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HOW AND “HY ABOUT MEM IN SEZ‘TRAL ANALYSTS ~ PRACTICAL
CONSIDERATIONS

: - D.R. Kulkarni & $.K. Alurker
Physical Research Laboratory, Ahmedabad 380 009, India

Abstract

.The importance of power spectrum snslysis of stationary
signeals in extracting correct and minute details of spectral
contents from a data sequence of a finite length is well-
recognized° There hag been an‘impressive de%elopment in the
methods of spectral analysis due to the ever-increasing demand
for pr601se and highly resolved spectral information. Beginning
from the conventlonal method of spectral analysis by Blackmann-
Tukéj; whioh_yields low accuracy and low resolution spectra
Slnce they are estimated from autocorrelation functions (ACPs)
of zgro~extended dats “seduenoes, high resolution spectral
 methods, usihg maximum entropy_approacb,_bave recently been
developed. The latter is equivalent_to least-square fitfing :
of a discrete time all-pole model to the data of a random
process. In maximum entropy approach, the ACFs are egtimated
on the basis of their value at lag zerb? and then the subsequent
ACFs are computed using the valuéfétégéro lag together wifh the

previously estimated A(E using~tﬁé priﬁbiple of maximum entropy.

In this report, we ilrst present a qualltalee comparison
'3Detween the Blackmann~Tukey and MEM methods. -This is followed

by a detailed discussion of the all-pole model with recursive



filter design using an essential and basic set of mathematicgy

formulae.

Ve show how in the Burg’s MEM the ACFg are estimated in g
way different from that used in the sll- ~pole model Iollow1na the

«
§

Levinson’s recursive procedure.

It is very important to aoourately_ohooee the order of the
filter as it determincs the accuracy and resolution of the
epeotral eetimateso- e preeent the various conclusions arrived af
by different workers in this field. It is shown that the accuracy
of Speotral eStimateS also depends on the data length in comparison
with the periodicities of the phenomens and on ‘rounding errors

caused due to finite word-size.

To overoome these difficulties a new elgorithm,‘oalieo'
Least Squares (LS) 11near nrodvotlon has been oeveloped byl
Barrodale & Brlokson° we present resulfs of compﬂrﬂtlve studv
of the Burgfs Mbﬂ and L3 method made using real data a of 10 cm
wavelength solar flux valuee for the ieet 34 vears.' Tt was
concluded thet it ig rather dlfflcult to make oorreot speotfal ;

stlmatee from a set of renl data’ nav1nﬂ length less than the

Period of phenomenon under oonsuleratlon°

In Appendix I, we present the Levinson's algorithm for
neolving linear simultaneous equations. A general description
of the oomputer program for the Burg's mcthod is outllned in

Appendly II.

Keywords : Spectral enalysis, stationary signals s Maximum Entropy
Method, A11~pole model Levinson rocur 3ive procedure,
L«o°+—5quore linear preoloulonv :
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-Whaf’is'Spectrél analysis?

Put simnly, it is & proceég of estiméting spébtral featﬁres s i
oohtained in a given data sequence emanated from a'stationary
source. There exist an infinite number of such Sequences for a
given spectrum, provided these sequences have the same auto-
correlation function (ACF). For example, the sequenoeé represent-—
ing an impulse function and random noise yield an identical flat
spectrum since they have the same ACF which itself, is an
impulse. In general, any Sequence and its complex conjugate
time reverse share the same ACE and spectrum. Thus, it is
imperative that the ACF of a data sequence should be known:
preoisely to:estimate its spectrum which oomparés_well with +the

tﬂMESpQGMﬂm.

1

1. - Comparison of various spectral mebthods:

There_are two well=known methodsvof_spéotral analysis;_

(a) Blackmenn-Tukey and (b) Past Fourier Trensform (FFT).

(a) BlaokmanhnTukey‘Method:

This mefbod requires computatioﬁ of ACF using a zero—exteﬁsion
Of a given data sequence. Consequently, this ad hoc extension
of data gives unrealistic estimates of ACF which, in turn, limit
the accufacy ard resolution of the estimated spectrum. However,
an improvement ‘n the resolutionAéan be effected if the ACF ig
evaluated by dividing the sum of lag-products by the total number
of points rather thah by the totai number of lag-products
(Radoski et al., 1975).
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Thig method is based on a periodogrem approach which
assumes that the data sequence is periodic, one period being

equal to the dats length. Here the dete extension is made by

o

ugsing the same data; eand hence the ACFEF ieg nol accurately
estimated.

