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ABSTRACT

We describe a computer program to solve nonlinear partial

differential equations of the type % = N(F) + D(F) where N is
some nonlinear operator and D stands for a linear dis persive
operator. The numerical algorithm uses the partialiy corrected
Adams-Bashforth method for time integration and Fast Fourier
Transform (FFT) routines for space integration. The KdV

equation is solved as an illustration.



INTRODUCTION X
The purpose of t' s note is to provide a detailed description of
a computer program that has been developed to numerically integrate

nonlinear partial differential equations of the type

5% - N®+Dm® (1)
where N is some nonlinear operator and D stands for a linear

. dispersive operator. Many wave propagation problems in plasma
physics as well as in other systems yield such equations. Some

fé_mﬂiar examples are the Korteveg de Vries (KdV) equation for ion
acoustic or magnetohydrodynamic waves in plasmas, the Nonlinear
Schrodinger (NLS) equation for high frequency Léngmuir waves, the
complex modified KdV equation for lower hybrid waves etc. Several
numerical schemes are now available for the solution of these equations.
' Some of them are based on the finite-difference method (Zabusky &
Kruskal 1965; Greig and Morris 1976) which reduces the partial
differential equation to an appropriate set of algebraic equations.
Alternatively Fourier expansion methods have also been employed
(Schamel & Elsasser 1976; Watanzie et al 1977) which take advantage

of the extremely efficic.ut Fast Fourier Transfurm (FFT) techniques.
Some hybrid methods have also been proposed (Gazdag 1973; Tappert
1974; Canosa and Gazdag 1977). _

The present program is based on one such hybrid method where
the time integration is done by using the partially corrected Adams-
Bashforth scheme (Gazdag 1976) and the space operator is split up into
@ linear and nonlinear part (Tappert 1974). The space integration is
Mmainly carried out in the Fourier space but the nonlinear terms are

Computed by getting back into real sp}ace representation. To prevent
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aliasing when computing the nonlinear term only the n/2 lowest
Fourier modes are retained, where n is the numbher of grid points
in the space coordinate. The accuracy of the integration is gauged
by keeping a check on how well the ¢onstants of motion are éonse'rved.

In the follc;wing sections we illustrate the algorithm by considering
a specific equation, namely the Korteveg de Vries equation.. A listing
of the program written’ in Fortran IV which is suitable for use on the
present IBM 360/44 system at PRL is given at the end. The program
can be adapted to solve other equations of type (1) by suitably
changing the nonlinear terms and rthe coefficients of the linear
operator; these parts are indica{ed by appropriate comment cards. The
plotting subroutines are specifié to the PRL machine and should be
suitably replaced for running on other systems. A typical integration
time for a single time step At of .001 andn =512 for the KAV
equation is less than 2 secs. |
THE ALGORITHM

The KdV equation may in general be written as

2
>

—L 5P — F & — = 0 (2)
ot P £ l 2% > |

where ‘C is the time variable and % a suitably constructed space
variable. r} and & are constant coefficients (e.g. P= 1 and 52= 1/2
for ion acoustic waves in plasmas). Note that Eq. (2) is invariant under
the scaling transformafion s

£ > AE ;T"ﬂkgg and P —- AN G
This invariance is useful for example, to normalize the scale length A
in the f: direction to unity. There is an alternate scaling given by

Berezin & Karpman (1966) which can ::convert all initial conditions to



a unit-amplitude unit-width type of initial condition. To see this,

congider 4 class of initial conditions of the form °

- . Pleo) =9 (E/ML) ®)

where (P is the initial amplltude, L is the width and &(E/L) is the
functional form of the initial pulse (viz. a square pulse, half sine
pulse, secant hyperbolic pulse etc.). The following new set of
variables
o \L? — ‘
£=%/L 5 T =9T/L (,mcf =9/@, @

changes the KdV equation (2) to-
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Under the giventransformation, all initial conditions are

.

where

transformed to the same initial condition i. e. unit amplitude, unit-width
functions. Initial conditions with same numerical values of ¢~ evolve
iden’ﬁically in the scaled co-ordinate system though differently in the
laboratory system. This scaling applies for all time and not merely

in the asymptotic region. With the use of appropriate scaling parameter
the initial condition can be simply described by the functional form of
unit width and the behavior in laboratory co;ordinates can be recovered
by multiplying the space, time and amplitude in the scaled

co-ordinates by the scéling parameters given below:

