
PRL-TN-2022-114

Liquid Crystal Variable Retarder (Lcvr) Driver For Studying

Transient Nematic Effect

Shibu K. Mathew, Bireddy Ramya & Ankala Raja Bayanna
(Udaipur Solar Observatory)

PRL Technical Note
PRL-TN-2022-114

LIQUID CRYSTAL VARIABLE RETARDER (LCVR)
DRIVER FOR STUDYING TRANSIENT NEMATIC
EFFECT

Shibu K. Mathew*, Bireddy Ramya & Ankala Raja Bayanna
Received 10 September 2021; revised 05 January 2022; accepted 07 February 2022; published 16 February 2022.

Abstract
Liquid Crystal Variable Retarders (LCVRs) are widely used for polarization measurements. At Udaipur Solar Observatory we use
two LCVRs for the polarization measurements. The measured polarization is utilized to infer the magnetic field on the solar
surface. The retardance change in the LCVR on the application of a voltage is made use for modulating the incoming polarization
to measurable intensities (Stokes I, Q, U, and V parameters). In solar polarimetry, fast switching of the LCVR retardance (in
the order of a few milliseconds) is required to measure polarization states in the same seeing conditions. The switching time
required to obtain various polarization states is one of the limitations in using the LCVRs for solar applications. In this report,
we describe a precise ‘voltage driver circuit’ for applying appropriate voltages to the LCVR. We also discuss the application of a
high voltage pulse to invoke the Transient Nematic Effect (TNE) in the LCVRs which reduces the transition/switching times
and makes it useful for fast polarimetry.

Keywords
Multi-Application Solar Telescope, Polarimetry, Narrow-band Imager

1Udaipur Solar Observatory, Physical Research Laboratory, Udaipur, Rajasthan
*Corresponding author: shibu@prl.res.in

Contents
1 Introduction 1
2 Liquid Crystal Variable Retarder voltage driver 2
2.1 LCVR construction . 2
2.2 Voltage driver for LCVR . 2
3 Experimental set-up to measure the LCVR retardance

and response time 5
3.1 Retardance measurement 7
3.2 LCVR response time and TNE effect 7
4 Conclusion 8

References 8

1. Introduction
Liquid Crystal Variable Retarders (LCVR) are used

in solar polarimetry for measuring active region magnetic
field. The polarimetry is done by measuring the Stokes I,
Q, U, and V intensity images by sequentially switching
the retardance of the crystals by applying a drive volt-
age. The rapid variations in the atmospheric condition
(seeing) play a negative role in these measurements as
it produces distortions in the images taken in sequence.
Usually, the difference between the consecutive images
taken in orthogonal polarizations is used for producing

the Stokes images. As the measurements are sequential,
the change in the seeing condition can introduce artifacts
in these measurements. Also, the short-term evolution
of the solar active regions within the image acquisition
period can introduce spurious signals in the measure-
ments. The above facts necessitate the rapid measure-
ments of orthogonal polarization for solar polarimetry.
The switching speed of the LCVRs plays a crucial role in
solar polarimetry. With the availability of very fast CCD
and sCMOS cameras, the main constraint in using the
LVCRs for fast solar polarimetry is its response time. In
Multi-Application Solar Telescope at Udaipur Solar Ob-
servatory (MAST-USO), we use two LCVRs for making
the Stokes images for solar magnetic field measurements
(Venkatakrishnan, et.al. [2017]; Mathew, et.al. [2017]; Ti-
wary, et.al. [2017]). The response time of the LCVRs can
be minimized by applying a low duration high voltage
pulse before the application of the retardance voltage,
which in effect results in Transient Nematic Effect (TNE).
In this technical report, we give emphasis to the driver
circuit used for applying the retardance voltages to the
LCVRs. The test results showing the dependence of
these pulses on the response time are also discussed.

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

2. Liquid Crystal Variable Retarder voltage
driver

2.1 LCVR construction
LCVR is made of liquid crystals, the birefringence

of which can be altered by applying a voltage. The
construction of a typical LCVR is shown in Figure 1, the
liquid crystal is filled in the cavity made of two highly
polished glass windows which are separated by spacers
of a few microns. The Indium Tin Oxide (ITO) coating
on the inside faces of the windows acts as the electrodes.
The tipping of the liquid crystal molecules with applied
voltage results in the variation of the birefringence and
thus the retardance. We use LCVRs from Meadowlark
Optics®.

Figure 1. A vertical cut through an LCVR showing the alignment
of liquid crystal molecules, with and without an applied voltage.

ITO-coated glass plates are used as transparent electrodes for the
application of voltage across the LCVR cell (Taken from Meadowlark

Optics®, liquid crystal catalogue:
https://www.meadowlark.com/store/pdfs/liquidcrystals.pdf)

.