It may be noted that both these methods of spectral
analysis suffer from the drewback that the accurecy of thelir
‘gspectral estimates is much low when the expected periodicities

are comparsble to the dats length.
c) - MEM:

In information theory, the total information content of a
system is related to the probability distribution of various
events occurring in it. Purther, entropy is defined as the
average information per unit time. A4s probability represents
the uncertainty of the phenomehon, the éntropy is a measure
of the uncertainty-im the system. Lccording to the maximum
entropy principle, the uncertainty (entropy) in the system is
maximized w.r.t. the unsvailable information, so that 5n1y thé'
available information is-used to extract various quantities from
the.sysﬁem. In the case of speCtral enalysis the spectral
eéﬁimates are derived using ACFs obtained from aveilable data
from a system in which the uncertainty is maximized we.r.t. the
‘unavailable ACFs (dbtaiﬂed using.data extended beyond the

available data). Thus , these spectral estimates are independen’t
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of the extendéd unknown datav(Smylie;zt al., 197%)« It has been
shown (ven den‘Bos, 19713 Ulrych & Biéhop, 1975) that the maximuml
entropy apprpach is equivalent 50 ieast squars fitting of a
discréte time gll-pole model to the 6ata of adféndom process.
The ACT estimates by this method are made using the knowledge
of its value first at_zero lag, aend then subsequently by using
the véiue'at=zero 1ag.togethef with othér estimates evaluafed
previously. In all these successive.oomputatidns of ACF the
'entrbpy function is maximized . ‘This results in higher spectral
accuracy exnd resolution than those obtainable by the other
methods . o

@héAallwpolélmddel'in”reality involves designing a
recursive filtér‘(Kulkarni & Alurkar, 1980) which yields
a flat spectrum for aﬁy input data sequence. As this approaoh
, ié intﬁi%ive1y more7appealing_ﬁhan.the ent;opy maximiéatioh
abproabh, we shall adopt the filter desigh approach of the

all—pdle model for further discussions .
2. All~pols (autoregressi&e, AR) model:

In this model, a data point s, is considered to be the
output of a system with some unknown input U, such that the

following relation holds:

2 4
S = - 2._ 8 .8 + G 2 b .,
n - k*"n-k 1 17n-1
bO:1 . - . :':‘oqoo(’])

NS
- N 1

where ay , 1 <ok < ops by 1K 1 < 'q ‘and gain G are the

parameters of the system (Makhoul,‘1975).A The output 8. is a
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‘linear combination of past outputs and present and past inputs
In othcr words, 5 ig o prodictable signeal point from past
outputs znd present end past inputs. Hence, this model is also

known as Lincar Prediction model.

In frequency domain, eqn. (1) can be written by taking

z—transforms of its two sides. Thus,

e}
. : S -1
S(z) 1+ =5, b,. g —
H(z) = —r— = G . oo ceeaa(2)
U(z) P T
: : 1 T >j_ as. e' 7
_{?1 Kk
e
where S(z) = 2 S z 1 ceeon(3)
n = —oz

is the z~trensform ofvs , U(z) is the z—transform of u . and
H(z) is the ceneral pole- ZeT0 modcl hl is the transfer

function of & recursive flltcr reprusented oy ean . (1)

The roots of the numerator and denomineator of the polynomial
in (2) are the zerosand poles of the model respectively. Two
50@0131 cases of the modcl are of 1nterest (i) =ll-zero model,

where 8 = O for 1 £ k 5& . Thls moacl ig known as "moving

average model" in statistics; (ii) all—pole model, where b1 = 0 ,

14£41L4q 5 this is known as “ﬁuto~regre sgive (AR) model".
In the all-pole modcl, eqn. (1) takes the form:
_ D | _

= é;; By Sk + G Un . uqu,(4)

and the transfer function
G | L (5)

H{z)



-
Thus , thé prohlem’is to'design a linear prediction filter
whose tremsfer function is H(z). In practice, the inmt u, is

generally unknown and, therefore, the output Sh is only‘a

A}

linear combination of past semples. The co-efficients a, in.(4)
} : . k

can be obtesined by the method of least squares.

