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ABSTRACT

Various methods of communications based on synchi'oniza,tion of two identical chaotic
systems are briefly discussed. The method that uses the synchronization of active-
passive decomposition of a chaotic system is found to be good. In this feasibility
report we have applied the method to communicate three computer generated and
two experimental time series signals using different chaotic systems and their com-
binations. The merits of communication using this method are studied in terms of
shape of the transmitted signal, extent of the masking of the signal, errors in the
recovered signal and spectra of original and recovered signals. In general it is found
that masking of the signal is quite eflective and the accuracy of the recovered signal
is very high. It is, however, observed that the signal of short length consisting of
sharp kinks in the data requires additional smoothing to be masked effectively. Com-
binations of chaotic systems are used to generate hyperchaotic transmitted signal to
carry the information signal. It is expected that they would be difficult to decode and
hence would lead to more secure communications but unfortunately they also have
relatively low accuracy of the recovered signal. We have also examined the effect of
additive noise and variation of parameters of chaotic systems on the accuracy of the
recovered signal.



1 Introduction

It is now well established [1, 2, 3, 4, 5] that chaotic signals generated by d'ssipitive non-
linear system have potential applications to communications. Since chaotic signals are
typically broadband, noise-like, and difficult to predict, they are particularly suitable
for secure communication (cryptography). Chaotic signals can be specially useful as
carriers for information bearing waveforms to be tfan'smitted.

In methods of communication based on the property of synchronization (1] the
actual communication of desired signal is implemented in two ways. The first ap-
proach [2, 3] is based on signal masking in which a small amplitude analog message
is just added to a relatively large amplitude chaotic signal at the transmitter.. Such
systems are known as chaotic signal masking systems. In the second approach [2, 4]
the digital signal in the form of bit sequence is used to modulate one of the trans-
mitter parameters as the chaotic system evolves in time. These systems are known
as chaotic modulation systems. In both the cases one of the variables of the trans-
mitter system is used to drive the chaotic system at the receiver end. The actual
information bearing waveform can be recovered at the receiver using the principle
of synchronization. The process of synchronization essentially enables us to remove
the carrier signal from the transmitted signal so that the information signal can be .
extracted at the receiver end. It can be shown [1] that two identical low dimensional
chaotic systems would, under certain condition, synchronize if one of the variables
from the first system is used to drive the other. It may thus be hoted that the chaotic
systems employed at the transmitter and the receiver need to ha,ve'iden‘tica‘,l dynamics
with almost same parameters. - | o

Another method of secure communication which is not based on the property
of synchronization has been suggested by Abarbanel and Linsay [5]. It has been
demonstrated that one can modulate the phase of a selected unstable periodic orbit
(UPO) using the binary information signal so that it can be transmitted in an encoded
fashion along the transmission channel. In general using UPOs for communications
have number of advantages. Unfortunately, the coded message is easily cracked using.
local linear approximation to chaotic flows. Hence this method may not be very useful
for secure communications and is not covered in this report.

The purpose of the present feasibility report is to brieﬁy review some of the re-
cent developments relating to the use of chaos in communications based mainly on
synchronization. In Section 2 we review in brief some important methods of syn-
chronization available in the literature. However, we do not cover all the methods of
synchronization. Section 3 describes how these methods can be applied to commu-
nications and how they compare in terms of security and accuracy of the recovered
signal. Amongst the methods of communications discussed above we have found that
the one based on the active-passive decomposition gives better numerical results. We



have encoded various types of signals such as sinosidal, triangular, rectangular, elec-
troencephalegraph (EEG) signal, annual sunspot numbers etc using this method and
the results are presented in section 4. Section 5 details the study of how the recovered
signal is affected due to introduction of noise in the transmitted signal as well as the
variation of parameters of receiver chaotic systems. Some attempts to decode the
signal using different methods are broadly discussed in section 6. Section 7 describes
in brief some considerations about implementing the system in hardware. In the con-
cluding section 8 we summarize the pros and cons of various methods and chaotic
systems related to secure communications in the light of numerical results.

2 Methods of synchronization

Two chaotic 51gnals are said to synchromze if they show identical values as a function
of time. In general the two signals will synchronize only asymptotically. Several
methods of synchronization of two chaotic systems have been proposed. Here, we
briefly outline three methods of synchronization of two identical systems.

2.1 Self-synchronizing _chaotic systems

Pecora and Carrol (PC) [1] were the first to report that chaotic systems can possess
self synchromzmg property.” A chaotic system is self synchronizing if it can be decom-
posed into two subsystems: drive system and a stable response subsystem and when
drive signal from one system is fed into another identical system then the response
subsystem of the second system synchronizes with that of the first system. Pecora
and Carrol have shown that synchronization occurs if all the lyapunov exponents of
the response subsystem are negative. The property of synchronization would be ro-
bust if any initial condition of response subsystem and/or any perturbation in the
drive signal almost always lead to synchronization. .

Consider the w¢ll known Lorenz system, A, as given below.

X .=.-}-'a(Y"-—X)
Y. = pX-Y-XZ
Z = —-BZ+XY - (1)

where o,p a.nd B are : the pa,rameters, :

Divide Lorenz system into two subsystems, Y as the drive subsystem and (X, Z)
as the response subsystem. Consider a system B, identical to system A, defined by
(X1, Y1, Z,). To drive this system by Y- we set Y; = Y. The evolution of the response
- sybsystem of B is given'by: = . - 2 :

Xl ‘= G'(Y— Xl)



Zl = ”,BZ1+XiY (2)

When the Lyapunov exponents of the response subsystem (X,Z) are all negative
then the response subsystem (2) converges and asymptotically synchronizes with the
system A, i.e.

|X; — X|and |Z; — Z| 2 0ast— oo
The Lyapunov exponents are determined by using the Jacobian matrix corresponding
to the differences (AX = X, — X,AZ = 2, — Z).

