
5 119

Python-Based GUI for Real-Time Digital
and Analog Signal Monitoring Using NI
USB-6363 DAQ

Kush Shah, Aaditya Sarda

PRL Technical Note
PRL-TN-2025-119

Python-Based GUI for Real-Time Digital and Analog
Signal Monitoring Using NI USB-6363 DAQ

Kush Shah*1, Aaditya Sarda**2
Received 25 April 2025; revised 21 Jul 2025; accepted 11 Aug 2025; published 26 August 2025.

Abstract
This technical note presents a Python-based graphical user interface (GUI) designed for the real-time acquisition and intuitive
visualization of both analog and digital signals using a National Instruments (NI) USB-6363 data acquisition (DAQ) device. By
leveraging open-source libraries, including PyQt5, pyqtgraph, and nidaqmx, the system enables seamless multi-channel signal
processing with precise control, high sampling rate, efficient data handling, and responsiveness. Designed with the open-source
modular architecture and advance multithreading technique, the GUI ensures low latency performance, making it highly scalable
and adaptable to diverse application needs. The system has been rigorously evaluated against industry-standard equipment,
demonstrating robust performance and accuracy compare to commercial oscilloscope.
Keywords
NI USB-6363, Data Acquisition, Python, GUI, Real-Time Visualization
1Devang Patel Institute of Advance Technology and Research, CHARUSAT, Anand
2Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad
*Project Trainee: kush300603@gmail.com
**Corresponding author: aaditya@prl.res.in

Contents
1 Introduction 1
2 Technical Objective 2
3 System Architecture 2
3.1 Hardware Layer . 3
3.2 Software Layer . 3
3.3 Data Processing and Control Flow 4
3.4 User Interface Layer . 4
4 Implementation Methodology 6
4.1 Acquisition Thread Management and Execution 6
4.2 Real-Time Data Flow and Synchronization 6
4.3 Buffered Acquisition and Memory Optimization 6
4.4 User Interaction Control . 6
4.5 Error Handling and Operational Stability 6
5 Performance Evaluation 7
6 Discussion 9
6.1 Comparative Evaluation with Existing Tools 9
6.2 Scientific Context and Broader Impact 10
6.3 Error Margins and Limitations 10
6.4 Platform Compatibility and System Configuration . . . 11
7 Conclusion 11
8 Future Scope 11
9 Acknowledgment 12

References 12
Appendix A 12

1. Introduction
Signal acquisition and analysis are fundamental require-

ments across domains including electronics, telecommunica-
tions, embedded systems, and scientific research. While high-
end commercial oscilloscopes provide exceptional performance
and advanced features, they often fall short in flexibility and
customizability due to proprietary interfaces, limited on-device
data processing, and long-term data logging constraints. How-
ever, hardware devices like National Instruments (NI) Data
Acquisition (DAQ) systems offer high-speed, multichannel
signal processing with exceptional capabilities for capturing
high-speed digital and precision analog signals. The potential
of these sophisticated DAQ devices is often limited by pro-
prietary software like LabVIEW, which can be costly, com-
plex to learn, and offer limited customization options. Recent
advancements in Python-based instrumentation frameworks
have further validated its suitability for high-performance, real-
time applications. Studies have demonstrated successful im-
plementation of Python for data acquisition, signal visualiza-
tion, and instrument control in both academic and industrial
settings (Hughes, 2010; Koerner et al., 2019; Martins, 2023;
Akam and Walton, 2019; Jäger and Gümmer, 2023). In this
technical note, we present an open-source Python-based graph-
ical user interface (GUI) that integrates seamlessly with the

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

NI USB-6363 DAQ, enabling real-time signal monitoring with
exceptional accuracy and ease of use. By utilizing open-source
libraries such as PyQt5, PyQtGraph , and NIDAQmx, the sys-
tem provides a flexible platform for visualizing and analyz-
ing a wide range of waveforms, including sine, ramp, pulse,
and square signals. It also enables users to measure various
key signal parameters such as voltage amplitude, frequency,
and time period. This solution breaks through traditional pro-
prietary limitations, empowering students, researchers, and
industry professionals with a robust and accessible tool that
interfaces advanced hardware with customized research appli-
cations. By critically evaluating the limitations of the existing
tools and technologies, we define the specific problems and
present a scalable, user-friendly solution that balances perfor-
mance and accessibility.

2. Technical Objective
The objective of this work is to develop a modular, Python-

based graphical user interface (GUI) for real-time, multi-channel
analog and digital signal acquisition, visualization, and pa-
rameter analysis using the National Instruments USB-6363
DAQ device. The tool is designed to serve as an open-source,
cost-effective alternative to commercial oscilloscopes and pro-
prietary data acquisition software, with direct applications in
satellite payload checkout systems and laboratory testing en-
vironments.

