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WINDOWS AND DIGITAL FILTERS
W
PROGESSING SAMPLED DATA

D.R. Kulkarmi and S.K.Alurkar
Physical Resgearch Latoragtory
Ahmedabad- 380009

A bstract

In this report we present a systematic procedure
adopted for processing the IPS data obtained at Thaltej.
Various dabta proc‘essi.ng operations such as sampling, window-
ing, filtering, ebc. 1imvolved in handling the time series
data are deécribed with the help of their mathematiéal forms,
The application of these operations in one domain and their
effects in the corresponding Fouriér transform domain are
discussed in detail, A number of &ifferent window forms
are described and documentation of computer programs to
obtain them is given, Furthermore, documentation of
computer program to design a: non~-recursive band pass filter

is also given,

Key words: Windows, digital filters, sampling,
Interplanetary scintillation data
process:l_ng. '
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I . INTRODUCTION .

The objective of'procéssing samp led data has generglly
been to obtain the features of the original continuous signal
in-a given domain ahd in its_Fourier Transform (FT) domain.
.The process of sampling, if not done‘properly,vmay limit

and/or distort the information in the original signal.

Windowing and filtering are important tools in sampl- .
ing and processing data. Like sampling improper use of
these operations may lead to further distortion of the ori-
ginal signal, It is therefore necessary to study apriori
the possible effects of these operations on given data,

This may give more confidence that the results of processing
would closely match the true featureé of the original signal,
in this report we discuss the various operations assgciated
with windowing and filtering such as sampling, trﬂnéétion,
smoothing, sub-sampling, filtering, etc. perfbrmed in proces-

-sing the IPS data.

a) Sampling:

The original signal x(t) to be sampled should be band-
limited, so that X(f) =0 for | £ | >» f,. -According to
the Nyquist sampling theorem, the sampling interval
at & -2-%." + In case of undersampling when At | > —2%-— , the

g

; - 1 " - :

frequencies above f1 = 5% ore folded back below fqn




Thi s foldlng back is known as alla51ng, which tends to trans-
fer the energy from the wart of the spectrum abOVe the fre-
quency f1 to its part below f,. Thls results in contamlnat-
ing the high frequency end of the. estlmazed spectrum, In
practlce, this may lead to wrong interpretation of high

frequency components as low frequency ones.
The sampling process:

This process 18 mabhemstically expressed as the product
of a'givenmcontinuous function x(t) with a sampling function,

e.8s

g(t) = X(t) \\1(t)
where TTT(t) is Shah's sampling function given by
e
T = 2o @ (b-nat)
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The Shah’s function is a series of it é,r'r'lp'lf‘rt'ude spikes

.. that occur at tlme intervals of .r\t;. ‘The FT of the Shah's

function 1803180 a Shah's functlon expressed as

"T*(f) ST e(f-n ;Af), where Af = At 1, |
Sampling 1nn£r%:)doma1n results in the conVOlutlon of thelr
Fourier transforms. Thus a convolved spectrum can be ex~

pressed as

G(£) = X(£) * TI(F)
where * denotes the operation of convolution. "G(f)_"wiiii
contain multiple copies of the spectrum X(f) ab “time ihterVals

of AtT,
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To conclude, the spectrum of . any sampled functlon is

periodic with frequency :LnterVal of At 1 :



b) - Truncagtion:

The sampled data is collected over a finite length of
time. This is equivalent to the product of x(t) with a

- rectangular window w(t), which is defined as

W(t) = ']9 0 S t ff;\- T

il

0, obtherwise

This windowing operabion in btime results in the convolu-
tion of X(f) with W(f), where X(f) and W(f) are Fourier trans-
forms of x(t) and w(t) respectiVely. Since W(f) is of the

form of the sinc function S%nf,{which has an infinite extent

in frequency, the resulting convolved function would also
have an infinite extent in the frequency domalin. Thus, the
truncabed signal is no more band-limited. Consequently,
aliasing results. It should be noted that aliasing due to
windowing operation is unavoidable. However, its severity

can be reduced in two ways:

i) Dby choosing a window with large enough width and
ii) Dby oversampling.
In the first case maximum energy will be included in
‘the main lobe of the sinc function while its side lobes will
be‘damped‘rapidly towards higher frequencies. 4s a result,

the gzliasing is reduced considerably.
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In the dase of oversampllng9 the frequency'band of the
gtlmated 5pectrum ig extended beyond the range of interest,
Thus the'aliasing, 1f any, tends to contaminate that part

of the spectrum which lies beyond the bandwidth of interest.