2.2 Voltage driver for LCVR
LCVR requires a square ac voltage for changing the

retardance. A dc voltage can damage the liquid crystal
layer due to ionic build-up (Perlmutter & David Doroski
[1996]). Figure 2 shows the waveform of a typical drive

voltage used for the LCVR. For driving the LCVRs
and testing them, a voltage driver circuit is developed
in-house at USO. We follow a similar circuitry of the
LCVR driver used in Global Oscillation Network Group
(GONG)’s instrument for magnetic field measurements.
Figure 3 and Figure 4 show the schematic of the LCVR

driver and the circuitry, respectively.
As mentioned earlier, the LCVR requires an ac square

wave, with a mean zero drive voltage. For producing the
symmetric ac pulses, two precision op-amps, OP37, in
inverting and non-inverting modes are used (LM741 can
also be used by making appropriate changes in offset-
null pin connections). The output of the amplifiers goes
to two of the source inputs (S1 & S2) of an analog
multiplexer (ADG508, from Analog Devices®), where the
select pin A0 is driven by a square wave oscillator (LM555,
working at 2 kHz) or a PIC Microcontroller square wave
generator having adjustable frequencies, Figure 6 shows
the circuit diagram. PORTB of PIC16F873A is used as
an input port, the switches connected to pins B7, B6, B5,
B4 are used to select the frequency of the clock output
pulse. The microcontroller reads the input from PORTB,
depending on the switch position it adjusts the frequency
of the clock pulses at the output pin RA2. The program
for deriving different frequencies from the microcontroller
is listed in the Appendix. An external crystal oscillator
of 12MHz is used for timing and clock operations. The
square wave selects one of the source inputs alternatively
which in effect provides a symmetric ac waveform at the
output of the multiplexer with a mean zero voltage. From
here the output is taken to another buffer op-amp and
to a gain stage for further amplification and then to the
LCVR. The input voltage to op-amps is jumper selectable

Figure 2. A typical waveform of the voltage applied to the LCVR
derived from the designed voltage driver circuitry. A 2 kHz square

wave is used for the LCVR, modulated by the amplitude of DC
voltage which determines the retardance value.

and can be given from an external voltage source or from
a digital to analog converter (DAC). A 16-bit DAC from
Texas Instruments® (DAC714P) is used for the latter.
The selected DAC can provide output voltages within
±10 V, with a ±1 LSB linearity. The 16-bits give an
approximate resolution of 0.3 mV at the DAC output.
DAC714 uses serial data input and the input pins can be
driven by any compatible serial interface. Figure 5 shows
the timing diagram forthe DAC serial data in (SDI)

2/21

https://www.meadowlark.com/store/pdfs/liquidcrystals.pdf

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

Figure 3. Schematic diagram for the LCVR driver circuit. For the tests we used both Lanuchpad and FTDI for driving the DAC.

3/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

Figure 4. Circuit diagram for the LCVR driver electronics. The op-amp U4 is used for additional gain for producing the short duration high
voltage TNE pulses.

4/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

along with clock (CLK) and Latch Data (A1) . We fol-
low this timing diagram shown in Figure 5, with the
exception of (A0) permanently tied to ground in our
application. The DAC714 can be driven by a Micro-

Figure 5. The timing diagram for the serial data in for DAC714.
Taken from TI® DAC714 datasheet.

controller or can be directly interfaced to a computer
through an FT245BL, USB to parallel FIFO chip from
Future Technology Devices International Ltd. (FTDI®).
For microcontroller (MSP) option we used a development
board – Launchpad, from TI®. The interfacing diagrams
for both options are given in Figure 7. While conducting
the tests for the TNE effect, the DAC is driven by the
Microcontroller to avoid any delay in transmitting the
data between the computer and the FTDI chip and thus
the uncertainty in the timings.

The Launchpad kit, which employs the MSP430G2
Microcontroller from TI®, is used as the first option for
driving the DAC (An Arduino® Uno board can also be
used for this purpose). The board provides several GPIO,
out of which 4 pins are used for interfacing the DAC.
Refer to Figure 7 and the programs in the Appendix for
the pin connections (P1.0 → SDI, P1.3 → CLR, P1.4 →
CLK, P1.5 → A1). The onboard USB programmer along
with Energia® IDE is used for programming and upload-
ing the firmware. A simple C program or any other serial
communication program (like PuTTY/HyperTerminal)
can be used for communicating with the Launchpad. An
example C program is given in the Appendix. The board
could be programmed for any sequence of voltage pulses.
The remaining GPIOs in the Launchpad can be used for
synchronizing LCVR switching and the data acquisition
with other instruments.