Scaling parameter for amplitude = %

L/,

‘Scaling parameter for space = L

Scaling parameter for time

In case, the calculations are tz be carried out without this

scaling, the scaling parameter g~ may be set equal to unity and
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initial condition may be Specifieduby its correct amplitude and

width,

- Fourier transforming Eq (2) gives us

) cy3e2 Cro
e _KSe 4 k <@ plad = o (5)
’(‘jt l:‘—f'm . < |
W = | @(ev)exp(-ckE)dE :
where (Fk f [ ( /L)ﬁ?’,}( 5) Er: ©)

is the Kth. Fourier camponent of CF(C’ T ) and

. -+ '
g —‘)2 o = @ C/'?- N ) (—L kg) ‘f 4 (7
LYPRo =3 [ (50) expl-Lks)dg )
-
is the K th component of the nonlinear term.

Equn. (5) consists of a linear part

e iK%

2T K
and a nonlinear part - Ll\ <P ¢ /) <k which can be treated
as a source term. Thus we can treat the linear part exactly by
writing

CF(C) - E o) exp(1827C) (8)

._

where {2 = L 5% From (8) we can get by Taylor expansion

. Dgﬁf l ? C?
cerat) = (e + =l at 4 L 225 Ay exp [tatond]
ql)((CH)t) j_ k( ) DC T 4 DT j

(9)

The derivatives can be evaluated from the equation for Cﬁl\(t)which can
be obtained by substituting (8) in (5)

aq = —tk S (0) exp (-t 2C) g

DT



where 5,\(\5)'—’—\?2!5/~/}\If AT is chosen such that SK("‘C) does
not vary significantly in this interval then (10) can be integrated

to yield . \
Qersc) = Rt 52 S0y Lexp(-caat) -] (elxlr;( o
Hence the second term of equation (9) may be written as

2% exp(Lear) AT = [ §(T+aT) ~Fio) | exp (2az)
2 Cle
-U — exp( uwc)jsmexr (-12C)(12)

Similarly the higher derivatives can be evaluated by using

o

equation (11). Note that the nonlinear term 5,(,( T)is a convolution term
and hence it is convenient to first go back to real space, construct the
nonlinear term and then take its Fourier transform. To prevent
aliasing errors only the n/2 lowest Fourier modes are retained. The
solution to equation (5) can then be obtained in terms of the Taylor
series of equation (9) and truncating the series at an appropriate term.
An inverse Fourier transform then yields the solution to the KAV
equation. The method involves a single-step time differencing scheme.
It has however been shown (Gazdag 1973) that this method
of using truncated Taylor series is unstable if the truncation is
effected by neglectmg time derivatives higher than first (9 L( /3 L)
and second (NP,,/()Z ) however, it is stable if the truncatlon is done
by neglecting derivatives higher than ¢ @ /2T and 3 C? /2311
Thus for stable calculations it would be necessary to calculate second
and third time derivatives at each step, Which may become rather
involved.
In order to avoid this difficulty, following Gazdag (1976) we
have used a two-step time differencing scheme, which yields stable

accurate solutions, with the evaluation of only first time derivatives.



The scheme consists of (1) a predictor stép. followed by (2) a corrector

step. For this purpose we write equation (12) a

”)((’* exl(LiAT) AT = (1) = = [t exp(L26T)] ST)
2T < Eoerp-iat) g
Then if results obtained from predictor step are denoted by super

script }J then the predictor step according to partially corrected

second-order Adams-Bashforth Scheme (Gazdag 1976) is g'iven by

P L Feey oty + 5 ey - G2
CPP (T+4T) = P e lenst) + (3G, (0) Crk-a .>)/z~(14)

£
~

and the corrector step

%C‘c‘.v;--a’iij) e ) CAp (L2AT) ‘NC(‘R(L) T (” ”M»/Q
3 P (15)
Equations (14) and (15) correspond to equations (8) and (9) of Gazdag (1976)
respectively. In the first time step the predictor is calculated according

to the equatlon

%’er \7_') - (’?('( } "K}"’U 24 L) + (fek(‘t) (16)

and for subsequent time steps equatlons (14) and (15) are used to

obtain predicted and corrected values for C](.'ik . Inverse transform
according to the equation 42 -
CP((;#.A(:J ; ) = J_”)J_fvf Ke [{ L tvmf){'/\l ,( (.::7,‘(+)<‘§{)J(_(.’k an
then yields the solution of KdV eqzle(ljc)bn at a given time step (Z’/—/\‘C}
To check the accuracy of the mtegratwn, the conservation of
the following 1nvar1ant1quant1t1es are monitored,