Besides causing aliasing, the main lobe of the sinc
function broadens the non-zero frequency components of the
spectrum X(f). The extent of this broadening depends upon
'the width of the mgin lobe, This produces smoothing of :fine
spectral feagtures and glves rle to transltlon bands- at “ﬂarp

dlscontlnu1tles.

The side lobes of the sinc function produce "ripples"
in the estimated spectrum. This effect is analogous to the

Gibbs oscillations obgserved in a truncated Fourier series,
Choice of window:

A window is chosen sﬁch that the width of the main lobe
of its FT-is narrow enough to resgolve the spéctral featurés
uhder‘cbnsideration, Also the attending side lobes should be
relgtively smgll so that they do not glve rise to appreciable
ripples in the estimated spectrum whlch in turn may cause un-
certainties in the measurement of the power spectrum, In
practice, forms of windows are selected such that the amplitude
of the side lobes is minimum gt the same time the width of the

main lobe is maintained as small as possible, keeping the
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w1ndow length (1n the donmiﬁ'ih which it is_epplied)'constant.
The functlonal forms of some of the'mostvwidely used windows

11 be presented in Section II,Vﬁuch will also descrlbe a

con@uter programe -to obtgin them. s
c) Filters:

hinear'operatlons 1n,data processing such asy Smoothing;
inberpolating, banddhjmtlng, dlfferentlatlng, etc. are
called “fllterlng operatlons" and, when used wlth.dlgltal
sampled data, are known as digital flluers In general, a

digital filter is expressed as

x o N
o = gy ke T Sz 4 Tk

where X, denotes the given sampled data,p01mts and ¥, denotes
the filtered data points. When - dy = 0 for all k, the above

expression contains only the first term, in which case the =~
filber is called a Nnon-recursive filter". Furthermore,,
when Gy = Oy o
symmetric. In this report we w1ll dlSCUSS only this type )

for gll k, then the filter becomes even

of filters,



‘Design considerationss.

. Designing a digitallfilter amdunté'to computing the
coefficients C . This set of coefficients'is the response
- of the filter to an impulse function., Hence, the coeffiCients
- Cy are called the "impulsevreSponse“ of the filter. It may
be noted from the filtér expression that the filtering oper g~
tion implies convolution of the filter coefficients Ck with
the sampled points X, Unlike convolution, the filtering
operation becomes complete iannd_only“if all the coefficients

G, as well as the data points are invqlved'ih{it. Thus as a

k
result of filtering, the filtered output will have a smaller
number of points than the original sampled data by an amount
which depends on the number of filter coefficients, The
length of g filter should, therefofe, be small as oomﬁared
to the data points. Again, to design a filter it may be
specified in the domain in which it is applied or in its FT
domain. When it is Specifiéd in time domain as in the case
of the smoothing filtér, its transfer function should be
properly understood :egpriori. A4 band pass filter (BPF) is
“an example of a filter whose specificgbions are“given in
the frequency-domain, while it is actually applied.in the
time domain, |

Smoothing filters are designed byi'fitting;;polynonials
of various degrees to sampled data. A linear fit gives rise

to running average formulae in statistics which are commonly
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used. The transfer function of sugh‘smodthiﬁgffiltersﬁuSihg
(2 m +A1) points_is givgn'by,{_

IR TN ; Sin (m +5) 80 :
Hee) = (Em+1) sin(o/2) |

“Higher the number of filter points, sharper is the frequency
. ecut-off and more freguent are the wiggles of the transfer
=fﬂncﬁion.‘ Smoothing filters designed using higher degree

pplyﬁomials have flabt response over a wider frequency range.

- In general, smoothing filters work as: low pass filters (LPF).