The second option used for driving the DAC is by an
FTDI® USB to parallel chip. FT245BL is a high-speed
FIFO converter, which can be connected to the PC USB
port. Four parallel output pins from the FT245BL are
used for interfacing with the DAC (D0 → SDI, D1 →
CLK, D2 → A1, D3 → CLR). A sample C program
for driving the DAC with an FTDI chip is given in the
Appendix. Since the program makes use of the functions
from the ‘D2XX’ driver from FTDI, make sure that the
appropriate driver, library, and include files are installed

Figure 6. PIC16F873A variable frequency clock generator.
Frequencies can be changed by selecting the DIP switches.

before using the program.
The DAC714 is designed to accept binary two’s com-

plement (BTC) with MSB first. A full-scale positive
voltage is produced for the 7FFFH, full-scale negative
voltage for 8000H, and mid scales zero volts for 0000H.
In both the cases of MSP and FTDI, the input voltage
is converted into BTC. In the case of MSP, the voltage
is transmitted to the microcontroller through the USB
and the float to BTC conversion is done in the controller.
Each of the 16-bits combined with the clock and other
pulses was applied to the GPIO ports in sequence to
produce the required clocking of the data. In the case
of FTDI, a similar procedure is followed, except the con-
version of float to BTC is done in the computer. More
details on the conversion and the data clocking are given
in the example programs.

3. Experimental set-up to measure the
LCVR retardance and response time

In this section, we report a few test results of the
measurements carried out using the above circuitry. For
measuring various critical parameters of the LCVR an
experimental set-up as shown in Figure 8 is used. The
LCVR is kept in between a set of linear polarizers; with
its fast axis at 45◦ with respect to one of the linear polar-
izers. The other polarizer is mounted on a rotation stage
(Newport Make), for alternating the polarization angle
between 0◦ and 90◦. An LED laser beam passes through
the set-up and is imaged on a photo-detector (Centronic®,
Series 5T). The photo-detector circuit amplifies the pho-
tocurrent to a measurable voltage which is then taken
to one of the channels of a USB data acquisition (A/D
converter, NI6320 with a capability of

5/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

Figure 7. FTDI and TIMSP wiring diagram for driving the DAC. The pin connections are as per the programs listed in the Appendix.

6/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

250kS/s) module from National Instruments (NI®). In or-
der to measure the voltages from the photo-detector and
that applied to the LCVR simultaneously, another chan-
nel of the data acquisition system is used for sampling
the DAC voltage. The LCVR voltage, rotation of the
linear polarizer, and data acquisition can be controlled
and synchronized with the computer.

Figure 8. Experimental set-up used for the retardance
measurements. GTP1 and GTP2 are Glan-Tylor prisms, the LCVR is

kept between GTP1 and GTP2 with its fast-axis at to the GTP1
polarization axis.

3.1 Retardance measurement
For this, the DAC was operated with the FTDI and

the computer. Two intensity measurements (i.e. the
corresponding voltages from the photo-detector) were
taken for each LCVR voltage by making the second linear
polarizer (GTP2) parallel and perpendicular (0◦, 90 ◦ →
I∥, I⊥) with respect to the first one. The retardance in
degrees can be calculated from these measurements by;

δν = 180
π

×
[

I∥ − I⊥

I∥ + I⊥

]
(1)

After correcting the phase wrapping, we calculated the
half-wave (λ/2) and quarter-wave (λ/4) voltages for this
particular LCVR as 1.93V and 2.76V, respectively. Fig-
ure 9 shows the measured retardance.

3.2 LCVR response time and TNE effect
For conducting this experiment, we use the Launch-

pad to drive the DAC. The optical configuration similar
to the earlier one is used; except that the GTP1 and

Figure 9. Measured retardance of an LCVR from Meadowlark
optics®. A C program was used to automate the entire measurement

along with the application of voltages.

the GTP2 were kept in a crossed position. The voltage
in the photo-detector, which is a proxy to the intensity
change, is recorded along with the applied voltage to the
LCVR. Figure 10 shows the result from one such data
set, where the LCVR is at λ/4 retardance voltage. We
computed the response time as the time taken for the
LCVR to reach a flat retardance from the moment when
the voltage is changed. It took around 25 ms to reach a
flat retardance. Figure 11 shows the TNE effect, where
the application of a small high voltage pulse accelerates
the retardance change. The Launchpad is programmed

Figure 10. λ/4 retardance voltage applied to the LCVR. The
pulses are voltage applied to the LCVR, whereas the solid line is the

response recorded as the intensity change in the output beam. To
reach a flat response, the LCVR took around 25 ms.

to drive the DAC with two voltage steps, a small 2 ms,
15V pulse and then with the voltage. It would be pos-
sible to use a slightly higher value for the voltage pulse
(Meadowlark Optics uses an 18 Volts pulse), we restrict
our voltage pulse to 15 volts because using a very high
voltage pulse may destroy the molecular alignment per-

7/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

manently. The time period of 2 ms is opted to have
at least 4 high voltage pulses get applied to the LCVR.
The high voltage pulse reduces the response time due to
the TNE effect, and the flat λ/4 retardance is achieved
within 17ms. The optimization of the spike amplitude
and spike width needs to be done for different retardance
values, with which we can further reduce the response
time. We have successfully used the fabricated circuit
to conduct many more experiments with the LCVR. For
example, the variable PIC frequency generator is used
for conducting experiments on the frequency dependence
of the drive voltage to the retardance changes.