S - (6)
Ile-t sn == - Z: ak . Sn-k ¢o 0 00 .
: k =1
be an approximation to Sy o Then the error between the actual

and predicted s is given by

n
5 s (7)
en :': Sn - Sn = Sn -+ 1{2‘_;_1 ak . Sn'—k ©co0 o000 e 7
Tet T =S _2= 2 (s +,,P a .5 )2 voeoa(8)
4 ®n R kL;'1 k' n-k *

be the total squared error. According to the least zsquared
method, we minimize E w.r.t. the coefficients 8y by setting

b g
S a.

l “

=0, for 1< 1€ p ceneel(9)

From (8) and (9), we obtain a set of p mormal equations with

P unknowns:

P , — .
> a, 2 S s . ==/ _~%p Pn-i :
L2 . S /_~®n Pn-i L os .
Tl k 7 B k  n-i S 18 1S AP o0s.(10)

Solving‘theée equations, the coefficients Gy are obtained.,

The minimum sqguared error, Ep, will be

p . _ o
.Y 2 S a2 8. . S i Caeeee(11)
Ep = §E- 8, + % = 1 k o n n-k - o
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1)<,penc~11'1(T on, thu range Of 8, Gsed in (8), (10) and (11), two

methods cen be used bO drt*rane the COeiflcleﬂb& alz
S D¢ c

) ﬁutocorlulgtlon methods —

. . Here the range of . n is glVin by

~oQ(n{og. Hence, cun- (10)_und (11) become

kf;f1=ak=3 (i-%) = - R (1) RS <7 vee.o(12)
b
ma B = Blo) + T &y + BIE (1)
P ko o="1
> _ '
\V‘:lere R (i> = Z-,— Sn ° Sn+i ’ ] o © 0 0 0(14'>

N= —4.
is the ACF of the signal 8, -
b) Coveriance methodz:

Here the error is minimized:s over o finite interval

(0 n <L N-1) of n. Therefore, eans. (10) and (11) reduce 1O

\Z.. s 4ﬁk1 = ~For : cosa(15)
5 B _ .
! P v"a ° b .. s ‘1 s . ounu(”‘6)
3 = > -
yhere C?’ik ﬁgb Sn~iz° Sh Xk

is the covariance of the signel Sn in the.given interval°

The filter parametefS 8y can be obtnlneu by solving eqns .
(12) (13) or (ﬂﬁ) & (16) The stability of the resultjng

filter trensfer funchlon H(z) is guaranteed in the auto-



e
correlation method,bwhereas it is not so in the case of the
covariance method. TPurther development of MEM by Burg (Burg, 1967).

ig also besed on sutocorrelation method. Hence we shall confine

our discussion to the autocorrelation method.

Ag shown earlier, parameters a, éan be evalusted using
eqn . (%d)v Thus, in order to design a filter with H(z) as its
transfe£ function as shown in eqn. (5), we need to estimaté fhe
gain paremeter G. VComparing eqns. (4) end (7), it is seen that
the input signal Uy that will result in the signal s, as output,
is thet where G U, = €,- Thus, the input signal u, is proportional

to the error signal e Therefore, the total energy in the input

no
signal Gu, is equel tc the total energy in the error signal e,
given by B, in egn. (1%) . Assuming that the system model is

energized by an input signal of the form of either stationary

white noise or of en imwilse function, we get,
0 B :

Py

- E_ = R(o) + 2- % . R(k) eee (1)
P o= :

Further, to obtain the crefficients 8y, We rearrange eons. (12) &

(13) thus, _
& ) (18)
R. Z:‘_ & . R,‘k = E ¢ o0 oo 18 .
Blo) + oy Tk P o7
p
and R(i) + T . a - Ri-k) = O cees(19)
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These can be written in the metrix form, called Toeplitz matrix,

as .
R - R R _1 P 1 1 (—‘ A -S
0 1 2---P P
. : ) . . ‘ S0 | _
f\’_‘] ];DO . .I.\'{,| — }'»?-p__al a"’] ‘ — \ ; .’050(20)
| | n [ : N :
R, Ryq Ry By op | 19 |
ohore the coefficients 1, Byseenee <&y, CEM be considered as the

constents of the prediction error filter”.. These equations
can be solved very efficiently by the Levinson's recurssive

‘procedure described in Appendix I.