Tn S@m@idnziil.we describe a non-recursive symmetric'BPF
- and give the{details'df a"COmputér programne to obtain the

same. -
Syﬁ;éamﬁling:r

| Gometimes it is desired to obtain a high resolution
:gbeétrum:éﬁ ibW’frequeﬂcies from a signal which may contain
Hhigh'freqﬁeﬁcy éomponébts also. - In such a case, a large
" pumber of dabta samples is to be processed. Such dabta are
first filtered to remove the unwanted high freguency compon-
ents. The filbtered daba car then bz sampled at a Jower rgte
ﬂmmmnﬁefMTMmmmmgtMwafmqwmwswmmmm Thi s
process of sampling (at lower rate) a large sample of data
is called "Sub~samp11ng“ Tt is obvious that this process
:enables “determine .a high . resolution -low frequency spec-

trum using a smagller sub-samples -
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iﬂ'Seotionglyé we nrcsenu Lhe VarlOUS data,pr009891ng
operations d@scrlbed in the precodlng paragraphs by tqklng

1nterplanetary 501nt111atlon (IPb) data as an example.
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IT. TYPES OF WINDOWS

Following types of windbws‘areAgenerqlly used for data
procesgsing: o
i) Rectangular - This window with (2N + 1) points is given
as
win) =1, for 14 n (2N + 1)
= 0 , otherwise
The frequency response of this weighting function has a narrow

main lobe -but significantly large side lobes,

ii) Modified rectangular - This is expressed as

o[~

, for n =1 and (2N+ 1)
=1, for 1l<,n (2N + 1)

= 0 4, otherwise.

w(n)

it

The frequency response of this window has a slightly wider
main lobe but weaker side lobes which damp faster as compared

to the rectangular window.

iil) Triangular or Barblett - Tts weighting function isg

given as
win) = Qﬁj ; for 1 < n f;(N + 1) )

= O Qﬁl, for(N + 1)gxi§h(2N + 1)

Its frequency response has a maln lobe twice as wide as
that of the rectangular window, but its side lobes are much

lower. &uch a tapered window has wide applications in radio



aStTonomyjantennéé;- o

iv) Hannlng w1ndOW'— Its we1ght1n0 functlon is glven as

w(n) = 0,5 + O.5_cos Td(N‘+ 1-n{J

-

for 14 ng (2N + 1)
=0 , otherwi'zée.

Its frequency response has a wider (less than double) main
lobe but negllglble side lobes compared to that of the rect-..

angular w1ndow.

V) Hémming window - Ttsweighting function is given by

w(n) = 0,5% + 0,46 COS}‘ (N + 1~n)J

for 1<n €(2N £ 1)

1

0 , otherwise,

This window is obtained by the welghted sum of modified

- rectangular and Hanning windows. The weighting coefficients
are obtained by mlnlmlzlng the max1ma of side lobes. The
width of the main lobe of 1ts frequency reSponse is only :

slightly increased as compared to thab:of thévHanning Window;
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[

Vi):vBlackm&n windOW’f'ItB wel ghting function'is.given'by;?”

— .
w(n) = 0.42 + 0.5 cos Y ' <ﬂ § 1= 1)

L

| ™o TN 4 1 - n) |
= 0.08 cos\ i ]

for 1&n L (2N + 1)

‘:Os”ﬁmWM%

The main lobe of its freguency response ig gbout 1.13 times
that of the Hanning WindOW'but its side lobes are negligibly

low.

vii) Kalser window - Tts weighting function is;givéh as

- - . =2
1 (PJi- D 1= )/ 50,

o}

w(n) =

for 1 < n £ (2N +1)

- 0 , otherwisey

Where I, 1s the aero order Bessel functlon and /’ {is a
constant that specifies a frequency response trade~ ofi “beb-
ween the maximum of the side lobe and width of the main lobe,
This window is an optimum m:_"mow,_iﬁ';that it is a finite dura-

tion sequence that has a miﬁimumvsp@ctrél energy beyond some



specifiedvfrequency, The range of ﬁﬁ is (& <~13 <9). By
sélectihg approprigte values of ﬁ} the width of the main |
lobe can be varied by 51mu1taneously keeping minimum energy

-in the 81de lobes,

Tt may be noted that although the functionagl form of g
window may be optimized, since the result of its operation
is through convolution in the FT domain, its effect as seen

~in the estimated spectrum is never optimum,
Description of program to obtain the coefficients of windows

A FORTRAN sub-brogram is writtén to obtain.coefficients
of various window forms and has been stored in the library
OWNLIB which re91des on system dlSk ”PLSYS" on unit 1CO abt
the PRL computer center,

A. Definition of the sub-programs

SUBROUTINE WINDOW (NTERM, ITYPE.,Y PARAM, W)

B. General description of the sub-program:

1. Precision - Double
2. Name of the sub-program calied - FUNCTION ATO

3. Total memory requirement in bytes - 2320
C., Detailed description of the arguments of the sub-program:
NTERM :- (INTEGER * L, SCALAR, IN-GOING, INTACT)

This is ‘a positive odd integer (2N + 1) representing the
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number of w:Lndow coefficients %o be obtained. ‘,
S ITYPE 3 (INTEGEB. * X, SCALAR, IN-GOING, INIACT)
This number denotes the type of window as follows.

