | 10. | Originating Unit/
Divion and Address | | Planetary & Atmospheric
Sciences Area,
Physical Research Laboratory,
Navarangpura,
Ahmedabad-380009. | | 11. | Sponsoring Agency | • | . NO COT 400 THE COT AND THE TOTAL THE COT AND CO | | 12. | Abstract | 0 6 | Design and fabrication details of a small micro-computer card based on CDP-1802 micro-processor have been described. It is of 6" x 4" size and has facilities for serial I/O (20mA loop), 20 programmable I/O lines, Interrupt, DMA and 3 control inputs. Microprocessor Bus & control signals are made available on 44 pin edge connector, 2K ROM, 1K RAM is available on board. | | 13. | Key-words | | Micro-computer, Micro-processor, CMOS, Control. | | 14. | Distribution Statement | 0 | | | 15. | Security Classification | ą | | ## A CMOS MICROCOMPUTER BASED ON CDP-1802 ### Introduction CMOS devices have become popular due to their low power consumption and noise immunity. CDP-1802 is a 8 bit microprocessor developed by RCA in 1975 and is first of the CMOS microprocessors. 80C85, 80C86 and 65C02 which are CMOS counterparts of their NMOS brethren 8085, 8086 and 6502 have been announced only recently. NSC 800 is a little different CMOS microprocessor falling in between Z80 and 8085. Quite some work has been done on CDP 1802 and it is popular in those applications where its low power consumption and noise immunity is of help for example space instrumentation and industrial and automatic controls. We have designed a single board microcomputer based on this microprocessor whose specifications are given in Appendix-A. It is a small (6"x4") card and has facilities for serial and parallel I/O. #### The Microprocessor The internal architecture of 1802 has been given in This microprocessor has 16 general purpose, 16 bit registers R(0) - R(F) which can be used as program counter, stack pointer as well as for temporary storage of data. Any register can be assigned any job except that after reset the microprocessor uses R(O) as a program counter. Data transfer normally take place between High and Low bytes of Register R(N) to D register (accumulator) and D register to the Memory pointed by any register. Exchange between registers has not been provided. Unfortunately this microprocessor does not provide, instructions for CALL and RETURN for subroutines. These have to be performed by software (Ref.2). There are large number of short branch instructions which can be used within one page of memory and long branches which can transfer control to anywhere in the memory. Four flags have been provided which can be used for input signals. A, Q flip-flop is also available which can be set and reset by software. Its output can be used as serial output. One Interrupt INI Interrupt starts execution at locations pointed line is provided. by R(1) register. SAVE, MARK and RETURN instructions have been provided to handle interrupt. DMA facility is on chip and can be used by DMA IN, DMA OUT and SCO & SCI State code output lines. DMA uses R(O) as program counter. The detailed software discussion is beyond the scope of this document and it has been given elsewhere . A list of Instructions has been given in Appendix-B. #### Hardware The circuit diagram of the microcomputer card has been shown in Figure-2. 1802 is a static microprocessor and can be operated DC to 3 MHz depending upon the power supply voltage used. For a power supply voltage of +5 volts it is usually operated at 2 MHz or less. In this microcomputer it has been operated at 2 MHz. The microprocessor has a on chip clock oscillator and only a crystal and resistor need to be connected to pins 1 and 39. Two small capacitors 20 PF) are sometimes required from thse pins to ground. EF4 and Q have been utilized for serial Input and Output respectively. Two transistors and associated circuitry have been provided for connecting it to a terminal with 20 mA current loop interface. The circuit works with a Teletype ASR33. For other terminals it is preferable to use RS 232C Interface which can be implemented on separate board. (Ref.8, p.84). State Code lines SCO and SCl have not been DMA IN, DMA OUT, INTERRUPT, EFI, EF2 and EF3 lines have been pulled up with 22 K/47K resistors. signals have been brought out on the 44 pin edge connector. A8 to A15 appear on AO to A7 lines for a brief period with beginning of each mahine cycle and can be latched in a 8 bit latch with the help of timing pulse TPA. In this board CDP-1852 has been used as a 8 bit latch. 