Figure 11. Same as Fig. 10, except a small voltage spike of ±15V
for 2 ms applied before the λ/4 retardance voltage. The response time

here was reduced to 17 ms.

4. Conclusion
Liquid Crystal Variable Retarders are widely used for

polarimetry applications. In this technical note, we re-
port the development of a voltage driver circuitry, precise
voltage source using a 16-bit converter, and its interfac-
ing with the computer are discussed. We also include
some of the test results and source codes for driving the
LCVRs. We conducted the test on the TNE effect and
found that it is possible to reduce the response time of
the LCVR by applying a high voltage spike before the
application of the required retardance voltage.

Acknowledgment
We acknowledge the contribution of Late Mr. S. K.

Gupta for taking part in the design of the circuit, making
the schematic, PCB, and some part of the circuit fabri-
cation. We also acknowledge the work of Mr. Divyanshu
Tak from Nirma University, Ahmadabad, for helping
with some part of the data acquisition work.

The editor Prof. D. Pallamraju, thanks the review-
ers Himanshu Mazumdar and Y B Acharya for their
assistance in evaluating this Technical Note.

References
Venkatakrishnan P., Mathew S. K., Srivastava N.,

Bayanna A. R., Kumar B., Ramya Bireddy, Jain N.,
Saradava M., The multi application solar telescope.
Current Science, 113(4), 2017.

Mathew S. K., Bayanna A. R., Tiwary A. R., Ramya B.,
Venkatakrishnan P., First observations from the multi-
application solar telescope (mast) narrow-band imager.
Solar Physics, 292:106, 2017.

Tiwary A. R., Mathew S. K., Bayanna A. R., Venkatakr-
ishnan P., Yadav R. Imaging spectropolarimeter for
the multi-application solar telescope at udaipur so-
lar observatory: Characterization of polarimeter and
preliminary observations. Solar Physics, 292:49, 2017.

Perlmutter S. H., David Doroski, Degradation of liquid
crystal device performance due to selective adsorption
of ions. Applied Physics Letters, 69:1182, 1996.

8/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

Appendix
[Note: The program listed here are only for the regular operation of LCVR.
Example programs for running the LCVR with a short duration pulse and other
codes can be obtained from shibu@prl.res.in. The USB drivers required for
operating the TI Launchpad MSP430G2 and FTDI245BL chip can be obtained from
the respective company websites.]

A) Energia (Arduino like) sketch for driving DAC using TI Launchpad MSP430G2

// Driving the DAC714 TI 16-bit DAC with
// MSP EXP430G2 Launchpad Board
// Shibu K. Mathew
// Programs written for LCVR
// voltage input through PuTTY or any other programs,
// through VCP

#define SDI 01
#define CLK 16
#define AIO 32
#define CLR 08

void setup()
{
pinMode(2, OUTPUT); // Equivalent number on P1OUT = // 01 -- DAC SDI [Pin no. 04]
pinMode(6, OUTPUT); // Equivalent number on P1OUT = // 16 -- DAC CLK [pin no. 01]
pinMode(7, OUTPUT); // Equivalent number on P1OUT = // 32 -- DAC AIO [pin no. 02]
pinMode(5, OUTPUT); // Equivalent number on P1OUT = // 08 -- DAC CLR [pin no. 16]
pinMode(14,OUTPUT);
Serial.begin(9600);
}
void loop()
{
float inpV=0.0;
if (Serial.available() > 0)
{
inpV=Serial.parseFloat();
Serial.println(inpV, DEC);
int j,dt;
float AFA,dacvol,con,dig_in;
long DDI,MASK;
int i,DD=dig_in,BYTA,td,tdd;
con=32767.0/10.0;
AFA = 1.0; // If additional amplification
// change the factor
dacvol=inpV/AFA;
dig_in=(float)(dacvol*con);
BYTA=0;
td =1;
tdd=2*td;
MASK=32768;
DDI = dig_in;
if (DDI < 0) // Two complement for –ve values
{
DDI=-1.0*DDI;
DDI=~(DDI);

9/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

DDI=DDI+1;
}
for (i=0;i<=15;i++) // Bit- shifting for faster operations
{
if ((DDI & MASK) == 0)
{DD = 0;}
else
{DD = 1;}
MASK = MASK >> 1;