%, Reigtioﬁ.oj the filter cométants o the input sbect;umg'
From egn. (2), we have -
$(z) = H(z) . U(z)

for the agsumed forﬁzbf theAinput‘Sigﬁal, its spectrum U(z)

is constant which can be mede equal to unity.

Hence, S(z) = H(z) = 1%27 o ceeoa(21)
_ D )
where A(z) =1+ T & « 2 K jg called an "inverse filter".
k=1 R .
2
M ' ' '\J .G
e o Sz(w) = P() = “A(ej(,_>>\ 2 _ voeen(22)
Taking z—%}ahéform of cgm. (7), we get
E(Z) = J"L(Z) ° S(Z) ﬂuulu(25)

where B{(z) is the gz-trensform of A
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. e .é R \E(QJUJ)\ |
oo B(w) = 85(w) = l.j\_(zej@)‘ 5 Ceeess (24)

. . comparing (22) and (24), we have

\

ec = ‘ B(ed™) | for all & . This means that the
S output error gpectrum is approximeted by a flat spectrum. Hence,

the filter A(z) is known as a "whitening filter'.

Ls éoen from egn. (22), the estimated power.épectrum igv
imveréeiy pfoportional to A2(z)n As a result, even &ery Nnarrow
speofral peaké can be easily resolved. ' Hen¢89 the edge of
$his spectral method over other .methods for obtaining high
resolution Specéraa However, even a small change in the filter
coefficiermsrﬁéy change the parsmeters of the peaks considérébly.
It is therefore absolutely necesszry that the computétibﬁs ére

. performed with high precision.

According to Parceval's theorem, the total error to be

minimized in fregquency domain is given by

oa - m
-~ 2 1 Joy | 2 -
R R TR
> -Tr
Using eqns. (22), (24) end (25) we get
2 ™o,
e J PO gy conl o (26)
2LTT =
7 o P(“>

Thus, minimization of B amounts to minimization of the

integrated ratio of the sighal spectrum P_(GQ) to P (cp),
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~ S : A - _
As ?*9 = P (w) -» P (W) . In other words, any
spectrum can be clogsely approximated by an all-pole model.
In general, it can be shown that the estimated spectrum by -
an all-pole model fits the peaks in the signél~spectrum better

than the zeros in that spec%rumo' Thus, a model spectrum cen be

a good estimate of the SpeCﬁraI envelop of the signal spectrum.

4. Burg's Maximum Entropy Methods

Unlike the all-pole médei,_the estimates of ACF by this
method are made in a different way, but are consistent with
the maximum entropy principleﬁt However, thesc estimates a}é;

anof-usually oomputed direetly in the evaluation of_fiiter
‘coefficicuts.. Aﬂyingenequs use is made of the Levinéén‘g
recursive procedure in the Burg's method. TFor exaﬁﬁie, to

solve a (3 x 3) equetion such as

T, T, T, 1 v
T, Ty r, al = O | eeess (27)
I'2 r1 ro__ aé. 0 -

We need to know according to the Levinson's method solutions to

‘equations

- a  ee.e.(28)
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so that

1 o |
|

. a4 = ¢ e o eess(29)
?

a2 ~1 _

"in the Levinson's method, the estimate’bf'rg ié;rquired'l
$o fihd the value of ¢ (vide Appendix I). "On the contrary,
Burg éoés not assume théyknowlédge of Tp e Conséquénfiy;ﬁthéfe
will bc four unknowns end three équafibns from (27) . Burg.éolées
this diffﬁéﬁf%y by minimizing the error by éoméiaeiing ﬂgth .
forward snd backward predictions. Thus, he minimizes
é