4-16 decoder CD 4514 has been used for address decoding. The A15 line has extra logic by which it can be either kept permanently at 1 by external switch or else it can be connected to regular A15 line of 1802 (de-multiplexed of course). This way programs at 8000 or 0000 can be run, When A15 is '1', program execution starts at 8000, when it is '0' program execution would start at location 0000. Externally controlled A15 designated as A15 has been brought out on card edge connector to facilitate decoding of external memories. Onboard 24 pin socket intended for a ROM/EPROM has facility to install any EPROM of upto 4 K bytes. It has been enabled 8000 to 8BFF. The 1K RAM has been realised by a pair of 2114 which are located at 8000. ROM 1832 can be installed without any extra connection in the 24 pin socket. However, 2716 would require few short jumpers. IC's 4023 and 4011 have been used to perform task of generating memory enable signals. 1802 has 4 modes of operation decided by the control inputs CLEAR and WAIT. These are controlled by two SPDT switches debounced by pair of inverters 4049. Switch connections have been brought to the edge connectors. 4 modes of operation are given below: COT O BY SERVE | CLEAR | TIAW | MODE | |-------|------|--------| | H | Н | RUN | | Н | L | PAUSE | | L | H | RE SET | | L | L | LOAD | Normally RESET and RUN modes are used and only one switch connected as CLEAR can perform its function. #### Software This microcomputer can run on monitor software available on ROM type CDPR 512, (Ref.4). This requires use of serial data terminal for data entry and readout. The monitor is of autobaud type i.e. it adjusts its baud rate (within certain limits), on receiving the (CR) signal from the terminal. Operation is as follows: - 1. Reset the microcomputer, - 2. Set the Address to 8000, - 3. Set the clear switch to RUN. - 4. Press CR key on the terminal. The monitor will respond with an asterick. #### Memory Load Command !M !M command followed by Address (Hex) and a space loads the pair of hex digits at locations starting from the above address, for example ! M 0000 1122 33 44 will load 11 22 33 44 at location 0000, 0001, 0002 & 0003 respectively. #### Memory read command ?M ?M command followed by Address (Hex) and a space followed by No. of bytes print the Address and contents of Memory at the above address. ?M 0000 08 will print 8 bytes of data stored at 0000. ### Program Execute Command SP SP command followed by Address (Hex) and a (CR) will transfer the control to the above address. S POOO CR will start execution at 0000, location. ### Register storage Registers R(0) and R(F) are stored at locations 8C00 to 8C20 and can be read out by ?M8C 00 20 command. Full description of the UT4 monitor is given in Ref.3. ## Ack nowledgements The author is thankful to Shri K.S. Modh who prepared the printed circuit artwork of the prototype and Shri J.T. Vinchhi for his help in fabrication of the unit. Thanks are also due to Shri Y.B. Acharya for the useful suggestions. ### RE FERENCES - 1. COSMAC Micro-processor Product Guide MPG-180C. - 2. User Manual for the CDP 1802 COSMAC Microprocessor MPM-201A. - 3. COS/MOS Memories, Microprocessors and Support Systems SSD-280. - 4. CDPR-512 UT4 utility program operation Manual MPM-224. - 5. Build the COSMAC "ELF" a low cost microcomputer, Part I, Joseph Weisbaker, Part-1. Popular Electronics, August 1976, pp.33-38. - 6. "DO", Part II, Popular Electronics, Sept. 1976, pp.37-40. - 7. How to upgrade A basic ELF micro-computer, Edward M. McCormick, Popular Electronics, February, 1978, p.65-68. - 8. Expanding the ELF-II by Martin Meyer, Popular Electronics, March 1978, pp. 62-65. - 9. A simple Microcomputer based on CMOS micro-processor, CDP-1802, R.N. Misra and Y.B. Acharya, J.I.E.T.E., Vol.27, No.12, 1981, pp.649-651. - Note: RCA product guides and data books (items 1-4) are available from COMEL Products 179/5 2nd Cross (1st Floor), Lower Palace, Orchards, Bangalore-560003. ### APPENDIX-A ### Specifications 1. Processor CMOS microprocessor CDP 1802 2. Serial Interface 20 MA Loop Autobaud (can work upto 600 BPS) 3. Parallel Interface A socket provided for CDP-1851 onboard. 