—oc 0
J=(¥ _ﬂ). (3)

There is another way of dividing Lorenz system, namely system C = (X, Y3, Z,)
with X; = X as the drive and (Y3,Z;) as the sta.ble response subsystems. The
response subsystem obeys the equations,

Y, = pX-Yo- X2
Zy, = —BZ+ XY, (4)

The variables (Y2, Z;) synchronize with (Y, Z) when driven by X.

The remaining way of dividing Lorenz system, namely Z as the drive and (X, Y")
as the response subsystems does not lead to a stable response system since one of the
response subsystem Lyapunov exponent turns out to be almost zero.

It is interesting to recognize that the two response subsystems, B and C, defined
above (Egs. (2) and (4)) can be combined to produce a full dimensional response.
system that is structurally similar to the drive system (1). Specifically the input signal
X (t) from the drive system (1) drives the response subsystem (Y3,Z2) to produce the
output Y3(¢). The signal Y3(2) is subsequently used to drive the response subsystem
(X1,2,) to generate X;(t). Now the subsystem (Y3,Z;) synchronizes to drive the
system to produce Y3(¢) equal to Y'(¢). This implies that the subsystem (X,,Z,) is
actually driven by the signal Y (¢) and hence eventually synchronizes with the drive
system (1) producing X;(t) equal to X(t). Thus we get a single three-dimensional
response system which is similar to the drive system (1). We will make use of this
fact while applying the method to communication in Section 3.

2.2 Synchronization using adaptive control

John and Amritkar (JA) [4] have introduced another method for synchronizing the
evolution of a non-linear and chaotic system to a desired unstable trajectory through
adaptive control. The desired unstable trajectory may be a chaotic orbit or an un-
stable periodic orbit. For the implementation of this method it is assumed that one
or more of the system parameters are available for control.



The chaotic system that generates the desired unstable orbit is called a target
system or a response system. One of the variables of the drive system is used to vary
a selected parameter of the system which then drives the response system. When
synchronization takes place, all the variables of the response system as well as the
selected conrolled parameter synchronize to those of the drive system. The response
system consists of equations of the drive system supplemented by the additional
equation governing the time evolution of the selected control parameter.

The method is illustrated using the Lorenz system given by Eq. (1) as a drive
system. The response system is controlled by the parameter p of the Lorenz system
and the drive variable Y. The evolution of the response system is given by

. cr(Yl-— o

}}l = p)n XlZl
Zl = —-pZ +X1Y1
: dY, oo
p = —«Y1-Y) Sgn(gp—l) —8(p—p") (5)

where ¢ is the stiffness constant, ¢ is the damping constant and the function sgn(z)
denotes the sign of z.

It can be seen from Eq. (5) that the parameter p changes depending on

e The difference between the system output variabie Y;(¢) and the corresponding
variable Y(¢) of the desired orbit.

o The difference between the evolving parameter p and its value p* for the desired
orbit. .

The range of values of constants € and § for which synchronization is possible are de-
termined by studying the Lyapunov exponents of the response system. The condition
for synchronization with the desired trajectory is that all Lyapunov exponents of the
response system (5) are negative. The critical values of the stiffness constant € and
damping constants & can be determined by the condition that the largrest Lyapunov
exponent is zero. The synchronization is found to be quxte robust as per the criterion
given in the previous section. ‘

2.3 Synchronization by active:-passive d’e’composition

In this method [3] of synchronization we consxder an a,rb1tra.ry N-dlmensmnal chaotic
autonomous dyna.mxcal system

v !



The goal is to rewrite this system as a non-autonomous system that possesses certain
synchronization properties. We thus write

X = f(X,S) (7)

where X is the new state vector corresponding to Z and S is some vector value

function of time given by
S = h(X) or § = h(X,S) (8)

The pair of functions f and h constitute a decomposition of the original vector F.
The crucial point of this decomposition is that for suitable choice of the function h

any system

Y =f(Y,S) (9

which is given by the same non-autonomous vector field f, the same driving S, but
different variables Y synchronizes with original system (7). In other words, the com-
ponents of the vectors X and Y asymptotically approach each other;

| X;—Y:|>0asT — o0

The synchronization of the pair of identical systems (7) and (9) occurs if all condi-
tional lyapunov exponents of non-autonomous system (7) are negative. In this case
the system (7) is a passive system and the decomposition is called active-passive de- .
composition (APD) of the original dynamical system (6). Though S is assumed to be
vector valued in the above formulation for the sake of generality, in practice for the
application to communications, it is often considered as a scalar valued function. As
an illustration we give below the APD of well known Rossler system given by
Zy = 24 2:1(2,-4)
Zy, = —2Z,—Zs
Z3 = Zy+0.45Z; (10)
The passive part of the APD is
Xl = 2—4X1 +X22 -—SX2
Xz = —Xz = X3 + s
Xs = X;+0.45X; (11)
where the transmitted signal s can be written as
s = X2 - X 1 (12)
and the component corresponding to Eqn. (9) is given by
Y, = 2-4Y +Y] —sY,
Y, = -Yo-Ys+s
Ys = Y,+0.45Y;. (13)



It is worth pointing out that in the APD method the system (11) is actually driven
by the transmitted signal s which is a function of the variables of the original system.
Further according to the PC method [1] the Rossler system (10) can have only one
response subsystem (X, X3) for synchronization, while in the APD method there can
be number of different functional forms of h for which synchronization can be possi-
ble. Thus the APD method can be considered to provide a more general framework

compared to the PC method.