ITYPE = Rectangular window

Modified Rectangular window
Iriangular (Bartlett) window
Hanning window

Hamming window

Blackman window

1
g o8 Ul Fow

Kaiser window
PARAM " (REAL * 8 SCALAR, IN-GOING, INTACT)
This parameter denoted by ﬁ; in this report is used only'.

for the Kaiser window. Its value should preferably lie

‘ between L and 9.
W i~ (REAL * 8, ARRAY (1), OUI- COMING)

This array represents the NTERM coeffieiemts of a degired
window. In general, the window coefficient W(N + 1) has
maximum value of unity which tapers down to either 31de in

all the w1ndows except in the types-1 and 2.

Remark :- Array W  has peen given object time dlmeﬂr

" gions in the subroutine WINDOW,
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ITI. 4 NON-RECURSIVE SYMMETRIC BANDPASS FILTER (BPF)

As stabed in Section I a nonerecursive filter with

(2N + 1) points is expressed as

. N _
V. = : G X
n Koo N k Nk
where Ck = C—k

To design a BPF the following specifications are given:

H(T)

it

1, for £, \<. | £ < 6
= 0, otherwise.

As the filter is symmetric this can be expressed as

e
H(w) =C +2 E:. C1 cos (k)
0 1 < ‘
Jr
where (¢, = - H(co) cos (wWk) deo
k . A

0
Changing the Variable of integration from ¢ to f, we

get
Vo

G, = 2 gH(f) cos (27 fk) df
C
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In the case of the filter under consideraﬁion_

f

. 5 |
G = 2 S cos (2 7 fk) df
o f
1 .
Thus,
[Sin (27T £,k) - sin (277 f,]k)J
C, = ' =
k = T K
for k>0

C, = 2(f, - f,l).

.* . the transfer function becomes .

H(f) = 2(f, - f'1)
ot - !
+ 2 kZ, [sin (2 7 £5k) - sin (2[’[’f1k)j / Tk
=1

X cos (2 ff.fk)

In practice, it is necessary to truncate this infinite
series. To design a filbter with (2N + 1) points; we truncagte
this series after N terms. It'may.beArecalled that this
truncation amounts to a window operation and therefore an
Opﬁimum.window is used such/thatitolerable ﬁransition bands

with minimum side lobes are produced in the desired transfer
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“ftinei.:ion, Since these COIld.’l.thl’lS are. satlsflecl by a Ka;Lser
window, we use an approprlately desz_gned Ka:Lser w1ndow*"by '
spacifying the tolerable transition bands A f a,nd ha,lf-
I‘:Lpple a,mplltude S . Using th:Ls é the e,ttenuatlon A

of 51des lobes in dec:Lbels is g:L\rerl by
__ S
A =-20 log1o
from which » using Kalser's emp:.rical formula9 the parameter

ﬁ ‘is ‘obthined from

©0.1102 (+8.7) for A > 50
0. ﬁm2<A2ﬂolf+0(w&%(A- m),
for 21 <.A <'5O

R
1

0,0 for AL 21
From the width [‘;, f of the t:r'ans:Ltlon band the number of
co.efflc:Lente N of the fllter is g:Lven by : |
‘ : e ‘e S T TR

N = A Via 95 , for 4 :> 21

0 22
2 Af

b

The. final filter coefficients (2N + 1). are obtained by 8
multiplying the window coefficients W, with G . It may

be noted that the number: of filter coefficients is 1nverse1y
pI’OpOI‘thl’lal to the trans1tlon w:LdLr» a,‘nd dlI‘ectly “‘IJPprrte'

T

1ona1 to the attenuatlon.,
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Description of the computer programz R