3. System Architecture
The system integrates data acquisition device with the Python-

based software stack to enable real-time signal processing, vi-
sualization, and analysis. There are two separate GUIs for
analog and digital channel read to optimize the use and make
it modular, enabling 16-digital input lines and 4-analog input
lines for their simultaneous operation, respectively. Visual-
ization and analysis are performed on a desktop PC equipped
with Python and the necessary open-source libraries.

Figure1 below illustrates the overall architecture of the
real-time analog and digital signal monitoring system devel-
oped using the NI USB-6363 DAQ, Python, and a graphical
user interface (GUI).

Figure 1. A general block diagram of the system

Figure 2 shows the software architecture block diagram.
The system uses the NI-DAQmx Python API to interface di-

rectly with the NI USB-6363 hardware. Dedicated acquisi-
tion threads for analog and digital inputs run in parallel to
capture real-time data. This data is forwarded to the Signal
Processing module, which computes key parameters such as
rising-edge detection, RMS, and peak-to-peak voltage. The
processed results are routed to two outputs: the GUI layer
(developed using PyQt5 and PyQtGraph) for real-time visu-
alization, and an optional logging module that allows users
to save data in CSV or JSON formats for offline analysis or
archival. Users also have control over certain signal process-
ing parameters through the interface.

Figure 2. A software architectural block diagram

Figure3 below presents a visual representation of the se-
quence of actions and operations within the system, illustrat-
ing the overall program flow.

2/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

Figure 3. Program Flow Diagram Illustrating the Sequence
of Operations

3.1 Hardware Layer
The data acquisition hardware used in this project is the NI

USB-6363 DAQ, a research-grade device offering 32 single-
ended analog input (AI) channels and 48 digital input\ out-
put (DIO) lines, as shown in Figure4. For analog acquisition,
the device supports 16-bit resolution sampling at up to 500
kS\s for multi-channel operations, while digital acquisition
supports up to 4 MS\s for parallel inputs. To maintain signal
visibility in the GUI’s plotting pane, the system utilizes a sub-
set of the available channels:Port0\line0:15 as shown in Fig-
ure5, designated for 16-channel digital read operations, typi-
cally connected to external signal generators or logic outputs.
For analog channels, AI0 to AI3 are configured for continu-
ous acquisition at 500 kS\s, enabling the capture of low-to-
medium frequency waveforms ranging from −10V to +10V
The hardware is connected to the PC via USB, and screw ter-
minal connectors are used to secure input signal wires to the
DAQ device.

Figure 4. Image of NI USB-6363 DAQ

Figure 5. Figure NI USB-6363 Screw Terminal Pin Layout.
(Courtesy-

https://www.ni.com/docs/en-US/bundle/pcie-
pxie-usb-63xx-features/resource/370784k.pdf)

3.2 Software Layer
The software stack is implemented as a modular Python

application, utilizing a combination of high-performance li-
braries to manage device communication, data processing, and
graphical visualization. The PyQt5 library provides the graph-
ical user interface (GUI) layer, handling window layouts, in-

3/12

https://www.ni.com/docs/en-US/bundle/pcie-pxie-usb-63xx-features/resource/370784k.pdf
https://www.ni.com/docs/en-US/bundle/pcie-pxie-usb-63xx-features/resource/370784k.pdf

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

teractive widgets, and event-driven control mechanisms. Users
can configure channels, trigger acquisition, and visualize real-
time outputs directly through the GUI. At the core of hard-
ware communication is the NIDAQmx Python API, which in-
terfaces directly with the NI DAQ device. This layer is re-
sponsible for creating acquisition tasks, setting up channels
and sampling rates, handling timing and triggering configura-
tions, and managing memory buffers. The PyQtGraph library
is used for real-time data visualization, enabling high-speed
plotting of waveforms. It supports digital signal visualization
using step plots and analog signal plotting with smooth contin-
uous curves. Real-time interaction features such as zooming,
panning, and axis scaling are integrated to allow detailed sig-
nal inspection. The digital read GUI configures DAQ’s digital
input lines to capture logic states and compute signal frequen-
cies through edge detection algorithms. The analog read GUI,
which samples analog voltages continuously at high speed
and streams the data to the GUI for plotting. Each GUI runs
on its own processing thread to maintain responsiveness of
the UI and handle real-time data updates efficiently. This sep-
aration of responsibilities ensures scalability, maintainability,
and high reliability during continuous acquisition tasks. Fig-
ure6 shows the outlook of the analog and digital GUIs.

(a) Analog GUI

(b) Digital GUI

Figure 6. Overview of the a) Analog GUI and b) Digital
GUI window showing control panels, waveform display area,

and real-time measurement indicators.