3 Application to communications

We will now see how the synchronization techniques described in the previous section
can be applied to communications.

3.1 Communication using PC method

Cuoma and Oppenheim [2] have shown that the PC method of synchronization can
be used in a communication system which may be either a chaotic signal masking
system or a chaotic modulation system. They have implemented these systems in
analog circuitry based on the Lorenz equations.

3.1.1: Signal masking system

In signal masking scheme the transmitter generates a éha;otic signal X (¢). The mes-
sage bearing signal m(t) is then added to X(t). The actual signal that is transmitted

1S

s(t) = X(t) + m(2). (14)

It is assumed that for masking, the power level of m(t) should be significantly lower
than that of X(¢). The dynamical system implemented at the receiver is also a full
three dimensional Lorenz system given by

X, = oY, - X,)

Y, = ps(t)-Y, —s(t)Z,

Z, = s(t)Y, - B2, | (15)
The transmitted signal s(¢) drives the subsystem (Y;, Z,), while ¥, drives X,. The

teceiver tries to synchronizes with the transmitter, and thus X, (t) tries to synchronize
with X (t) and consequently the message signal m(t) can be recovered as

m(t) = s(t) — X, (2)- | (16)



It may noted that the message signal m(t) is not a part of the dynamics of the
transmitter system. It is also obvious that for large power of the message signal m(t),
the transmitted signal s(t) considerably deviates from the original Lorenz signal X (t)
leading to poor synchronization and thereby proportionately inexact recovery of the

message signal m(t).

3.1.2 Chaotic modulation system

In chaotic modulation system Cuoma and Oppenheim have again used the Lorenz
system both at the transmitter and the receiver ends as before. The idea is to mod-
ulate a transmitter parameter dynamically using the message bearing digital signal
m(t) in the form of bits and to transmit the chaotic drive signal. For example a
binary signal which looks like a square wave can produce variation in the transmitter
parameter say (3 such that for zero bit 3(0) = 4.0 and for one bit f(1) = 4.4. At the
receiver the parameter modulation will produce a synchronization error between the
received drive signal X(t) and the receiver’s regenerated drive signal X,(t). In fact
the parameter modulation produces significant synchronization error during one-bit
transmission and very little error during zeto-bit transmission. Using the synchro-
nization error the modulation can be detected and the message signal m(t) can be
recovered. In this method also the synchronization depends on the extent of mod-
ulation of the transmitter parameter. For large modulation the method is likely to
fail as the modulated parameter is not a part of the receiver dynamic system which
works only with the unmodulated parameter 3.

3.2 Communication using JA method

In the JA method [4] of synchronization applied to communications the parameter of
the transmitter is again modulated by the binary information signal. In the specific
case described by them the modulation of the transmitter parameter is produced
by varying the parameter p of the Lorenz system between the values 28 and 28.5
corresponding to the bits 0 and 1 of the binary signal respectively. The drive signal
is the variable Y of the Lorenz system. The response system at the receiver is the
controlled chaotic system described by eq.(4) and is controlled by using the parameter
p = 28.0. It may be noticed that unlike the PC method of chaotic modulation the time
evolution of the parameter is embedded in the dynamics of the response system. As
a result when the transmitter and the receiver synchronize, the controlled parameter
p of the response system also gets synchronized with that of the transmitter along
with other variables of the system. The plot of the deviation of the parameter p from
its controlled value 28 against time clearly shows spike corresponding to binary 1. It
is observed that the beginning of the spike precisely corresponds to the beginning of
the binary 1 of the information signal, but the end of the binary 1 transmission can
not be determined accurately. Though this method is better than the PC method



of chaotic modulation, it also tends to perform better only within a limited range of

parameter variation.

3.3 Communication using APD method

Parlitz et al [3] have shown that the APD method of synchronization can be used to
design a chaotic signal masking system. There are two methods to do so. The first
one enables us to reconstruct the information exactly while the second one, called au-
tosynchronization method, offers new features to design more robust communication

system.

3.3.1 Exact reconstruction method

In this method the information signal m is included in the function h (see Egs. (8)
and (12)) describing the scalar signal s. If & is invertible with respect to m

m = h™1(X, s) (17)
then the information recovered at the receiver
m, = h~1(Y, s) (18)

converges to the original information m if the transmitter (X system) and the re-
ceiver (Y system) synchronize. To demonstrate the method they have implemented
the following decomposition of the Rossler system. The transmitter system (passive

component) is

X1 = 24 X1(X:—4)

X2 = ""Xl - X3
Xs = X;—X3+s (19)
The transmitted signal is -
$s=145X3+m (20)

The receiver system is

1 = 24Y(2—4)
Y, = -i-Y;
Vs = Va—-Ys+s (21)

The recovered signal m, can be obtained by
m, = s — 1.45Y; (22)

when the transmitter and the receiver synchronize.



3.3.2 Autosynchronization method of APD

In contrast to the above method the information signal m in this method is not
included in the function A in this method. As a result the transmitted signal does not
contain the information signal leading to more secure communication. The resulting
communication system based on Rossler system would have following components.
The transmitter system is

Xl = 2—4X1 +X22—SX2+m

Xz = —X2 - X3 + S

X; = X,+045X; (23)
The transmitted signal is :
s = X2 == X1 (24)
and the receiver system is

Y, = 2-4Y1+Y7 —s, 4+ Y,

Y, = -Y,-Y3+s
Ys = Y;+0.45Y; (25)
Y, = a(s,—s) (26)

where s, = Y3 — Y1, m, = Y; and a is a free convergence parameter. It can be shown
that the error es = Yy — m will be small if the information signal m changes slowly
compared to the time scale of the error dynamics.