BYTA = SDI*DD+CLK*1+CLR*1+AIO*1;
P1OUT = BYTA;
delayMicroseconds(td);
BYTA = SDI*DD+CLK*0+CLR*1+AIO*1;
P1OUT = BYTA;
delayMicroseconds(tdd);
BYTA = SDI*DD+CLK*1+CLR*1+AIO*1;
P1OUT = BYTA;
delayMicroseconds(td);
}
delayMicroseconds(td);
BYTA = SDI*DD+CLK*0+CLR*1+AIO*1;
P1OUT = BYTA;
delayMicroseconds(td);
BYTA = SDI*DD+CLK*0+CLR*1+AIO*0;
P1OUT = BYTA;
delayMicroseconds(td);
BYTA = SDI*DD+CLK*1+CLR*1+AIO*0;
P1OUT = BYTA;
delayMicroseconds(td);
BYTA = SDI*DD+CLK*1+CLR*1+AIO*1;
P1OUT = BYTA;
delayMicroseconds(td);
digitalWrite(14,HIGH); // Lit the Green LED
delayMicroseconds(td);
digitalWrite(14,LOW);
}
}

B) Example C programs for running DAC through Launchpad connected to PC USB port

a) Main program

// Main Program calling functions
// used for communicating with Launchpad
// and DAC, DAC voltages provided as floating point
// Shibu K. Mathew, USO/PRL
// From command prompt usage ’LaunchPad voltage’

#include <iostream>
#include <cstddef>
#include <cstring>
#include <stdio.h>
#include <cstdlib>
#include <windows.h>

10/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

#include <stdlib.h>
#include <cstring>
#include <ctime>
#include <time.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include "Func.h"
int main(int argc, char *argv[])
{
float inp;
sscanf(argv[1],"%f",&inp);
if (inp < 0.0)
{
printf("Restrict the voltage to positive\n");
printf("DAC will produce negative voltage\n");
printf("but not suitable or required for\n");
printf("LCVR switching \n");
exit(1);
}
HANDLE LaunchPad;

// Check the COM port to which the Launchpad is connected
// change the COM port name accordingly

char port_LaunchPad[]="\\\\.\\COM3" ;
LaunchPad=LaunchPad_GetHandle(port_LaunchPad);
LaunchPad_Write(LaunchPad,inp);
LaunchPad_CloseHandle(LaunchPad);
}

b) C functions

// TI Lanchpad communication
// Written by Shibu K. Mathew
// Version 1
// General include files

#include <iostream>
#include <cstddef>
#include <cstring>
#include <stdio.h>
#include <cstdlib>
#include <windows.h>
#include <stdlib.h>
#include <cstring>
#include <ctime>
#include <time.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include <string>
#include "Func.h"
#define BUFF_SIZ 100

11/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

// Function 1. LaunchPad_GetHandle - SKM
HANDLE LaunchPad_GetHandle(const char * port)
{
HANDLE LaunchPad = CreateFile(port,GENERIC_READ|GENERIC_WRITE, 0,NULL,OPEN_EXISTING,0,NULL);
COMMTIMEOUTS cto = { 1, 100, 1000, 0, 0 };
DCB dcb;
SetCommTimeouts(LaunchPad,&cto);
memset(&dcb,0,sizeof(dcb));
dcb.DCBlength = sizeof(dcb);
dcb.BaudRate = 9600;
dcb.fBinary = 1;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
dcb.ByteSize = 8;
SetCommState(LaunchPad,&dcb);
return LaunchPad;
}

//Function 2. LaunchPad_CloseHandle - SKM
void LaunchPad_CloseHandle(HANDLE LaunchPad)
{
CloseHandle(LaunchPad);
}

//Function 3. LaunchPad_Write - SKM
void LaunchPad_Write(HANDLE LaunchPad, float Value)
{
float orV=Value;
if (Value < 0.0)
{
Value=-1.0*Value;
}
float rem;
int n0,n1,n2,n3,n4,n5,n6,n7,n8;
char inpLaunchPad[8];
DWORD write=0;

n0=int(Value/1000.0);
rem=Value-n0*1000.0;
n1=int(rem/100.0);
rem=rem-n1*100.0;
n2=int(rem/10.0);
rem=rem-n2*10.0;
n3=int(rem);
rem=rem-n3;
rem=int(rem*10000.0);
n4=int(rem/1000.0);
rem=rem-n4*1000.0;
n5=int(rem/100.0);
rem=rem-n5*100.0;
n6=int(rem/10.0);
rem=rem-n6*10.0;
n7=int(rem);

switch (n0)