3.3 Data Processing and Control Flow
The core of the system’s signal processing and acquisi-

tion control resides in the threading-based architecture imple-
mented using PyQt5’s ’QThread’ class. Two ’Acquisition-
Thread’ classes are designed separately for analog and digi-
tal modes. The GUI interacts with the NI USB-6363 device
through the NIDAQmx Python API.

For analog acquisition, the ’AnalogMultiChannelReader’
reads data from up to four voltage channels configured via
add_ai_voltage_chan. A continuous acquisition task with
a configurable sample rate (up to 500 kS/s per channel) en-
sures sustained signal capture, buffered by a double-length
internal buffer. Each acquired block is corrected with an off-
set to compensate for signal offset and analysed for frequency
measurement. Additionally, metrics such as RMS voltage,
peak-to-peak amplitude, min/max voltage, and period are com-
puted per channel, forming a parameter dataset for display.

For digital acquisition, the system uses ’DigitalMultiChan-
nelReader’ to read signals from 16 parallel digital lines. Fre-
quency estimation is based on the detection of rising edges in
the sampled bit stream. To ensure robustness, the algorithm
computes the median period of detected edges, filters out-
liers, and calculates the average frequency. This digital thread
dynamically adjusts the buffer size depending on frequency
to optimize acquisition performance and minimize memory
overhead.

Data is pushed from the acquisition threads to the GUI
layer using custom PyQt5 signals data_ready, ensuring thread-
safe updates to real-time plots and measurement displays.

3.4 User Interface Layer
The user interface, developed using PyQt5 and PyQtGraph,

provides an interactive, multi-pane oscilloscope-style envi-
ronment tailored separately for analog and digital monitoring
modes. In the analog GUI, the GUI window embeds:

• A PlotWidget for real-time waveform display with cus-
tom time per division settings as shown in Figure7.

Figure 7. Drop-down menu option to change time per
division setting of the graph palate in the Analog GUI

• Checkboxes and V/div controls for enabling/disabling
and scaling individual channels as shown in Figure8.

4/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

Figure 8. Checkbox option for enabling/disabling and
V/div option for scaling individual channels

• A measurement panel that displays frequency, RMS,
peak-to-peak, and other parameters as shown in Fig-
ure9.

Figure 9. Selection option for parameters to be measured
in the Analog GUI

• Controls of the sampling rate to dynamically change the
acquisition logic, as shown in Figure10.

Figure 10. Selection option to change sampling rate setting
of the graph palate in the Analog GUI

In the digital GUI, the GUI supports:

• 16 vertically stacked digital waveform plots with color-
coded traces as shown in Figure11.

• A global time-axis plot to correlate all selected lines as
shown in Figure11.

Figure 11. Digital GUI all channels colour palate

• Measurement controls including toggle buttons to switch
between frequency and time period view as shown in
Figure12.

(a) Switch to Time period button

(b) Switch to Frequency button

Figure 12. Toggle button to switch between a) Frequency
display tab and b) Time period tab in Digital GUI.

5/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

• Real-time update of frequency or time period per chan-
nel in a formatted grid layout., as shown in Figure13.

• Detection of the sampling rate and the options to adjust
the number of signal cycles displayed.

Figure 13. Spin box option to change number of signal
cycles for proper visibility

• Channel visibility through checkboxes and double click
deselection, as shown in Figure14.

Figure 14. Checkbox option for enabling/disabling for
selecting individual channels

Both GUIs include robust feedback mechanisms with user
alerts for error conditions and invalid configurations. The in-
terface ensures usability while preserving access to advanced
configuration settings, ideal for laboratory research environ-
ments.

4. Implementation Methodology
The implementation of the real-time signal monitoring

system using the NI USB-6363 DAQ was centered around
translating the planned architectural components into a robust,
responsive, and modular application. This section elaborates
on the techniques used to ensure thread safety, responsiveness,
and precision signal handling during real-time acquisition.

4.1 Acquisition Thread Management and Execution
The data acquisition process was implemented using PyQt5’s

QThread, allowing analog and digital signal acquisition to run
independently of the GUI event loop. Each acquisition thread
initializes and starts its corresponding DAQ task in continu-
ous sampling mode and continuously reads data from the on-
board hardware buffers using NIDAQmx stream readers. For

analog input, real-time readings are streamed into NumPy ar-
rays, and signal metrics such as RMS voltage, min/max levels,
and peak-to-peak amplitudes are computed. For digital sig-
nals, rising edge detection is applied to each sampled logic
trace to estimate signal frequency, using median filtering for
stability. The acquisition thread passes this processed data
through PyQt signals, which are consumed asynchronously
by the GUI.