3.3.3 Cascading in the APD method

For secure communications it is desirable to use high dimensional chaotic carrier in
order to make the decoding as difficult as possible. The transmitted signal in such
‘systems would be hyperchaotic. In order to construct [3] systematically the high
dimensional synchronizing systems the standard low dimensional systems with well- -
known dynamics are used as building blocks. These blocks which may consist of
different systems or identical systems can be arranged in series (cascaded) or in par-
allel. The synchronization of the transmitter and the receiver is based on the mutual
synchronization of low dimensional systems that constitute the building blocks.

If we want to construct say a 9-dimensional communication system one way is
to have three identical Rossler systems in cascade both in the transmitter and the
receiver systems. The transmitter system may look as follows.

£4(X4,S4) = f8(X5,S8) = fo(Xe, Sc), (27)

where A, B and C are three systems used for cascading. The corresponding cascaded
receiver system would be

£4(Y4,84) « £8(Ys,S8) « fo(Yc,Sc) (28)



In order to have total synchronization all the pairs of the system

£4(Y4,54) — fa(Xa,Sa)
fp(Yp,Sp) — fB(Xg,Ss)
fo(Yc,Sc) — fc(Xc,Sc) (29)

should synchronize so that the information signal could be recovered. It is also possi—
ble to have two different (non-identical) systems such as Lorenz and Rossler systems
to form a six simensional parallel system [6].

The APD-based communication system is much superior to other methods di-
cussed earlier. In the communication system based on PC method the information is
just added to a chaotic carrier but not injected into the dynamical system constituting
the transmitter. In other words the receiver is driven by the sum of the chaotic signal
and the information signal whereas the transmitter is just driven by the pure chaotic
signal. Because of this slightly different drive signal the transmitter and the receiver
systems do not synchronize exactly and the information signal can only be recovered
with some error which vanishes in the limit [m| — 0. Thus if one uses an information
signal with small amplitude, the error will be reduced to that extent. However, if the
information signal is too small in amplitude it is likely to be destroyed by noise in
the transmission channel. Furthermore the method with too small signal amplitude
is not very secure. It is possible to fit a nonlinear model to time series given by the
transmitted signal s that now consists of low dimensional chaotic carrier (as m is very
small). Using this model the information may then be extracted from s by method
of nonlinear noise reduction. : -

In contrast it may be emphasized that in the APD-based communication the in-
formation signal is not just added to a chaotic carrier but also drives the dynamical
system constituting the transmitter. It is thus difficult to decode the transmitted
signal. Further with exact reconstruction the information signal can be exactly re-
covered without any error.The provision to build high dimensional system makes the
method ideal for secure communications. In this report we have, therefore, focussed
our attention on this method and employed it for communicating different types of
signals. The details are presented in the next section.

4 Results

In this section we present the results of application of synchronization methods to
communicate different types of signals. To be specific we have used five types of
signals. The three of them are computer generated signals viz. i) sine waveform ii)
triangular waveform and iii) rectangular waveform. The other two are real signals
viz. i) annual sunspot series and ii) electroenceplalograph (EEG) signal of a normal
human being. The relevant statistics of these signals is given in Table 1 to get the



quantitative feel for the data. It may be noted that both the real signals have high

Signal Sample | Mean | St.Dev. | Minimum | Maximum
Type Size
Sine -| 1000 0.0 0.7075 -1.0 1.0
Triangular 5000 0.5 0.2887 0.0 1.0
Rectangular 5000 0.5 0.5 0.0 1.0
Annual
Sunspot Series 247 51.9421 | 41.6018 0.0 190.2
Human EEG 1024 | -0.0048 | 4.7051 | -13.3042 14.0773

Table 1: Statistics of Signals used in the Study

frequency sharp peaks in the data. As stated earlier we have used the APD method
of synchronization for all calculations. The study is carried out using the following

schemes.

5.
6.

Using the low-dimensional chaotic systems such as Rossler and Lorenz.
Examining the effect of smoothing the signal.
Using the hyper-chaotic system obtained by cascading identical Rossler systems.

Using the hyper-chaotic system obtained by combining the heterogenéous sys-
tems such as Rossler and Lorenz systems.

Studying the effect of noise on signal recovery.

Studying the effect of parameter variation on signal recovery.

The process of obtaining the transmitted signal for a given information signal is
sometimes loosely termed as encoding the information signal and that of recovering
the signal from the transmitted signal as decoding the signal. We use this terminology

intermittantly in this section.