-

-__t + 9.1 oX_t_-,| -+ a2 °X-t=_2 ) -."b

.!\/‘Z

cL
il
no

E(aqy,az) =

o 2 .
o= Lo ] ‘ ' (30)
- } )’;._t_z + EL‘ WX1 _31 + az}_,t o 8 ag¢ 3
where the first fterm in the summation is the forward. prediction
error snd the second term is the backward prediotion erYor.
Using (29) and (30), one can rew;ite'(BO).as |

E(e) = S ?xt+axt_1 - claxy 4 + Xtﬂz) ‘

\Z

2
" | Xpp * éit—1_'?(é§t~1.+§t) | - ‘“Ti<31)



~14-

It can be shown that after minimization of E(c) w.r.to ¢,
we get V

ST - -
2 L (x4 o+ amxy o) (xg + Xy q)
Is) — e . - . ‘oaaﬂe(32>
3 2

(Ryp + 8 %y )" + (xy + 8 xy_,

It is casy to see from (%2) that the coefficient ¢ 1 and

uses only the available data. Xnowing c, the solutions for

(% x %) set of equatioﬁs can be obtained from (29). In his
meﬁhgdy Burg has made use of the important fact that the Levinson's
procedure.guarantees a_stable (minimum phase) filter. The
evaluétion of ¢ based oniy on the available data points is

equivalent to estimating the LCF. In the cese discussed zbove

the estimated r, will be
oV -ra o A »
1'2 : mm?“mm . oouoo(33).

In conclusion, the Burg's method cen be used to evaluate
a general filter with n coefficients (1, a5, a2.oaQo,an)- The
general formulac for evalunting these coefficients are given

Y

by Anderson (Anderson, 1974).

5. General discussion about the number of filter coefficients
and resolutions

It is very crucial to make a correct choice of the order
of the filter for accurate spectrel estimates. In general,

the spectral resolution increcescs with the order of the filter.
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There seem fo‘éiist tworschools¢of thought regarding the actual
order of the fiiter? According‘to on¢ §Ul;y9b4& Eishop, 1975) ,
there is an optimum éize of the filtgf beyoﬁd w?ich”sbéétral
estimatés will ﬂotrbe accurate. vVariouS criteria‘paveAbeen
given to find the optimum sizé of the filter. Accordiﬁg to the
second (Radoski ct al., 1975) there is no harm in having é
filter with lerge number (80 to 90% of the data points) of
coefficicnts, provided that an integrated powef SPeptfﬁm is
oomputed; It may be noted that the varignce.of tbe integrated
~ power spectrum is much smaller than that of fhe siﬁgle'ﬁower

spectrum estimate.

In principle a;synthetic signal with N'numbcr of peaks
should require a filter of order N. ,Bdf iﬁAtbis céée,.the
experience -shows that the peaks are ﬁot very precisely located in
the MEM Speotrum, However, in the.presence of noise in tﬁe'
signal the éame.péaks are ébcurately located. This is duc to
the fact that the MEM is in reality a stabistical fitting
probedure, This is also true for real signals with high signal—

to-noise ratios.

To summarizc, as p<a<m4jp(m)’?'?(“)ov However, in
practice, it is neceséary tQ decide the optimum value of p without
losing importapt spectral features. ‘A large value éftp'Aingreases
the computations togethér with the possibility of ill—éondifioning
of the normal equations. A practical test for gettingAéh obtimum Py
>is to sece that the aror curve becomes almosf flat for'p > Py

(Makhoul, 1975).
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- Our experience wi th the MM shows that the criteria of
getting an optimum filter size often are not‘effective, In fact,
they give too small a filter size for the spectral resolution
to be adequatef _On the other hand, the spectrum gets stabiligzeq
as the filter size increases in agreement:with Radoski's finding
(Radoski et el., 1975). We found that a filter Sizg of 30 to 509
of the Qata_points is adequate to yield gatisfactory spectral

resolution in many practical cases.