4.2 Real-Time Data Flow and Synchronization
To handle real-time performance, the system employs non-

blocking signal-slot mechanisms. GUI updates are decoupled
from acquisition threads through the use of PyQt signals. All
live waveform data, along with computed metrics, is pushed
from the background threads into the main GUI thread us-
ing structured packet. Update rates are tuned using QTimer
events within the GUI to match the buffer size and plot frame
rate, ensuring optimal refresh without overloading the hard-
ware. This design enables simultaneous monitoring of multi-
ple channels with consistent frame pacing, even during high
sampling-rate operations.

4.3 Buffered Acquisition and Memory Optimization
Circular buffers are used internally to manage data flow

from DAQ to GUI. For analog acquisition, this involves dy-
namically allocating and rotating NumPy arrays to preserve
a window of recent signal history. In the case of digital ac-
quisition, edge indices are extracted and used to compute fre-
quency estimates in a sliding window fashion, reducing mem-
ory overhead while maintaining signal integrity. Dynamic
buffer resizing is also incorporated for extremely low or high
frequencies, adapting the number of samples read per cycle
based on the detected period of the incoming signal. This
adaptive design enhances the accuracy of frequency measure-
ments without increasing latency.

4.4 User Interaction Control
The GUI allows users to start or stop acquisition, select

channels, and modify acquisition parameters. Each of these
interactions is routed through Qt’s signal-slot mechanism, event
triggering methods in the acquisition threads to safely restart
or reconfigure tasks without crashing or halting the applica-
tion. Care was taken to ensure that GUI actions do not inter-
rupt ongoing buffer reads or waveform rendering. For exam-
ple, updating the sample rate or number of displayed cycles
queues the changes until the current acquisition window com-
pletes, ensuring atomic and glitch-free transitions.

4.5 Error Handling and Operational Stability
All acquisition threads are wrapped in robust error han-

dling logic. Device disconnection, buffer overruns, and in-
valid configuration states (e.g., unsupported sample rates or
missing channels) are caught and relayed to the user through
GUI messages. Upon error detection, the corresponding thread
is safely terminated, and its DAQ task is closed before allow-
ing re-initialization. Visual indicators and message boxes in

6/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

the GUI guide the user toward corrective actions. A status
bar tracks the connection state, task activity, and sampling
rate, providing ongoing feedback during operation.

5. Performance Evaluation
The system’s validation involved the use of a commercial

function generator. For digital readings, it successfully mea-
sured frequencies up to 2 MHz across 16 channels, accurately
capturing pulse trains, such as a 2 MHz signal being displayed
as “2.000 MHz.” Median filtering was applied to improve
noise resistance. Table1 presents the tested specifications of
the system for digital signal input.

Table 1. Tested specifications of the system for digital
signal input

Parameters Specifications
Threshold Voltage for Discretizations 1.44 V

Frequency Up to 2 MHz
Number of Channels 16

Sampling Rate 4 M Samples/s

In terms of analog readings, the system handled a 30 kHz
sine wave, a 1.8 kHz pulse with a 1% duty cycle, a 50 kHz
square wave with a rise time of 2.5 µs, and ramp signals at
100 kHz ranging from −10 V to +10 V. The GUI plots were
consistent with reference measurements, maintaining a reso-
lution of less than 2 mV, a DC offset of less than 1 mV, and an
error margin of±0.5 %Vin±3 mV. Table2 shows the detailed
tested specification of the system for analog signal input.

Table 2. Tested specifications of the system for analog
signal input

Parameters Specification
Minimum Voltage −10 V
Maximum Voltage +10 V
Minimum Frequency (Sine
Wave)

1 Hz

Maximum Frequency (Sine
Wave)

30 kHz

Minimum Frequency (Pulse,
1% Duty Cycle)

1 Hz

Maximum Frequency (Pulse,
1% Duty Cycle)

1.8 kHz

Minimum Frequency
(Square Wave)

5 Hz

Maximum Frequency
(Square Wave)

50 kHz

Rise Time (Square Wave) 2.5 µs
Voltage Resolution <2 mV
DC Offset <1 mV
Tested Waveform Types Sine, Ramp, Pulse,

Square

Figure15 shows the digital GUI interface with multiple-
channel digital input, demonstrating a 2 MHz square wave.
Figure16 displays the analog GUI interface with multi-channel
input of a 30 kHz sine wave at an amplitude of ±10 mV. Ta-
ble3 shows the performance metrics of the system for both the
digital and analog acquisition modes.

Figure 15. Digital read GUI showing 16-channel
frequency measurement at 2MHz

Figure 16. Analog read GUI displaying a 30 kHz sine
wave within-10 V

Table 3. Performance metrics for both the digital and
analog acquisition modes

Mode Achieved Frequency Use Case
Digital Read 2 MHz Digital bus,

High-speed
signals

Analog Read 30 kHz Sensor data,
waveform
analysis

Table4 below provides a consolidated overview of the soft-
ware functionalities and measurable signal parameters, includ-
ing the applicable signal types and the tested measurement
ranges achieved by the system.