4.1 APD using Rossler and Lorenz systems

In this exercise we follow the method of exact reconstruction of the information signal
in the framework of APD. We have noted earlier that this method enables us to recover
the information signal ¢ using Eqs. (22) or (33). bearing signal almost exactly from



the chaotic transmitted carrier waveform. For the Rossler system we use the active-
passive decomposition as described by Eqgs. (19) to (21). Similarly the APD scheme
used for the Lorenz system is as follows. The transmitter is given by ‘

Xi = —10X, + s(t)

X = 28X -X,— X1 X5

Xs = X1X, - 2.6667X, (30)
The transmitted signal is

where 7 the information signal to be transmitted. The receiver is given by

;i = —10Y; + s(2)
Y, = 8%, - -1Y,
Vs = Y,Y;—2.6667Y; (32)

The recovered information signal is obtained as

in = (s(t) — 10Y3)/Ys. (33)

In order to transmit the information signal i, we now solve Egs. (19) or (30)
numerically using some arbitrary initial initial condition X (0) = V4. This gives us
the signal s() which is transmitted to the receiver. At the receiver end Egs. (21) or
(32) are solved numerically using some other arbitrary initial condition Y(0) = V,.
This allows us to recover the information signal using Eqs. (22) or (33). In general
the initial conditions V; and V; are different and hence it takes some time before the
transmitter and receiver systems get synchronized. During this time the recovered
signal does not match with the corresponding segment of the information signal.
In order to solve this problem it is necessary to pad the actual information signal
with leading zeros or some random signal. It is worth mentioning here that in all
our calculations we have used the padding signal to be zero. The length of this
padding signal depends on the synchronization time. Let T, denote the duration
of this padding signal. This procedure ensures that before the information signal is
recovered the transmitter and receiver systems are completely synchronized. However,
due to this procedure the transmitted signal is often much longer than the actual
information bearing signal.

Another important point worth noting for secure communication is that the am-
plitude range of the information signal should be much smaller (10% or less) than the
range of the chaotic signal so as to mask the signal effectively. We, therefore, scale

“down the amplitudé of the information signal keeping in view the amplitude range of
the selected chaotic carrier. If the information signal is not sufficiently masked by the



chaotic carrier the spectral analysis of the transmitted signal may reveal the char-
acteristic spectral features of the information signal which may be used to identify
the same. We therefore compare the spectral contents of the actual signal, the corre-
sponding transmitted signal and the recovered signal in all five types of signal studied
here. Otherwise also it is often necessary, in practice, to scale down the amplitude
of the information signal so as to make the system numerically stable. Too large an
amplitude may set numerical instability in the solution of differential equation.

In our calculations we obtain the transmitted and the recovered signals for each
type of information signal discussed above. We also evaluate the frequency contents
of these signals. The goodness of the recovered signal is tested by calculating the
error statistics for different synchronization timings. We present these results for
the Rossler system. For Lorenz system the results are similar and hence only those
pertaining to annual sunspot series are presented. It may be noted that for all the
information signals the amplitude range used was one.

In Table 2 we give the error analysis of the recovered sine signal as the padding

time T, increases.

Padding

Time,T}, € Oe €min €maz
0 3.606 2.835 0.381 * 102 9.597
5 0.253 0.180 » 107! 0.209 0.270
10 0.366 * 102 | 0.215 % 10~2 | 0.267 + 10~° | 0.880 % 102
15 0.298 % 10~3 | 0.732 % 10™* | 0.170 x 1073 | 0.418 x 1073
20 0.406 % 104 | 0.768 x 10~° | 0.263 x 10~* | 0.519 » 10~*
30 0.113 %107 | 0.588 % 10~7 | 0.253 + 10~° | 0.223 » 10~°

Table 2: Error Analysis of Recovered Sine Signal

It can be seen that the error in the recovered signal reduces as the padding time
increases. Fig. 1 gives the plots of the actual sine signal, the corresponding transmit-
ted signal and the recovered signal when the error is minimum (after the padding time
~ 30 seconds in this case). The transmitted and the recovered signal are obtained by
solving Eqs. 19, 20 and 21. Fig. 2 gives the spectral contents of the signals presented

in Fig. 1.
It can be noted that the original sine signal could be recovered with great accuracy.

Further the transmitted signal masks the sine wave and does not provide any clue to
the identity of the signal. This can also be confirmed from Fig. 2. Similar results are



- Encoding and Decoding of Sine Signal
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Figure 1: Encoding and decoding of Sine signal obtained using APD method with
Rossler system. a) the original signal b) the transmitted signal c) the recovered signal
d) the absolute error in the recovered signal in log scale. The padding part of the
signal is not shown except in (b). One can notice change in behaviour of transmitted
signal after the information signal is added (time 30 to 40 units in Fig.(b) above).
- This change can be made homegeneous by padding with identical copies of the same

signal (or some other signal) from ¢ = 0.



Power Spectra of Encoded ond Decoded Sine Signol
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Figure 92: Power spectra of encoded and decoded sine signal obtained using APD
method with Rossler system. a) the spectrum of original sine signal. b) the spectrum
of transmitted sine signal. c) the spectrum of recovered sine signal.



obtained for the other computer generated signals viz. triangular signal (Fig. 3) and
rectangular signal (see Fig. 4).

The results for the annual sunspot series are given in Fig. 5 and Fig. 6

and those for the EEG signal in Fig. 7 and Fig. 8. For these signals the accuracy
of the recovered signals is not as high as those in the computer generated signals.

Similar results are obtained using Lorenz system [6] for all the information signals.
The results for the annual sunspot series and EEG using the Lorenz system are given
in Fig. 9 and Fig. 10 respectively.

4.2 Effect of smoothing the signal

We note that the annual sunspot series and EEG signals have sharp high frequency
peaks in the data. Even after scaling down the amplitude the identity of the signal
can not be completely masked in the transmitted signal. If we look at the transmitted
signal one clearly finds the variation similar to the structure of the information signal.
The effect is quite pronounced if the length of the signal is short. We, therefore,
suggest that the signal be sampled with much higher frequency so that the transmitted
signal is quite smooth. Additional points required for high frequency sampling can be
obtained using cubic spline interpolation. We refer to this procedure as ’smoothing’
in this report. The process of smoothing essentially increases the length of the signal
which, in turn, gets superimposed on a much larger segment of the carrier chaotic
signal. As the length of the signal increases, the sharp variations in the signal are
merged in the oscillation of the chaotic signal. Consequently one finds the transmitted
signal is smooth and does not show the identity of the information signal. In Fig. 11
we present the transmiited signal for annual sunspot series for different lengths. It
can be seen that for the length 2000 one gets smooth transmitted signal.