It is also shown that the accuracy of the spectrum depends
~on the phase of the input signal (Pougere et al., 1976). If this
is so, it may introduce an element of doubt'regarding the
accuracy of spectral estimates in case of real date, whereim the

phase of the signal is often unknown.

is stated earlier, most of the methods of spectral analysis
do not give accurate spectrel estimates when the data length of
real signal is compareble to the periodicities of the phenomena
~under considerstion. Although the MEM gives relatively better
results for a given length of date, this is rcstricted to the
data length of the order of one period of the phenomenona For
shorter data lengths, the spectral estimatcs tend to be inaccurate.
In general, for smaller data lengths the order of the filter |
required is relatively quite large.

Another adventege of MEM is that it does not require
windowing of the date serucnce to be anslyzed. In conventional

methods of spectral analysis, any truncated data length calls
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for both Windoﬁing'énd.eitenSidn in some ad hoc mamncT. Oni the
one hend, Wihdewiﬁg reduces’thc speetral resdlution, wherees,

on the other hand, cxtension of data reduces thc accurecy of the
spectrum. In MEM, there is no ad hoc extension of data since the
re@uired additiohei date points are predicted. Hence, MEM does

not require windowing as well.

RécemtlyAa‘new algorithn called Least Squares (LS) linear
prediction for spectral ﬁnalysis has.been suggested (Barrddale &
Erickson, 1980a) to overcome the shortcomings of the Burg's
methody ffizo inacourate spectral estimates of short data samples

H
i

and contemination of results by rounding errors.

Ve have testedvthis method using the FORTRAN Program
(Barrodale & Erickson, 1980b) tdgether with the samplé data
provided by these authors.. For this data, Burg's MEM'alSOEWaS
t;igd} It was found that both these methods could aoouratély
resolve the periodicity for which the data length’correspbnded
to 1.5 times the periodicity; whereas, foriano%hér periodicity
for which the date length wes only 0.23 times the periodicity, the
' MEM gave a wrong estimate amd the LS method geve a correct spectral

catimate.

Suoh e comparative study of these two methods was made using
the resl date of 10 cm wavelength solar flux values over the last
34 years. It is well known that this quantity has a periodicity

of 11 years end thus our test data contained three cycles of the
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“solar activity. Both the methods gave accuratc periodicity of
11 yeafs for the entire data iength. This exercise was carrieg
out for various data lengths. When the latter became shorter
then one cycle of the phenomenon, both the methods failed to
yield accurate periodicity.

Tn conclusion, it is rather difficult to extract correct
spectral information from a set of real data which contains

less than one cycle of the expected periodicity.

The general description of the computer progrem of the
Burg algorithm and a broad ocutline of its various modules

are presented in Appendix IT.
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lppendix I . . i

Levinson's algorithm for solving linear simultaneous
cquations: |

Standard computer algorithms for solving N simﬁltaneous
equations require timec proporticnal to N'3 and computer memory
proportional to NZ, Levinscn computer algorithm for Toéplitz
matrix requires.timc proporticnal to N2 and memory ﬁrdportional
to N. The Toeplitz matrix is & symmetric matrix with. all
diegonal elements identical. Lévinson utilizes_this gspecial
gymmetry to dovelop a fast method for Solving'limear gimultaneous
equations. This is a recursive mcthod sc¢ that given a solution
to the (k x k) set of cquations, it is possible to find a
solution to (k+ 1) x (k + 1) set. PFirst a solution to k = 1 is
obtained. The solutions for higher k ere obtained by increasing
ik;bﬁ 1 at each stage using o set of formulsc to be derived here.
Before dealing with the gonefal cese of ( n x n)-équations, we
shall show how the recursion works in going from ( 2 x 2) to
(3 % %) set of couations. The given ( 2 x 2) cquations and their

solutions are represented as follows:
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Now, given r, we define a2 quantity e as follows:

. — S
o : [

ro r1 ;2 1 _ v
T To Ty g1 = © s+ee(2)
Ty r1 r, 0 L_ e B

The last row in eqn. (2) defines the quantity e.

Our aim is to find a solution to the set df (%3 x 3)

equations given belows

‘ '
o 1 o >— !
I'1 ‘rO r1 = 0 000-!0‘(3)
I'2 r'i .-ro . ?

'The importent trick is to reverse the order of rows =and

columns in all the three matrices in egqn. (2). Thﬁs,

— T T T
I‘O I',l I‘2 0 e
r1 ro I~1 a1, V:: O .5050(4‘).