7/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

Table 4. Overview of Software Functionalities and Measurable Signal Parameters

Category Feature /
Parameter

Signal
Type Details

Measurement Range /
Resolution

Signal
Acquisition

Channel
Selection

Analog &
Digital

Selectable from GUI;
4 analog and
16 digital channels

Analog: ai0–ai3,
Digital: port0/line0–15

Sampling Rate
Configuration

Analog &
Digital

Set via GUI and
validated in software

Analog: up to 500 kS/s,
Digital: up to 4 MS/s

Buffer Size
Control

Analog &
Digital

Dynamically adjusted based on
frequency and number of cycles 10,000 to 1,000,000 samples

Signal
Processing

Frequency
Measurement Digital

Edge-detection method per
channel

Up to 2 MHz,
±2–3% error above 2 MHz

Frequency
Measurement
(FFT)

Analog
FFT-based estimation per
acquisition buffer 1 Hz to 30 kHz

Time Period
Calculation

Analog &
Digital Inverse of frequency

ms (analog) or
µs (digital) resolution

Peak to Peak
Voltage Analog Max-Min per channel

Within ±10 V,
Resolution: <2 mV

RMS Voltage Analog RMS over each buffer window
Resolution: <2 mV,
Accuracy: ±0.5% of Vin ± 3 mV

Max/Min
Voltage Analog

Per window max and min
detection Full range: -10 V to +10 V

DC Offset
Correction Analog

Software bias adjustment
(+8.5 mV applied) Final DC error <1 mV

Visualization
(GUI)

Real-Time
Waveform
Display

Analog &
Digital

PyQtGraph-based multi-channel
plots

Time base adjustable from ms
to seconds

Grid Overlay &
Time Base

Analog &
Digital

Centered oscilloscope-style view
with time zoom

Adjustable: 1 ms/div to
1 s/div (GUI setting)

Channel Toggle
and Scaling

Analog &
Digital

Enable/disable display;
adjust volts/div per channel GUI-controlled

Measurement
Display Table

Analog &
Digital

Frequency, RMS, Pk-Pk,
min/max, time period

Updated in real-time,
channel-wise

User
Control

Start / Stop
Acquisition

Analog &
Digital GUI button-triggered

Immediate effect, via PyQt
signal-slot

Parameter
Configuration

Analog &
Digital

Channels, sample rate, cycles,
V/div, etc. via GUI widgets Dynamically applied

Signal Type
Mode

Analog or
Digital

User switches between analog
and digital acquisition mode Separate scripts / GUI windows

Data
Logging

Optional
CSV/JSON
Logging

Analog &
Digital

On-demand, user-triggered
logging Raw samples or processed values

Configurable
Logging
Parameters

Analog &
Digital

Selectable: full waveform,
computed stats, timestamp File formats: .csv, .json

8/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

6. Discussion
6.1 Comparative Evaluation with Existing Tools

Our Python-based GUI solution for real-time signal mon-
itoring fills a unique gap between high-end professional tools
and low-cost educational platforms. It delivers robust perfor-
mance with open-source flexibility, a clean GUI, and seam-
less integration with research-grade DAQ hardware like the
NI USB-6363. This makes it especially suitable for academic
institutions, research labs, and prototyping environments look-
ing for cost-effective and customizable solutions without com-
promising core functionalities. These findings we offer here
also supported by comparative studies, which highlight that
Python-based DAQ frameworks can offer real-time respon-
siveness and configurability on par with commercial software
when designed around specific use cases (Vipond et al., 2023;
Saha et al., 2022; Martins, 2023).

a) Comparison Between Our Tool & Commercial Oscil-
loscopes (e.g., Tektronix, Keysight, R&S): While com-
mercial scopes outperform in speed and features, our
tool matches essential functionality for educational and
research tasks at a fraction of the cost. Below Table5
shows the comparison of our tool with the commercial
oscilloscopes.

Table 5. Comparison with Commercial Oscilloscopes

Feature Commercial
Oscilloscopes Our Tool

Performance

High bandwidth
(MHz to GHz),
deep memory,
advanced triggering

Mid-range
performance with
NI USB-6363
(500 kS/s analog,
4 MS/s digital)

Cost
Very expensive
(Rs. 2–20 Lakhs+)

Low-cost (uses
existing PC +
DAQ)

Customizability
None (proprietary
firmware/UI)

Fully customized
(open-source
Python code)

Data Access
Limited long-term
storage, vendor-
specific formats

Full access to raw
data for logging/
export

Target Users Professional labs,
industries

Students,
educators,
research labs

b) Comparison Between Our Python-Based GUI & NI Lab-
VIEW: Our solution offers similar device control and
performance but with transparency, flexibility, and zero
software licensing cost, making it suitable for institu-
tions with budget limitations. Below Table6 shows the
comparison of our python-based GUI with NI LabVIEW.