12/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

{
case 0: inpLaunchPad[0]=’0’;
break;
case 1: inpLaunchPad[0]=’1’;
break;
case 2: inpLaunchPad[0]=’2’;
break;
case 3: inpLaunchPad[0]=’3’;
break;
case 4: inpLaunchPad[0]=’4’;
break;
case 5: inpLaunchPad[0]=’5’;
break;
case 6: inpLaunchPad[0]=’6’;
break;
case 7: inpLaunchPad[0]=’7’;
break;
case 8: inpLaunchPad[0]=’8’;
break;
case 9: inpLaunchPad[0]=’9’;
break;
}
switch (n1)
{
case 0: inpLaunchPad[1]=’0’;
break;
case 1: inpLaunchPad[1]=’1’;
break;
case 2: inpLaunchPad[1]=’2’;
break;
case 3: inpLaunchPad[1]=’3’;
break;
case 4: inpLaunchPad[1]=’4’;
break;
case 5: inpLaunchPad[1]=’5’;
break;
case 6: inpLaunchPad[1]=’6’;
break;
case 7: inpLaunchPad[1]=’7’;
break;
case 8: inpLaunchPad[1]=’8’;
break;
case 9: inpLaunchPad[1]=’9’;
break;
}

switch (n2)
{
case 0: inpLaunchPad[2]=’0’;
break;
case 1: inpLaunchPad[2]=’1’;
break;
case 2: inpLaunchPad[2]=’2’;
break;
case 3: inpLaunchPad[2]=’3’;

13/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

break;
case 4: inpLaunchPad[2]=’4’;
break;
case 5: inpLaunchPad[2]=’5’;
break;
case 6: inpLaunchPad[2]=’6’;
break;
case 7: inpLaunchPad[2]=’7’;
break;
case 8: inpLaunchPad[2]=’8’;
break;
case 9: inpLaunchPad[2]=’9’;
break;
}
switch (n3)
{
case 0: inpLaunchPad[3]=’0’;
break;
case 1: inpLaunchPad[3]=’1’;
break;
case 2: inpLaunchPad[3]=’2’;
break;
case 3: inpLaunchPad[3]=’3’;
break;
case 4: inpLaunchPad[3]=’4’;
break;
case 5: inpLaunchPad[3]=’5’;
break;
case 6: inpLaunchPad[3]=’6’;
break;
case 7: inpLaunchPad[3]=’7’;
break;
case 8: inpLaunchPad[3]=’8’;
break;
case 9: inpLaunchPad[3]=’9’;
break;
}
switch (n4)
{
case 0: inpLaunchPad[4]=’0’;
break;
case 1: inpLaunchPad[4]=’1’;
break;
case 2: inpLaunchPad[4]=’2’;
break;
case 3: inpLaunchPad[4]=’3’;
break;
case 4: inpLaunchPad[4]=’4’;
break;
case 5: inpLaunchPad[4]=’5’;
break;
case 6: inpLaunchPad[4]=’6’;
break;
case 7: inpLaunchPad[4]=’7’;
break;

14/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

case 8: inpLaunchPad[4]=’8’;
break;
case 9: inpLaunchPad[4]=’9’;
break;
}
switch (n5)
{
case 0: inpLaunchPad[5]=’0’;
break;
case 1: inpLaunchPad[5]=’1’;
break;
case 2: inpLaunchPad[5]=’2’;
break;
case 3: inpLaunchPad[5]=’3’;
break;
case 4: inpLaunchPad[5]=’4’;
break;
case 5: inpLaunchPad[5]=’5’;
break;
case 6: inpLaunchPad[5]=’6’;
break;
case 7: inpLaunchPad[5]=’7’;
break;
case 8: inpLaunchPad[5]=’8’;
break;
case 9: inpLaunchPad[5]=’9’;
break;
}
switch (n6)
{
case 0: inpLaunchPad[6]=’0’;
break;
case 1: inpLaunchPad[6]=’1’;
break;
case 2: inpLaunchPad[6]=’2’;
break;
case 3: inpLaunchPad[6]=’3’;
break;
case 4: inpLaunchPad[6]=’4’;
break;
case 5: inpLaunchPad[6]=’5’;
break;
case 6: inpLaunchPad[6]=’6’;
break;
case 7: inpLaunchPad[6]=’7’;
break;
case 8: inpLaunchPad[6]=’8’;
break;
case 9: inpLaunchPad[6]=’9’;
break;
}
switch (n7)
{
case 0: inpLaunchPad[7]=’0’;
break;

15/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

case 1: inpLaunchPad[7]=’1’;
break;
case 2: inpLaunchPad[7]=’2’;
break;
case 3: inpLaunchPad[7]=’3’;
break;
case 4: inpLaunchPad[7]=’4’;
break;
case 5: inpLaunchPad[7]=’5’;
break;
case 6: inpLaunchPad[7]=’6’;
break;
case 7: inpLaunchPad[7]=’7’;
break;
case 8: inpLaunchPad[7]=’8’;
break;
case 9: inpLaunchPad[7]=’9’;
break;
}

if (orV >= 0.0)
{
char LaunchPad_Temp[]={inpLaunchPad[0],inpLaunchPad[1],inpLaunchPad[2],inpLaunchPad[3],
’.’,inpLaunchPad[4],inpLaunchPad[5],inpLaunchPad[6],inpLaunchPad[7]};
WriteFile(LaunchPad,LaunchPad_Temp,sizeof(LaunchPad_Temp),&write,NULL);
}

if (orV < 0.0)
{
char LaunchPad_Temp[]={’-’,inpLaunchPad[0],inpLaunchPad[1],inpLaunchPad[2],inpLaunchPad[3],
’.’,inpLaunchPad[4],inpLaunchPad[5],inpLaunchPad[6],inpLaunchPad[7]};
WriteFile(LaunchPad,LaunchPad_Temp,sizeof(LaunchPad_Temp),&write,NULL);
}
}
c) delay function