4.3 Cascading identical Rossler systems

- We .have seen [3] earlier that cascading number of identical, low-dimensional sys-
tems gives rise to a high-dimensional chaotic carrier. The communication based on
the high-dimensional chaotic system would be desirable as it would be more secure.
Making use of cascading of three identical Rossler systems we have encoded and de-
coded the five information signals in the framework of APD. The APD scheme has

the following components.

The transmitter is
Xl = 2 + XI(X2 - 4)
X, = -Xi—-X;



Encoding and Decoding of Triangular Signal
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Figure 3: Encoding and decoding of triangular signal obtained using APD method
with Rossler system. a) the original signal b) the transmitted signal c) the recovered
signal d) the absolute error in the recovered signal in log scale. The padded part of

the signal is not shown except in (b).



Encoding and Decoding of Rectongular Signal
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Encoding and Decoding of Annual Sunspot Series
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Figure 5: Encoding and Decoding of annual sunspot series using Rossler system in -
the APD method of communications. a) the original signal b) the transmitted signal
c) the recovered signal d) the absolute error in the recovered signal in log scale. The

padded part of the signal is not shown except in (b).



Power Spectra of Encoded ond Decoded Sunspot Series
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Figure 6: Power spectra of encoded and decoded annual sunspot series using Rossler
system in the APD method of communications. a) the spectrum of the original series
b) the spectrum of the transmitted signal c) the spectrum of the recovered signal.



Encoding and Decoding of Human EEG Signal
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Figure 7: Encoding and Decoding of human EEG signal using Rossler system in the
APD ‘method of communications. a) the original signal b) the transmitted signal c)
the recovered signal d) the absolute error in the recovered signal in log scale. The

padded part of the signal is not shown except in (b).
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Encoding and Decoding of Sunspot Series using Lorenz System
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Encoding and Decoding of Human EEG Signal using Lorenz System
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Eifect of Smoathing on the Tronsmitted Signl for Sunspot Series
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Figure 11: The Effect of smoothing on the transmitted sunspot series as the number
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The transmitted signal for each stage of cascading is given by
Sout = X3 + 0.258;,, ; (35)

where s;, for the first stage is the actual information signal to be transmitted.
The receiver is

Y = 24Y(Y;-4)
, = -"1-Y;
Y; = Y;+40.45s (36)

The recovered signal at the final stage of decoding would be
i = (Sout — Y3)/0.25. , (37)

It may be noted that the input s;, at each stage is multiplied by a suitable factor
(0.25 in this case) so as to keep its amplitude small enough so that the numerical

instability in the solution is avoided.

The three stage cascading in the APD framework using the Rossler systems works
very well for all the signals. Therefore we report here only the encoding and decoding
of annual sunspot series to highlight some features of the scheme.

Since the message passes through number of stages while it is encoded, the syn-
chronization time required is much higher than the one with single stage. Also the
accuracy of the recovered signal decreases as the number of stages in the cascading
increases. This is expected as the errors in one stage propagate to the next stage
and thus, tend to be amplified. Fig. 12 shows results for annual sunspot series using
three-stage APD with Rossler system.

It is observed that the procedure of smoothing usually required for a short signal
containing sharp peaks for a single stage scheme is not necessary in cascading. As
the signal passes through succesive stages it gets completely masked by the high-
dimensional chaotic carrier. This is shown in Fig. 13. in which the transmitted
signals for each stage are plotted omitting the padding time. The transmitted signal
for the third stage does the masking reasonably well than the others.

4.4 Combining Heterogeneous Systems

It is also possible to combine two heterogeneous systems [6] in parallel to form a
high-dimensional chaotic system to be used for communications. Here, we combine
the Rossler system and the Lorenz system to produce a six-dimensional hyperchaotic
system. The system can be used in the APD framework for a more secure communi-

cation.



3 Stage Encoding ond Decoding of Annuol Sunspot Series
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Smaothing of Transmilted Sunspot Series through Coscoding
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The transmitter of our communication model is given by

_X}l = 2 + Xl(Xz - 4)

X, = —X;—Xs
Xs = Xo—2.45X3 + Saus
X, = —10X;4s
Xs = 28X — X5 — XaXe
Xe = X4Xs— 2.6667Xs (38)
where s,4; = ¢ + 3X3 and
s = 10Xs + 3054uz/Xe o (39)

inwhich ¢ is the signal to be transmitted.

The receiver system is given by

Vi = 2+V(Ya—4)

Yz = -Yi1—y

Y = Y;—245Y; + Saus

Yi = —10Y;+s

Y = 28Y,-Ys—YiY¥e

Yo = YiYs—2.6667Ys (40)

where S,ur = (s — 10Y;5)Y5/30 and the recovered signal

IR = Sauz: - 3Y.:3 (41)

A few remarks regarding this scheme may be mentioned at this stage. It is ob-
served that the transmitted signal is quite hyperchaotic. Further, as in the case of
cascading identical systems, the synchronization time needed is quite large. The time
step At to be used in the scheme to obtain the solution corresponds to that com-
ponent system which, if solved independently, needs the smallest time step dt to get
reasonably accurate solution. In fact we have observed that it is desirable to have the
time step At smaller than d¢. We also note that the transmitted signal of the parallel
system does show the structure of the information signal and hence the signal needs
to undergo the smoothing procedure.