Table 6. Comparison with NI LabVIEW

Feature LabVIEW Our Python-
Based GUI

Software Cost High licensing
fees

Free (open-source
stack)

Learning
Curve

Steep (graphical
programming
model)

Easier for Python
users

Custom
Workflow

Possible but
complex

Easily extensible
via Python

Multithreading
& Buffer
Control

Available but
hidden under
GUI layers

Explicitly
implemented
using QThread
and custom buffers

c) Comparison Between Our Tool & Open-Source Alter-
natives (e.g., Sigrok, OpenHantek): Most open-source
tools suffer from poor GUI or limited DAQ support.
Our tool bridges this gap by providing a refined GUI
and industrial DAQ performance. Below Table7 shows
the comparison of our tool with open-source tools.

Table 7. Comparison with Open-Source Tools

Feature Sigrok /
OpenHantek Our Tool

Device
Compatibility

Limited to
supported
hardware

Specifically optimized
for NI USB-6363

GUI Usability Basic, often
non-intuitive

Professional-grade
GUI using PyQt5 +
pyqtgraph

Real-Time
Performance

Inconsistent at
high data rates

Stable at 500 kS/s
analog, 4 MS/s
digital via optimized
multithreaded handling

Feature Set
Basic
triggering,
limited plotting

Frequency, RMS,
time period, Vpp
measurements,
toggles, multi-channel
scaling, and buffer
tuning

d) Comparison Between Our Tool & Arduino-Based Sig-
nal Monitoring Systems: Arduino is useful for educa-
tional prototypes but lacks the precision, throughput,
and GUI maturity of our NI-based solution. Below Ta-
ble8 shows the comparison of our tool with Arduino-
based systems.

9/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

Table 8. Comparison with Arduino Systems

Feature
Arduino Tools
(Serial Plotters,
IDE-based GUIs)

Our Tool

Sampling
Rate

<10 kS/s (limited by
USB Serial and
10-bit ADC)

Up to 500 kS/s
(analog), 4 MS/s
(digital)

Channels
Typically 6
analog, 14 digital
(non-simultaneous)

4 analog (16-bit),
16 digital (parallel)
simultaneous
channels

Accuracy 10-bit ADCs,
basic I/O

16-bit ADC, high
signal fidelity

GUI Inter-
face

Minimal, often CLI
or Serial Monitor

Full-featured
oscilloscope-like
GUI

e) Summary Comparison Table: Table9 below shows the
overall comparison of our tool with all previously dis-
cussed systems.

Table 9. Overall Comparison Summary

Tool Sampli-
ng Speed

GUI
Qua-
lity

Multi-
channel
Support

Op-
en-
Sou-
rce

Cost Custom-
izability

Our
Python
Tool

Analog:
500 kS/s,
Digital:
4 MS/s

4 out
of 5

4
analog,
16
digital

Yes Low
Very
High

Lab-
VIEW
+ NI
DAQ

Same as
above

3 out
of 5

Same as
above No High Moderate

Comm-
ercial
Osci-
llo-
scope

MHz to
GHz

5 out
of 5 Varies No

Very
High No

Sigrok/
Open-
Hantek

Low to
mid

2 out
of 5 Limited Yes Low Moderate

Ardu-
ino
Sys-
tems

<10
kS/s

1 out
of 5

Few
channels Yes

Very
Low Moderate

6.2 Scientific Context and Broader Impact
The developed Python-based GUI for real-time signal mon-

itoring has significant implications for both immediate and ex-
tended scientific applications. One of the most impactful con-
texts is its direct applicability in the development of Checkout
Systems for scientific payloads at PRL.

Checkout systems serve as ground-based satellite simula-
tors that are essential for the verification, test, and calibration
of scientific payloads before launch. The presented GUI tool,
with its capabilities for multi-channel analog and digital ac-
quisition, real-time waveform analysis, frequency and voltage
metrics, and custom signal visualization, forms the core data
interface required during such simulations.

Key Applications in Payload Checkout Systems:

• Health Monitoring: Enables continuous observation of
voltage levels, payload temperature, etc. during testing.

• Calibration Logging: Captures and archives scientific
data during thermal-vacuum, vibration, and EMI/EMC
testing phases, essential for verifying payload perfor-
mance under environmental extremes.