Note that the square matrix remains unchanged.
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The Levinson recursibn bonsistS'of subtracting an unknown
portion c, of eqn. (4) from egqn. (2) so as to get the results (3)s

fw ro ' ’r1 T ‘ Xe1 1 W_o‘” ‘ (/(_G i T'e-d—]
. \3:}

a, .-02I a, 0 =Co 0 -ca(5)

r2 r1 ro~lv Lo' ’ 1 ) e-. L,V

— u—

Comparing RHS of eqn. (3) and (5), we get

v =7V - cye v .. (62)

and e = CoV ceooo(6D) -

il

Teop = e/v

' )
and v¢ = v-(ef/v) = v(1—¢f/v2> ‘ veeed(7)
Thus, the solutions to (3 x 3) equations are

al = a

1

aé = -e/v

It may be noted that as v end v' be always positive for all
values of the order of the filter so that the resultant filter

is always steble. Ve see from eqn. (7) that

-1 Lefv L+ 1
Hence, \02\ is always less than 1 for any intermediate value

of 5Ck‘ , where k varies from 1 to the order of the filter.
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inbfaCt; these values of ¢ provide a built-in check for the
stabiiity of the prediction error filter. ‘Tncidentally, a
small word-length and other round-off errors in the computer
cause inaccuracies in ry which, in turn, make the filter unstable.
The above procedure can be generalized’by a set of formulae

given belows

vV = r

o) o A
i-1 .
cy = [Ty + S a.(1_1). r(i—ji:} / v(i-1)
. ] 3
o
(1)
(1) (1-1) (i-1) . . ,
By T mep ey o 1< & (1-1)
_ 2N
vy o= (1 Ci/ V4
where 1 = 1, 2, esee.c.n and j =1, 2, cessssfle In géheral,'

n recursions are necessary to solve the (n+1) equations.
The output is the series of coefficients a, (1 = 1 to n)

- and v, (Levinson, 1947) .



. Appendix IT

GCeperal description of the computer package for
obtaining spectral cstimates by Burg's method:

B A software package has'been developed»baéed on the
recursive procedure given by Andersoh (Anderson, 1974 ) .
Thé package consists of various modules listed belows

" i)  ©SUB. BURGSP

ii) SUB. STDVAR

iii) SUB. ORDER
iv) SﬁB, BPEF
v) SUB. LPEF
vi)  SUB. FINDEK
vii) SUB. PWDINT
viii) 5UB. PLOTT
ix) FUN., FPW
x) SU3. THTGRL
xi) FUN. SIMSON
xii) SUB. AUTCOR
xiit) SU3. FACTAC

L given data sequence 1s first converbted intc a: -
sequence of sfandard variates.so that thé mean total input
energy is equal to unity (SUB. STDVAR) . According to the
Parseval's theorem, it then follows that the outpﬁt power
or the area undef the spectral density curve must also be
unity. This serves as a check on the overall computation of

the spectral estimates.
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The order of the filter.oan»be specified by thc user or
he can estimate it by using thé Akeike criterion (Ulrych &
Bishop, 1975)‘thfough-the subrodtine ORDER ahd subroutine
PLOTT,

Then the Burg's method is used to estimate a spectrum
with the specified resolution (SUB.BPEF). This is followed b&
locating various peaks that may be present in the spectrum
(SUB. PINDPK, FUN. FBW). A search for locating the exact
position of a peak is then carried out following Radoski's

procedure (SUB. PWDINT, SU3. INTGRAL, FUN. SIMSON).

This package also includes the modules to be used for
evaluating spectral estlmates by the all—pole model (MEM
without Burg's modification) using Levinson's algorithm

(SUB.LPEF, SUB. AUTCOR, SUB. FACTAC).

The subroutine BURGSP calls the above modules to make
spectral estimates either by the Burgts mcthod or by the all—?ole'
model. The main program which calls the sub;outinefBURGSP, A
requires the following main inputss | .

a) the number of deta points and théir Valueé

b)  the time intervel used for sampling .

c) the order Qf the filter |

d)  the spectral resolution required

¢)  the control parsmeter to decide whether the Axaike’

criterion ig to be used.