A FORTRAN Subroutn,ne is developed to obtaln the coeffi-v -
cients of a BPF wn.th given spec:LfJ.Cat:Lons.- This su’broutlne '
has been stored in the privabe 11brary OWNLIB wh:Lch resldea |
on system disk PLSYS on the disc 100. |

A.l Definition of the sub-progvram:-
SUBROUTINE FILIER (F1, F2, DF, FS, DWATT, NTERM, W, C, IPRINT)
B. General descriptj_on of the subprogram: B
T1e Precision - Double
2, Name of the p‘ro;gx_'a;_n.'c_al.led - FUNCTION AIO .
3. Total memory re:quiremeﬁt ~ 257€ bytes “
G. Detgiled description of the a;f'g»uments of" ‘the subprogram:
M- (REAL * 8 SCALAR, IN-GOING, INTACT)

This is the lower frequency cut— off in Hz of the desired BPF.
- For a LPF, F1 = O, |

P2 i~ (REAL * 8, SCALAR, m_GOING,tNTACT)

This is the high frequency cut-off in Hz of the des:Lred ‘BPF,
For a HPF, F2 = maximum frequency component in the sampled

dat a.
DF i- (REAL * 8, SCALAR, IN-GOING, LNTACT)

This. 1s the allOWable width in Hz of the tI‘a,'ﬂSlthIl bands..:
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Fg . (REAL * 8;'SCALA39 iN;G0ING,_INTACle
This is the sampling fréqﬁenéy in Hz uséd to sample the data,
| DWATT.—- (REAL * 8, SCALAR, i:i:lil-GOIl\TG INTACT) =~
This ig the allowable rlpple in perceﬁtage of unlty.
NIERM:~ (INTEGER * 4, SCALAR, OUT—COMING)

This is an odd 1nteger representing the number of coefflclents

in the de31red fllter
W 3~ (REAL * 8, AFRAY (1), OUI-COMING)

This array of NTERM elements represents the coefficients of

the Kalser window used to design'a'filter.'
C :~ (REAL x 8 ARRAY (1), our- COMING)

‘This array of NTERM elements gives the coeff1c1ents of the

desired filter,
TPRINT:~ (INTEGER * L, SCALAR, IN-GOING, INTACT) .

This parameter controls the printing of the filter coefficients

as follows:
-If IPRINT = 0, coefficients will not be printed .
+ 0, coefficients will be printed.

Remark:-  This sub-program uses object time dimension for

the arrays W and C depending on the variable'NTERM.
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The fluctuations of intensitY'Of radiermiééion from a
‘conpact radio source are 1nterpreted to ‘be due to the density
| 1rregular1t1es in the solar plasnm,whlch SCatter these radio
waves and cause intensity pattern at the observer. These
'inﬁensity variations, called interplanetary scintillation
_(IES), are observed at a frequency of 103 MHz using the IPS
radio telescope at Thaltej, near Ahmedabad Both analog
‘and digital recordings of the 1nten81ty Varlatlons are made.
Since the temporal IPS Spectrum is typically promlnent in
fifhe frequency range of 0.1 to 5 Hz, the data are sampled at
a frequency of 20 Hz, which is oversampling by a factor of 2,
vThié mimimizes the effects of aliasing which might be .caused
due to truncation. The sampled‘data are then subjected to a
Hémming wiﬁdow to reduce the distortion of the sbeétrum'that
might result due to abrupt cut-off of the data at the commenn
cement and at the end. These windowed data are then passed
through a BPF having a pass band of 0.1 to 5 Hz., The filtered
data are used to compute 501nt111at10n 1ndex, autocorrelation
function (ACF) and power spectrum.. The latter two. Operatlons
are carried out with the help of the FFTAPP - Package developed
by us. The ACF can be used to estlmate the scale size of
plasma den51ty 1rregular1t1es prov1ded thelr velocity ig -
known. 1In case it is not requlred to calculate the-ACF;

the filterédﬁIPS data can be processed using FFT to give

power spectrum directly.
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“The above procedure of data processmg is be:l.ng adOpted
for the single statlon IPS data collected 4t Thalte;}, The
three statlon data wthh w:Lll become aVa:Llable in. future can
be processed us:mg essentlally the same operations to conpute
cross-correlatlon J‘.‘mrlctlons7 crosg-power spectra, solar wind

ve:l_oc:Lty7 etc,.
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