• Post-Launch Validation: Provides reference datasets of
payload behavior under controlled lab conditions, which
can be compared with in-orbit telemetry to assess any
performance degradation, drift, or anomaly.

• Interface Testing: Simulates on-board satellite systems
for electrical interface validation of the payload, help-
ing detect I/O mismatches or signal anomalies early in
development.

Beyond the immediate scope of scientific payload testing,
the developed tool presents a broader impact across scientific
and educational domains:

• Open-Source Accessibility: Unlike commercial tools,
this system promotes low-cost deployment, allowing
widespread adoption across academic institutes, student
satellite programs, and resource-limited research labs.

• Scalability: The modular, multithreaded architecture
makes the tool adaptable for future use cases includ-
ing multi-sensor systems, laboratory automation, and
embedded system development.

• Cross-Platform Research Integration: It can interface
with Python-based data analysis pipelines or machine
learning models for automated anomaly detection, long-
duration tests, and parameter optimization, useful in
various disciplines.

6.3 Error Margins and Limitations
To evaluate the reliability of the system, we conducted

extensive performance tests under diverse signal conditions.
These tests helped establish the practical operating limits of
the developed Python-based DAQ system, primarily due to
the hardware constraints of the NI USB-6363 device such as
ADC sampling rate, FIFO buffer size, etc. While software-
level design choices—such as multithreaded streaming and
buffer management—help optimize performance, the funda-
mental limitations are hardware-defined. The observed er-
ror margins and functional constraints are summarized in Ta-
ble 10.

10/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

Table 10. Observed Limitations and Error Margins

Mode Parameter
Observed
Limitation/
Error

Remarks/
Root Cause

Digital
Read

Max
reliable
frequency

2 MHz

Beyond this,
rising edge de-
tection becomes
unreliable due
to buffer overrun
and violation of
Nyquist criteria
caused by onboard
DAQ sampling
clock limitations.

Frequency
accuracy
above
2 MHz

±2–3%
error

Missed edges due
to limited DAQ
USB throughput
and system buffer
saturation.

Channel
count

16 channels
(parallel)

Stable at 4 MS/s
aggregate, but
performance de-
grades if CPU
resources are
constrained.

Analog
Read

Max tested
sine wave
frequency

30 kHz

Clean sine re-
production up to
30 kHz; higher
frequencies show
slight distortion.

Max
usable
square
wave
frequency

50 kHz

Above this, edge
sharpness drops
due to limited
ADC sampling
resolution at
higher frequen-
cies.

Voltage
accuracy

±0.5% of
Vin ± 3 mV

Minor noise and
quantization error;
improved via sig-
nal averaging.

Voltage
resolution < 2 mV

Limited by 16-bit
DAQ resolution at
±10 V range com-
bined with LSB er-
rors.

DC offset < 1 mV

Compensated
internally by ap-
plying +8.5 mV
bias in software.

Sampling
rate cap

5̃00 kS/s
per channel
(aggregate
2 MS/s)

Achieved using
buffer-based
streaming and dy-
namic rate control
in multithreaded
architecture.

6.4 Platform Compatibility and System Configuration
Table 11 summarizes the minimum and recommended sys-

tem specifications necessary to achieve optimal performance
and avoid data loss, or GUI lag during operation.

Table 11. Platform Compatibility and System
Configuration

Component Minimum
Specifications

Recommended
Specifications

CPU Intel i5 (8th Gen)
or AMD Ryzen 5

Intel i7 / Ryzen 7
or higher

RAM 8 GB 16 GB or higher
Storage 256 GB

HDD/SSD
512 GB
HDD/SSD

OS Windows 10 / 11 Windows 10 / 11
USB USB 2.0/3.0 port USB 3.0
Python Version ≥ 3.7 Python 3.10+

Libraries
nidaqmx, PyQt5,
pyqtgraph,
numpy, scipy

nidaqmx, PyQt5,
pyqtgraph,
numpy, scipy

Display 1366×768 min Full HD for
waveform clarity

7. Conclusion
This study presents a Python-based graphical user inter-

face designed for real-time monitoring of digital and analog
signals using the NI USB-6363 data acquisition device. The
system enables students, researchers, and engineers to con-
duct high frequency digital and precise analog waveform mea-
surements. Its open-source software and modular architecture
offer a solution to the high costs and complexity associated
with proprietary tools. The current implementation, therefore,
not only meets the immediate needs of signal monitoring and
testing but also aligns with ongoing research trends favoring
open, reproducible, and extensible Python-based instrumenta-
tion platforms (Hughes, 2010; Koerner et al., 2019; Martins,
2023; Akam and Walton, 2019; Jäger and Gümmer, 2023;
Vipond et al., 2023; Saha et al., 2022). Future improvements
could broaden its range of applications.