~ The encoding and decoding of all the information signals are carried out using
this scheme and the results are found to be very good. The typical results for the
annual sunspot series are reported here. Fig. 14 displays the transmitted, recovered
and error signals for the sunspot series. ‘



Encoding and Decoding of Sunspot Signal using Rossler-Lorenz System
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5 Effect of noise and parameter variation on re-

covered signal

In this section we study how the accuracy of the recovered signal is affected by the
addition of noise in the transmitted signal as well as by the variation of parameters

of the chaotic receiver system.

5.1 Effect of noise on signal recovery

In the recovery procedure so far, we have assumed that the transmitted signal gen-
erated by the transmitter system is directly received by the receiver system without
any contamination. However in a typical communication application the tramsmit-
ter site and the receiver site are geographically at a long distance from each other.
Consequently the transmitted signal, as it traverses through long distance, is likely
to get contaminated by some noise. Here we study the robustness of the recovery
procedure at the receiver against the noisy signal. To be specific we are interested
in knowing how the amount of noise in the transmitted signal affects the accuracy of
the recovered signal. We assume that the nature of the noise is an additive gaussian
noise with mean equal to zero. The strength of the noise, as indicated by its standard
deviation (0,), is taken as some percentage of the o, of the transmitted signal. The
goodness of the recovered signal is measured by evaluating the quantity known as
normalized mean square error (NMSE). The term NMSE is defined as the ratio of
the mean square deviation of the recovered signal from the original signal and the
variance of the original signal.

In our study the o, of the noise is varied from 1% to 10% of the o, of the transmit-
ted signal. The calculations are performed in the APD framework using the Rossler
system as given by Egs. (34) and (36) but without cascading. It is observed that the
behaviour of the NMSE with respect to the percentage of noise is fairly smooth for
all the signals only upto 5% noise. For higher percentage of the noise, however, the
NMSE shows wild fluctuations especially in the real signals. We can, thus, conclude
that the maximum percentage of noise tolerated by the recovery procedure is 5%.
Within the 5% of noise the NMSE for all signals increases as the noise increases. The
rate of increase is found to be much lower in the computer generated signals that
that in the real signals. Also the increase in not exactly linear. The NMSE in the
recovered sunspot series as a function of percentage of noise added in the transmitted

signal is shown in Fig. 15.

The goodness of the recovered signal depends on how close the value of NMSE
is to zero. We presume that the value of NMSE to be less than 0.05 as an indicator
of good match between the recovered and the original signal. Keeping this criterion
we can say that the computer generated signals can tolerate noise upto 5% while the
real signals have tolerence only upto 3%.



Noise Tolerence of Transmitted Sunspot Signal
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Figure 15: The normalized mean square error in the recovered sunspot signal is shown
as a function of percentage of noise added in the transmitted signal.

The robustness of the receiver system against the limited noise level in the trans-
mitted signal can be considered as a desirable attribute of any communication sys-
tem. Unfortunately for the communication system based on the synchronization of
two chaotic systems the noise tolerence level is not very high.

5.2 Effect of parameter variations

In the communication application based on synchronization the inherent requirement
is that the parameters of the transmitter system should be same as those of the
receiver system. In computer simulations this requirement can be easily satisfied for
obvious reasons. However, in actual implementation, it implies that we would need
to build two identical hardware units, one for the transmitter system and other for
the receiver system. In practice two hardware units, though designed with the same
specification, would not be exactly identical due to the fact that the components that
go into the systems might not be identical. Therefore, we examine how the parameter
variations in the two systems affects the accuracy of the recovered signal.



We have studied various signals in the APD framework using the Rossler system.
We rewrite the Rdssler system (10) in the following form.

Xl = b + Xl(Xz — C)
X2 = —Xl - X3
X; = X2+ aXs _ (42)

where a,b,c are the parameters whose normal values will be taken as (0.45, 2, 4)
respectively.

Again the calculations are performed in the APD framework using the Rossler
system as given by Eqs. (34) and (36) but without cascading. The parameters a, b,
and ¢ are varied systematically about their normal values in the receiver system. The
transmitted signal is generated by the transmitter system using the normal values of
the parameters. The plots of NMSE in the recovered signal against the percentage
variation in different parameters of the receiver system are obtained using different
signals. These plots have similar behaviour to those obtained for noise variation
discussed previously. It is observed that the parameters a and ¢ are more critical than
the parameter b. The parameters a and c¢ tolerate the variation of about 5%, while
the parameter b tolerates a variation of about 10%. In general the EEG signal has
Jess tolerence against parameter variations compared to other signals. Fig. 16 shows
the NMSE in the recovered sunspot signal as a function of percentage of variation in
parameter a.

Finally it may be noted that the parameters of the transmitter system do provide
the key to decode the message. Hence the robustness of the receiver system against
parameter variations may not be a desirable feature. However, for the hardware
implementation the tolerence against small variations would be necessary. From this
point of view our results seem to be encouraging.

6 Some attempts of decoding the messages

It may be noted that the communication based on chaotic synchronization has two
* desirable features for secure and private communication. The first one is that the
~actual transmitted signal, being a chaotic carrier masking the information signal, is
'~ broadband and hence look like some type of noise. Secondly it is not possible to
decode the signal at the receiver end without the full knowledge of the transmitter
system. In other words it implies that it may be, in general, difficult for a third
party to extract the message easily. However number of attempts have been made to
~ decode message even in the absence of any knowledge of the transmitter system. We
describe some of these efforts in this section.

