Predictive Flavor Symmetries of the Neutrino Mass Matrix

M. Hirsch,1,* Anjan S. Joshipura,1,2,† S. Kaneko,1,‡ and J. W. F. Valle1,8

1AHEP Group, Institut de Física Corpuscular—C.S.I.C./Universitat de València, Edificio Institutos de Paterna, Apt 22085, E–46071 Valencia, Spain
2Theoretical Physics Group, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

(Received 26 March 2007; published 12 October 2007)

Here we propose an A_4 flavor symmetry model that implies a lower bound on the neutrinoless double beta decay rate, corresponding to an effective mass parameter $M_{ee} \approx 0.03$ eV, and a direct correlation between the expected magnitude of CP violation in neutrino oscillations and the value of $\sin^2\theta_{13}$, as well as a nearly maximal CP phase δ.

Unless flavor symmetries are assumed, particle masses and mixings are generally undetermined in gauge theories. Understanding mass and mixing constitutes one of the biggest challenges in elementary particle physics. Current observations do not determine all elements of the effective neutrino mass matrix M_ν completely, and this will be a great challenge even for future experiments. Therefore theoretical ideas restricting the structure of M_ν are needed in order to guide future searches. One such input studied extensively is the assumption that some entries in the neutrino mass matrix vanish [1].

Here we propose a predictive flavor symmetry for leptons based on a relatively small and simple flavor group, namely A_4 or its Z_3 subgroup, and briefly analyze its phenomenological implications. We show how this provides a simple means of understanding some of the two-zero textures of M_ν studied earlier [2].

The discrete group A_4 is a 12 element group consisting of even permutations among four objects. The group is small enough to lead to a simple model but large enough to give interesting predictions. The distinguishing feature of A_4 compared to other smaller discrete groups is the presence of a three-dimensional irreducible representation appropriate to describe the three generations. This has been exploited in a number of variants. Originally, the A_4 was proposed [4,5] for understanding degenerate neutrino spectrum with nearly maximal atmospheric neutrino mixing angle. More recently, predictions for the solar neutrino mixing angle have also been incorporated in so-called tri-bi-maximal [6] neutrino mixing schemes [7–12]. There also exist attempts at unified A_4 models [13]. The resulting models, however, are not always simple and usually require many Higgs fields. Here we show that a very simple model based on A_4 leads to two-zero textures for M_ν.

The lepton doublets L_i are assigned as the triplet representation in all the A_4 models proposed so far. Here we propose the opposite assignment indicated in Table I, where the L_i are assigned to the 1, 1', 1'' representations. The l_{Ri} as well as the Higgs doublets responsible for lepton mass transform as A_4 triplets, while the (undisplayed) quarks and the $SU(2)$ Higgs doublet that gives their masses are all singlets under A_4. This leads to the following terms responsible for the lepton masses:

\[
-L = h_1 \bar{L}_1 (l_{R1} \Phi)_1 + h_2 \bar{L}_2 (l_{R2} \Phi')_1 + h_3 \bar{L}_3 (l_{R3} \Phi''^*)_1 + h_{1D} \bar{L}_1 (\nu_{R1} \Phi)_1 + h_{2D} \bar{L}_2 (\nu_{R2} \Phi')_1 + h_{3D} \bar{L}_3 (\nu_{R3} \Phi''^*)_1 + \frac{M}{2} \nu_{R1}^T C \nu_{R1} + \text{H.c.,}
\]

where the quantities in parenthesis denote products of two A_4-triplets l_R (or ν_R) and Φ forming the representations 1, 1', 1'', respectively. Note that Eq. (1) includes the most general terms allowed by the symmetry and field content in Table I. Hence, in contrast to many other A_4 models, here one does not need to impose any additional symmetry to forbid unwanted terms.

Earlier studies on A_4 have shown that it is possible to obtain a minimum of the Higgs potential with equal vacuum expectation values (VEVs) [4]

\[
\langle \Phi_1 \rangle = \langle \Phi_2 \rangle = \langle \Phi_3 \rangle = \frac{v}{\sqrt{3}}.
\]

This minimum leads to charged lepton and Dirac neutrino mass matrices M_l and m_D given by, respectively

<table>
<thead>
<tr>
<th>TABLE I. Lepton multiplet structure of the model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>$SU(2)$</td>
</tr>
<tr>
<td>$U(1)$</td>
</tr>
<tr>
<td>A_4</td>
</tr>
</tbody>
</table>