#include <iostream>
#include <cstddef>
#include <cstring>
#include <stdio.h>
#include <cstdlib>
#include <windows.h>
#include <stdlib.h>
#include <cstring>
#include <ctime>
#include <time.h>
#include <math.h>
#include <conio.h>
#include <dir.h>

void delay(double seconds)
{
LARGE_INTEGER timestart, timeend, systemfrequency;
double millisecondsleft;
QueryPerformanceFrequency(&systemfrequency);

16/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

QueryPerformanceCounter(×tart);
QueryPerformanceCounter(&timeend);
__int64 timetaken = (timeend.QuadPart - timestart.QuadPart);
millisecondsleft = (timetaken)*1000. / systemfrequency.QuadPart;
while (millisecondsleft < (double)seconds*1e3)
{
QueryPerformanceCounter(&timeend);
__int64 timetaken = (timeend.QuadPart - timestart.QuadPart);
millisecondsleft = (timetaken)*1000. / systemfrequency.QuadPart;
}
}

d) Include file ‘Func.h’

// Include file
// Functions definitions written for LCVR tests
// Shibu K. Mathew - version 1.1
void delay(double);
HANDLE LaunchPad_GetHandle(const char *);
void LaunchPad_Write(HANDLE,float);
void LaunchPad_CloseHandle(HANDLE);

b) Example C program for driving DAC using FTDI245BL chip

a) main program

// Driving the DAC714 through FTDI245BL
// Shibu K. Mathew, V1.0, USO/PRL

#include <iostream>
#include <cstddef>
#include <cstring>
#include <stdio.h>
#include <cstdlib>
#include <windows.h>
#include <stdlib.h>
#include <cstring>
#include <ctime>
#include <time.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include "Func.h"
#include "ftd2xx.h"

int main(int argc, char *argv[])
{
FT_HANDLE FTDI=FTDI_Handle();
float inpV;
if (argc < 2)
{
printf("Usage FTDI_DAC Voltage\n");
exit(1);
}
if (argc >= 2)

17/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

{
sscanf(argv[1],"%f",&inpV);
printf("Given input Volatge = %f\n",inpV);
}
FTDI_ClockData(FTDI,inpV);
FTDI_CloseHandle(FTDI);
}
b) functions ‘FTDI_driver.cpp’

// Functions written for FTDI 245
// For working with DAC741
// Shibu K Mathew
// V1.0, USO/PRL

#include <iostream>
#include <cstddef>
#include <cstring>
#include <stdio.h>
#include <cstdlib>
#include <windows.h>
#include <stdlib.h>
#include <cstring>
#include <ctime>
#include <time.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include "Func.h"
#include "ftd2xx.h"
#define SDI0 1
#define A10 2
#define CLK0 4
#define CLR0 8

// Function 1. FTDI_Handle -SKM
FT_HANDLE FTDI_Handle(void)
{
char des[15] = "SKM-BISQUE"; // Name in the //EPROM programmed using ‘FT_Prog’ from FTDI
// Change it accordingly
UCHAR Mask = 255;
UCHAR Mode = 1;
FT_STATUS ftStatus;
FT_HANDLE ftHandle;
ftStatus = FT_OpenEx(des, FT_OPEN_BY_DESCRIPTION, &ftHandle);
ftStatus = FT_SetBaudRate(ftHandle, 460800);
ftStatus = FT_SetDataCharacteristics(ftHandle, FT_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE);
ftStatus = FT_SetBitMode(ftHandle, Mask, Mode);
return ftHandle;
}

// Function 2. FTDI_ClockData -SKM
void FTDI_ClockData(FT_HANDLE fthandle,float inp0)
{
FT_STATUS ftStatus;
int kk;

18/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

DWORD BytesWritten;
UCHAR BTW=0;
float amp_factor=1.0;
float dac_vol0=(inp0)/amp_factor;
float con=32767./10.0;
unsigned int mask=32768;
unsigned int ddi0=dac_vol0*con;
int DDCON0;
if (ddi0 < 0)
{
ddi0=-1.0*ddi0; // Two’s compliment, for bitshifting take the absolute value
ddi0=~(ddi0); // Make a binary invert
ddi0=ddi0+1; // Add one
}
UCHAR DATA_BUF[52];