Perez and Cerdeira [7] have reported that it is possible to extract messages masked
by chaotic carriers in the PC method using the Lorenz system without resorting to a



Tolerence of Parameter Variation for the Transmitted Sunspot Series
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Figure 16: The normalized mean square error in the recovered sunspot signal is shown
as a function of the percentage of variation in Rossler parameter a.

non-linear receiving system. The method is based on the partial reconstruction of the
dynamics using some return maps. By analyzing the evolution of the signal on the
attracting sets of these maps, the message can be extracted. The method is specific
to Lorenz oscillator case and can not be generalized.

The other method by Short [8] is more general and is based on the complete
reconstruction of the dynamics. In this approach the amplitude of the modulating
signal is assumed to be small and the phase-space of the chaotic carrier is recon-
structed from the transmitted time-series using the standard embedding technique.
The chaotic time-series is predicted by noting the flow of nearby trajectories in the
embedded space. Then the fourier transform of the difference between the predicted
series and the actual transmitted series is taken and a comb filter is applied. This
fourier spectrum now reveals the modulating signal. The technique works well when
the modulating signal amplitude is small. If the amplitude of the modulating signal
is large, the phase-space structure of the carrier gets greatly altered and it is not be
possible to get a good delay embedding of the carrier dynamics.

Next we try to decode the sunspot signal from the corresponding transmitter signal
of the APD method of communication using the local linear approximation [8] for the
state space reconstruction applying the standard embedding technique. We find that
the single step predictions (with prediction step § = 1) for all the points within the



transmitted signal are very accurate. In other words the error signal does not reveal
the identity of the message signal. The error signal is also found to be almost zero
even for other prediction steps S = 2 and § = 3. Similar results are obtained for other
signals. It thus suggests that the local linear approximation method may not work
for decoding the message signal in the APD method. It may be worth remembering
that the most important way the APD method of communication differs from other
methods is that the message signal is not just externally added to the chaotic carrier
signal but it forms the part of the transmitter system and is dynamically embedded

in the transmitted signal.

7 Some considerations of hardware implementa-
tion

In order to build the operational communication system in real time it is essential
that the process of encoding the message at the transmitter as well as the process
of decoding the same at the receiver should be performed as fast as possible. This
can be achieved by implementing the system in hardware [2, 9, 10] (A note-book
PC may also work equally well.) One would, thus, design an appropriate analog
circuit implementing the chaotic system equations used in the transmitter and the
receiver systems of the communication system. However the implementation of these
equations with an electronic circuit is not always straightforward. The foremost
difficulty is often caused due to wide dynamic range of values assumed by the state
variables in the equations. These values, in turn, exceed the reasonable power supply
limits. This difficulty can be eliminated by transforming the state variables into a
set of new variables whose values are now confined to suitably small and similar
range. The set of equations using the new variables can be easily implemented with
an electronic circuits.

The circuit implementation typically has some widely used standard components.

It would invariably contain operational amplifiers and associated circuitry to perform

- the operations of addition, subtraction and integration. The non-linear terms would

" be generally implemented using analog multipliers. The parameters of the system

~ could be varied by adjusting the corresponding resistors so that any parameter can

be varied independently. The circuit time scale also can be adjusted by changing the
values of the associated capacitors.

Tn order to verify the chaotic behaviour of the circuit, there would be an analog-
to-digital (AD) data recorder system which can be used to sample the appropriate
circuit output. If the properties of the sample are similar to those for the signal
obtained by the numerical simulation one can then say that the performance of the
circuit and the simulation are consistent.



8 Summary and conclusions

Application of chaotic dynamics to communications has been studied mainly using the
property of synchronization. It is known that two identical low-dimensional chaotic
systems would, under certain conditions, sunchronize if one of the variables from the
transmitter system is used.to drive the receiver system. In a typical application, a
large amplitude chaotic signal at the transmitter is used as a carrier which masks
the relatively low amplitude information bearing signal added to it. The actual in-
formation bearing signal can be recovered at the receiver by removing the carrier
signal generated by the synchronized receiver system. Various methods of synchro-
nizations and their application to communications have been briefly discussed. It
has been found that the method of communication based on the synchronization of
active-passive decomposition (APD) of the chaotic system is very accurate.

We have focussed on the APD method of communications using different chaotic
systems and their combinations viz. i) Rossler system ii) Lorenz system iii) Cascaded
identical Rossler systems in series and iv) Parallel heterogenous system consisting of
Rossler and Lorenz system. The idea is to study the relative merits of the systems
in terms of shape of the transmitted signal, extent of masking of information signal,
errors in recovered signal and power spectra of original and recovered signals. In our
exercise of computer simulation we have used these systems to communicate three
computer generated and two experimental time series signals. In general we have
found that the transmitted chaotic signal very well masks the message signal and the
accuracy of the recovered signal is quite high. However short signals such as annual
sunspot series consisting of sharp peaks and valleys requires additional smoothing
before it can be masked completely in the transmitted signal. The objective of using
the cascaded identical systems and parallel heterogenous systems is to generate hy-
perchaotic transmitted signal for carrying the information signal. It is expected that
such signals would be difficult to decode and hence are desirable for secure communi-
cations but at the same time they would have relatively low accuracy of the recovered
signal. We have also studied the effect of additive noise in the transmitted signal and
variation of parameters of the chaotic systems on the accuracy of the recovered signal.
It is found that the tolerence for the noise is about 3% and that for the parameter

variation is about 5%.
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