201/O lines programmable. Memory Mapped, Separate 44 Pin connector provided. 4. Flags EF1, EF2, EF3 available. INT, DMA IN, DMA OUT lines available at the edge connector. 6. All signals, eg. Data Bus, Address Bus, MRD, MWR etc. provided on the edge connector. 7. Size 6" x 4" 8. Power requirements + 5V (current depends on the ROM/RAM used and 20mA loop). APPENDIX-B | INSTRUCTION SET OF 1802 | |-------------------------| |-------------------------| | OPCODE | MNEMONIÇ | OPCODE MI | NEMONIC | | OPCODE | MNEMONIC | | |--|---|--|--|--|-------------------------------|---|--| | OON 1N 20 31 233 4 5 6 7 8 9 A B C D E F N N O 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | IDL LDN N INC N DEC N BR ADDR8 BQ ADDR8 BQ ADDR8 BZ ADDR8 B1 ADDR8 B1 ADDR8 B2 ADDR8 B3 ADDR8 B4 ADDR8 B4 ADDR8 BNA ADDR8 BNI | 69
6A
6B
6C
6D
6F
71
72
73
74
75
76
77
78
79
7A
7D
7F
8N
8N
8N
8N
8C
C1
C2
C3
C4 | 1NPPPPPTSAD CHISADDR SAMARQ TILCI CHIR Q LEDP LEDP LEDP LEDP LEDP LEDP LEDP LEDP | 1
2
3
4
5
6
7
7
, D8
, D8
, D8
, N
, N
, N
, N
, ADDR 16
, ADDR 16
, ADDR 16
, ADDR 16 | C6789ABCDEFNNO123456739ABCDEF | IS NZ IS NF NLBNQ LBNZ LBNZ LBNZ LBNZ LBNZ LBNZ LBNZ LBNZ | ADDR 16 1 | | | | | | | • | | | # APPENDIX-C # Pin connection of CMOS microcomputer | Compo | nent side | Patte | rn side | |-------|-----------------|-------|---------| | 1. | CLEAR | 1 | CLEAR | | 2 | A15 = 1 (INPUT) | 2 | WAIT | | 3 | TIAW | 3 | A151 | | 4 | TŢYIN | 4 | TTY IN | | 5 | +5 | 5 | GND | | 6 | DMA IN | 6 | TTY OUT | | 7 | DMA OUT | 7 | INT | | 8 | MUR | 8 | SC1 | | 9 | Q | 9 | SCO | | 10 | MRD | 10 | TPA | | 11 | ТРВ | 11 | D7 | | 12 | A7 | 12 | D6 | | 13 | A6 | 13 . | D5 | | 14 | A5 | 14 | D4 | | 15 | A4 | 15 | D3 | | 16 | A 3 | 16 | D2 | | 17 | A2 | 17 | D1 | | 18 | A1 | 18 | DO | | 19 | AO | 19 | NO | | 20 | EF1 | 20 | N1 | | 21 | EF2 | 21 | N2 | | 22 | EF3 | 22 | GND | ## APPENDIX - D Pin connection of I/O PORT (Connector type - 225-805-22-H (Amphetronix Ltd.) | 200 MA FOR END \$100 M | Component Side | 1900 - 1,500 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (| Pattern side | |------------------------|----------------|--|--------------| | 1 | +5 | 1 | +5 | | 2 | NC | 2 | F | | 3 | NC | 3 | NC | | 4 | BRDY) | 4 | NC | | 5 | BSTB } PORT B | 5 | NC | | 6 | 80 } | 6 | NC | | . 7 | B1) | 7 | ARDY) | | 8 |) | 8 | ASTB | | 9 | } | 9 | AO \$ | | 10 | \ | 10 | A1 } | | 11 | } | . 11 | A2 } | | 12 | \ | 12 | A3 PORT A | | 13 | } | 13 | A4 } | | 14 | \ | 14 | A5 } | | 15 |) | 15 | A6) | | 16 |) NC | 16 | A7 } | | 17 | \ | 17 | B7 5 | | 18 | \ | 18 | B6 PORT B | | 19 | \ | 19 | 85 } | | 20 | > | 20 | B4 \ | | 21 | \ | 21 | B3) | | 22 | 3 | 22 | B2) | ## APPENDIX E ## LIST OF COMPONENTS | INTEGRATED CIRCUITS | | | |------------------------------|-------|---| | CDP 1802 Microprocessor | • • | , | | CDP 1852 8 bit latch | • • , | , | | CDP 1851 I/O Port (Optional) | • • | , | | CDPR 512/2716 ROM/EPROM | | 1 | | 2114/6514 1Kx4 RAM | • • | 2 | | CD 4514 4-16 Decoder | - • • | 1 | | CD 4049 Hex Inverter | • • | 1 | | CD 4023 Triple 3IP NAND | • • | 1 | | CD 4011 Quad. 2 IP NAND | • • | 1 | | DISCRETE DEVICES | | | | Crystal 2 MHz | • • | 1 | | Resistors 22K/15K 1/4W | • • | 6 | | 1 K | • • | 2 | | 3K9 | • • | 1 | | 15K | •• | 2 | | 220E | | 1 | | 390E | | 1 | | Capacitors 100 UF 10V | • • | 1 | | 0.1 µF 50V Ceramic | • • | 3 | ### ILLUSTRATIONS Fig.1 : Internal architecture of 1802. Fig. 2A & 2B : Circuit Diagram of JC Card. Fig.3 : Pin connection of CDP 1802, CDP 1851, CDP 1852. Fig.4 Printed Circuit Board Layout & Placement of Parts. FIG.I INTERNAL STRUCTURE OF THE CDP 1802 MICROPROCESSOR FIG.4. PRINTED CIRCUIT BOARD LAYOUT & PLACEMENT OF PARTS.