int counter=0;
for (kk=0;kk<=15;kk++)
{
if ((ddi0 & mask) == 0)
{DDCON0=0;}
else
{DDCON0=1;}
mask=mask>>1; //shift the mask for next bit
DATA_BUF[counter]=SDI0*DDCON0+CLK0*1+CLR0*1+A10*1;
counter++;
DATA_BUF[counter]=SDI0*DDCON0+CLK0*0+CLR0*1+A10*1;
counter++;
DATA_BUF[counter]=SDI0*DDCON0+CLK0*1+CLR0*1+A10*1;
counter++;
}
DATA_BUF[counter]=SDI0*DDCON0+CLK0*0+CLR0*1+A10*1;
counter++;
DATA_BUF[counter]=SDI0*DDCON0+CLK0*0+CLR0*1+0*A10;
counter++;
DATA_BUF[counter]=SDI0*DDCON0+CLK0*1+CLR0*1+0*A10;
counter++;
DATA_BUF[counter]=SDI0*DDCON0+CLK0*1+CLR0*1+A10*1;

ftStatus = FT_Write(fthandle,&DATA_BUF,sizeof(DATA_BUF),&BytesWritten);
}
// Function 3. FTDI_CloseHandle - SKM
void FTDI_CloseHandle(FT_HANDLE ftHandle)
{
FT_Close(ftHandle);
}
c) include file ‘Func.h’

// Include file
// Function definitions for all the functions
// Shibu K. Mathew - version 1.1

#include "ftd2xx.h"

void FTDI_ClockData(FT_HANDLE, float);

19/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

FT_HANDLE FTDI_Handle(void);
void FTDI_CloseHandle(FT_HANDLE);

c) PIC 16F873A variable frequency square wave generator program

// LCVR Control, Ramya B,24-08-2018, PIC16F873A
// Generate Clock at Different Frequencies
// ccp2=gen1=RC2,ccp1=gen2=RC1
// PIC16F873A

#define _XTAL_FREQ 12000000

#include<pic.h>
#include<math.h>
#include<htc.h>
#include<stdio.h>
#include<conio.h>
#include<string.h>
#include "delay.h"

//__CONFIG(FOSC_HS & WDTE_OFF & PWRTE_ON & BOREN_OFF & LVP_OFF & CPD_OFF & WRT_OFF & CP_OFF);
#pragma config BOREN = OFF
#pragma config CPD = OFF
#pragma config WRT = OFF
#pragma config FOSC = HS
#pragma config WDTE = OFF
#pragma config CP = OFF
#pragma config LVP = OFF
#pragma config PWRTE = ON
//#include "delay.h"

void main()
{
TRISA=0x00;
TRISB=0xFF;
int old_PORTB=0xFF;
while(1)
{
if(PORTB != old_PORTB)
{
switch(PORTB)
{
case 0x00: {dvalue=0.5*1.0;//1KHZ,1ms
break;}
case 0x20: {dvalue=0.5*(1.0/1.5);//1.5KHZ
break;}
case 0x10: {dvalue=0.5*(1.0/2.0);//2.0KHZ
break;}
case 0x30: {dvalue=0.5*(1.0/2.5);//2.5KHZ
break;}
case 0x80: {dvalue=0.5*(1.0/3.0);//3.0KHZ
break;}
case 0xA0: {dvalue=0.5*(1.0/3.5);//3.5KHZ
break;}
case 0x90: {dvalue=0.5*(1.0/4.0);//4.0KHZ

20/21

LIQUID CRYSTAL VARIABLE RETARDER (LCVR) DRIVER FOR STUDYING TRANSIENT NEMATIC EFFECT

break;}
case 0xB0: {dvalue=0.5*(1.0/4.5);//4.5KHZ
break;}
case 0x40: {dvalue=0.5*(1.0/5.0);//5.0KHZ
break;}
case 0x60: {dvalue=0.5*(1.0/5.5);//5.5KHZ
break;}
case 0x50: {dvalue=0.5*(1.0/6.0);//6.0KHZ
break;}
case 0x70: {dvalue=0.5*(1.0/6.5);//6.5KHZ
break;}
case 0xC0: {dvalue=0.5*(1.0/7.0);//7.0KHZ
break;}
case 0xE0: {dvalue=0.5*(1.0/7.5);//7.5KHZ
break;}
case 0xD0: {dvalue=0.5*(1.0/8.0);//8.0KHZ
break;}
case 0xF0: {dvalue=0.5*(1.0/8.5);//8.5KHZ
break;}
}// switch end
}//if end
PORTA=0xFF;
__delay_ms(dvalue);
PORTA=0x00;
__delay_ms(dvalue);
old_PORTB=PORTB;
}//while end
}// main end

21/21

	Page 1
	Page 2
	Page 3
	PRL_TN_2022_USO_1.pdf
	Introduction
	Liquid Crystal Variable Retarder voltage driver
	LCVR construction
	Voltage driver for LCVR

	Experimental set-up to measure the LCVR retardance and response time
	Retardance measurement
	LCVR response time and TNE effect

	Conclusion
	References