(%]
Il = j q/ ‘g/ N.L— C\O ' 5 (1 8)

— 7

Lo - J 1 __;f_i) - <?»§— )zJ te (20)
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These constants are conserved ‘to better than 1 part in 106 :ind
are sensitive to the size of the tin:e vsfep used. The time step should
be chosen to satisfy 7/’357“/(/,,&(. AT 41 . (Abe and Inoue, 1980).
DESCLIPTION OF THE PROGRAM: "N @EDE”

a) Main Program.

In the main program the constants and functions are n initialised
the input parameters are read, the differential operator, the exact
time development operator "UL" (corres pondihg to the dispersion
relation of the differential equation) and the multiplicative facfors
of the nonlinear operator, "UNL'" are calculated and stored. Fourier
transform is initialised through subroutine "PREFFT'" and the initial
v2lue problem is defined through a given fupctional form. After
transforming the initial condition to k space, the time development
calculations are carried out and results are printed/ plotted at
regular predeter.fnined intervals. The program makes use of the
following aubroutines: PREFFPFT, FFT, NLROP, RESOUT
b) Subroutine NLROP (PHI, DPHI)

This subroutine calculates the nonlineur part of the tiﬁne derivative
by first éarrying out a Fourier transform to real spuce, then evaluating
the nonlinear term of the differential equation and then carrying out a
Fourier transform offhis term to k¥ space. This subroutine uses the
subroutine FFT, The nonlinear part of the derivative of PHI is
returﬁed in DPHI. PHI is not destroyed.

c) Subroutine PREFFT {EXPF, EXPB).

This subroutine initialises the Fourier Transform by calculating

the exponential functions EXPF and EXPB for the forward and bac lwérd

Fourier Transform and stores these functions. It also czlculates and
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stores the parameters MIXUP which unscramble the Fourier
co-efficients. This subroutine must be called before\a first call of
the subroutine FFT. |

d) Subroutine FFT (A, B, EXPT, INV)

This subroutine calculates the Fourier Transform of the
function "A". The transform is returned in function ""B'" and function
- "A'" ig not destroyed during the transformation. The values of
integer INV and function EXPT determine the nature of the transform.
INV = 1 and EXPF yield a Fourier transform. from real space to
k-space and INV = -1 and EXPB give a transform from k-space to real
space. | '

e) Subroutine RESOUT (IT)

This subroutine is called when it is desired to print out the
results at any given time IT. It transforms the function from k-space
to real space, evaluates its real part and prints/plots the value of
the function at various space points. In addition to printing/plotting
the function at time IT, it also calculates the invariants and prints
out their wvalues. The subroutine makes use of the subroutines PLOT
and SCAL which are provided witt: system IBM 360/44 at PRL and
suitable modification. would be necessary fo1 its use with any other .

system.
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DESCRIPTION OF FUNCTIONS & PARAMETEKS USED.

\

F (X) | :  Functional form of the ‘nitial pulse

DT : Time Step

L= 2% % N : Defines the number of grid points.

XMN, XMX :  Limits of space coordinates

"AMP ¢ Initial Amplitude of the function F

WIDTH : Initial width of the function F

X1 ¢ Initial position of maximum of B

T MX :  Maximum Number of Time Steps.

IDIAG : Number of Time Steps that elapse between each
print out.

SIGMA : Ferezin - Karpman Scaling Factor.

CAY() : K - vector

DIF (1) :  Differential Gperator.

UL (I) : Linear Operator

UNL (I) :  Multiplicative factor of Non linear Operator.

X @ : : Space coordinates.

F (I ) :  Function vrlues at space poinis.

PSI (I}, PSIP (I) :  Fourier Coefficients; corrected and predicted

values.
RINV 1, RINV 2 : Invariants
RINV 3.
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ANNEXURE II

Caption to figures.

In subsequent figures we show the évolution of a single
sinusoidal positive pulse as obtained by the numerical solution
of the KdV equation. Amplitude, time and Space are normahsed
according to Berezm Karpman scaling and the scaling
factor is O“ = 250. The process of steepening at the front edge
and breaking of the initial perturvation into a number of

solitons is clearly demonstrated.
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