8. Future Scope
The current implementation establishes a solid foundation

for real-time signal acquisition and monitoring using a Python-
based GUI with NI USB-6363 DAQ hardware. However, there
are several avenues for extending and improving the system
both functionally and in terms of application:

a) Hardware Abstraction for Cross-DAQ Compatibility

11/12

Python-Based GUI for Real-Time Digital and Analog Signal Monitoring Using NI USB-6363 DAQ

• The present system is tightly integrated with the
NI-DAQmx API. Future work could focus on ab-
stracting the data acquisition layer to support addi-
tional hardware backends (e.g., from open-source
USB ADCs).

• This would require defining a standard interface
layer and device drivers adaptable to non-NI DAQs.

b) Integration with Checkout Systems for Automated Pay-
load Testing

• The system can be extended to become an integral
part of satellite payload checkout systems by inter-
facing with command-response simulators, teleme-
try channels, and environmental test chambers (ther-
mal, vacuum, EMI/EMC).

• This includes capturing and storing calibration logs
across multiple test phases.

9. Acknowledgment
The authors express their sincere gratitude to Prof. Kashyap

Patel of the Devang Patel Institute of Advanced Technology
and Research, CHARUSAT, for his invaluable guidance and
mentorship throughout the project. We also extend sincere
gratitude to the Physical Research Laboratory, Ahmedabad,
for providing the resources and support necessary during the
internship. This work is supported by Department of Space,
Govt. of India.

The Editor, D. Pallamraju acknowledges the reviewers Pranav
Adhyaru, Pinky Brahmbhatt, Himanshu Mazumdar and an
anonymous reviewer for their help in evaluating this article.

References
https://www.riverbankcomputing.com/software/

pyqt/intro.

http://www.pyqtgraph.org.

https://nidaqmx-python.readthedocs.io/.

https://www.ni.com/docs/en-US/bundle/usb-6363-
specs/page/specs.html.

https://doc.qt.io/qt-6/qthread.html.

T. Akam and M. E. Walton. pyphotometry: Open source
python based hardware and software for fiber photometry
data acquisition. Scientific reports, 9(1):3521, 2019.

J. M. Hughes. Real World Instrumentation with Python: Au-
tomated Data Acquisition and Control Systems. ” O’Reilly
Media, Inc.”, 2010.

D. Jäger and V. Gümmer. Pythondaq–a python based mea-
surement data acquisition and processing software. In
Journal of Physics: Conference Series, volume 2511, page
012016. IOP Publishing, 2023.

L. J. Koerner, T. A. Caswell, D. B. Allan, and S. I. Campbell.
A python instrument control and data acquisition suite for
reproducible research. IEEE Transactions on Instrumenta-
tion and Measurement, 69(4):1698–1707, 2019.

S. A. M. Martins. Pydaq: Data acquisition and experimental
analysis with python. Journal of Open Source Software, 8
(92):5662, 2023.

S. Saha, P. K. Mallisetty, S. Sen, and S. Giri. Design and
development of a high-speed data acquisition system for
acquiring acoustic emission signals. Materials Today: Pro-
ceedings, 66:3830–3837, 2022.

N. Vipond, A. Kumar, J. James, F. Paige, R. Sarlo, and Z. Xie.
Real-time processing and visualization for smart infrastruc-
ture data. Automation in Construction, 154:104998, 2023.

Appendix A
GitHub Link: https://github.com/kush-nirav-shah/ni-usb-daq-
signal-processing

12/12

https://www.riverbankcomputing.com/software/pyqt/intro
https://www.riverbankcomputing.com/software/pyqt/intro
http://www.pyqtgraph.org
https://nidaqmx-python.readthedocs.io/
https://www.ni.com/docs/en-US/bundle/usb-6363-specs/page/specs.html
https://www.ni.com/docs/en-US/bundle/usb-6363-specs/page/specs.html
https://doc.qt.io/qt-6/qthread.html
https://github.com/kush-nirav-shah/ni-usb-daq-signal-processing
https://github.com/kush-nirav-shah/ni-usb-daq-signal-processing

	Introduction
	Technical Objective
	System Architecture
	Hardware Layer
	Software Layer
	Data Processing and Control Flow
	User Interface Layer

	Implementation Methodology
	Acquisition Thread Management and Execution
	Real-Time Data Flow and Synchronization
	Buffered Acquisition and Memory Optimization
	User Interaction Control
	Error Handling and Operational Stability

	Performance Evaluation
	Discussion
	Comparative Evaluation with Existing Tools
	Scientific Context and Broader Impact
	Error Margins and Limitations
	Platform Compatibility and System Configuration

	Conclusion
	Future Scope
	Acknowledgment
	References
	Appendix A
	Cover_TECHNICAL_NOTE Aditya (2025).pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

