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Abstract We report on the amplitude of the density turbulence spectrum (C2
N) and the density

modulation index (𝛿N∕N) in the solar wind between 10 and 45R⊙. We derive these quantities using a
structure function that is observationally constrained by occultation observations of the Crab nebula made
in 2011 and 2013 and similar observations published earlier. We use the most general form of the structure
function, together with currently used prescriptions for the inner/dissipation scale of the turbulence
spectrum. Our work yields a comprehensive picture (a) of the manner in which C2

N and 𝛿N∕N vary with
heliocentric distance in the solar wind and (b) of the solar cycle dependence of these quantities.

1. Introduction

The extended solar corona and the solar wind is a rich test bed for studying the properties of magnetohydro-
dynamic (MHD) turbulence. While most solar wind turbulence theories only treat incompressible turbulence,
density irregularities are present in the solar wind and are manifested through fluctuations in the refractive
index. Knowledge of density turbulence impacts our understanding of the solar wind significantly and is
important for interpreting a variety of observations. It is linked to our basic understanding of the compress-
ibility of solar wind turbulence [e.g., Tu and Marsch, 1994; Hnat et al., 2005]. It is also a key to infer radio wave
scattering which lead to depressed quiet Sun brightness temperatures at low radio frequencies [Thejappa and
Kundu, 1992; Sastry, 1994; Ramesh, 2000; Subramanian, 2004; Ramesh et al., 2006; Thejappa and MacDowall,
2008], the dissipation of solar wind turbulence, leading to extended solar wind heating [e.g., Carbone et al.,
2009; Chandran et al., 2009], energetic particle propagation through the heliosphere [e.g., Reid and Kontar,
2010] and other interesting problems.

Density turbulence in solar wind has been studied using techniques ranging from angular broadening of radio
sources [e.g., Armstrong et al., 1990; Janardhan and Alurkar, 1993; Anantharamaiah et al., 1994; Bastian, 1994;
Spangler and Sakurai, 1995; Ramesh et al., 2001] to spectral broadening [Coles and Harmon, 1989], phase scintil-
lations [Woo and Armstrong, 1979], interplanetary (intensity) scintillations (IPS) [Hewish et al., 1964; Cohen and
Gundermann, 1969; Ekers and Little, 1971; Rickett, 1990; Manoharan et al., 2000; Bisi et al., 2009, 2010; Tokumaru
et al., 2012, 2016] due to celestial radio sources, and spacecraft radio beacons [Imamura et al., 2014]. Despite
this impressive body of work, there are still significant gaps in our understanding. For instance, while the spa-
tial spectrum of density turbulence is generally acknowledged to follow the Kolmogorov scaling at relatively
large scales, there is evidence for flattening of the spectrum near the inner/dissipation scale [e.g., Coles and
Harmon, 1989; Coles et al., 1991]. The location of the inner/dissipation scale is also a subject of considerable
uncertainty. Another important quantity of interest is the so-called density modulation index 𝛿N∕N, where 𝛿N
represents the turbulent density fluctuations and N represents the background solar wind density. There have
been some past attempts at measuring this quantity [Woo et al., 1995; Bavassano and Bruno, 1995; Spangler,
2002] and a relatively recent comprehensive study for heliocentric distances > 40 R⊙ using the IPS technique
[Bisoi et al., 2014a].

Some of the uncertainties in our understanding of solar wind density turbulence are manifested in the debate
regarding the smallest observable source in the solar corona at radio wavelengths. Since coronal turbu-
lence broadens the source size, observations of compact sources place limits on the spectral amplitude of
density turbulence. Observations reported by Lang and Willson [1987], Zlobec et al. [1992], and Mercier et al.
[2006, 2015] at ≈ 327MHz with angular resolutions < 10 arcsec suggest that the smallest coronal radio source
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Figure 1. The schematic diagram shows the geometry of Crab nebula
occultation; “PQ” indicates the projected path of the Crab nebula during
the month of June. The closest point of PQ to “S” is ≈ 5 R⊙. The radiation
from the “C” passes through the effective turbulent medium “AB” at a
solar elongation of “𝜖” as viewed from “E.”

size is ≥ 30 arcsec. Source sizes esti-
mated from majority of the high angu-
lar resolution observations at lower
frequencies (≈30–100MHz) also seem
to be limited to ≥ 60 arcsec [Willson
et al., 1998; Ramesh et al., 1999; Ramesh
and Sastry, 2000; Ramesh and Ebenezer,
2001; Ramesh et al., 2012; Mugundhan
et al., 2016], consistent with the predic-
ted minimum observable source sizes
in this frequency range [Riddle, 1974;
Cairns, 2004]. However, much smaller
coronal radio sources have also been
reported at ≈ 170MHz [Kerdraon, 1979;
Kathiravan et al., 2011]. Generally, the
consensus is that scatter-broadened
source sizes in the solar corona are most
likely≥10 arcsec at 20cm [Bastian, 1994]
and ≥3 arc min at 100MHz [Bastian,
2004]. This therefore emphasizes the
need for reliable estimates of the ampli-
tude of density turbulence at these
scales, especially as a function of helio-
centric distance.

In this work, we will use interferometric
observations of the Crab nebula to infer

the spectral level of solar wind density turbulence and the density modulation index as a function of helio-
centric distance. Crab occultation is a very well established technique that has been in use since the 1950s
[Hewish, 1957, 1958; Hewish and Wyndham, 1963; Erickson, 1964; Sastry and Subramanian, 1974], giving us
the advantage of a standard observational quantity to draw inferences from. The schematic diagram of the
occultation is shown in Figure 1. This technique is also best suited for turbulence density estimates in the
≈10–50 R⊙ heliocentric distance range. The IPS technique at low frequencies usually probes heliocentric dis-
tances > 40–50 R⊙. IPS observations at microwave frequencies probe the inner solar wind [Ekers and Little,
1971; Yamauchi et al., 1998; Imamura et al., 2014]. Nonetheless, extensive studies of density turbulence
amplitude and density modulation index and their solar cycle dependence were still lacking.

We have used Crab occultation observations made in 2011 and 2013 at the Gauribidanur Observatory
[Ramesh, 2011], together with published data from several earlier observations by Machin and Smith [1952],
Hewish [1957, 1958], and Hewish and Wyndham [1963] over the interferometer baselines 60–1000m and fre-
quencies 26–158MHz. We have scaled these measured structure functions to a baseline of 1600m and a
frequency of 80MHz, which were the parameters corresponding to Crab occultation observations in 2011
and 2013.

2. Density Turbulence: Some Background

Turbulent density inhomogeneities in the solar corona are typically characterized by their spatial power
spectrum

P𝛿N(k) = C2
N(R)k

−𝛼e−(kli(R)∕2𝜋)2 , (1)

where k is the (isotropic) wave number, and li(R) is the inner (dissipation) scale, where the spectrum steepens.
The quantity C2

N is the amplitude of density fluctuations and has dimensions of cm−𝛼−3. There are not many
estimates of C2

N in the literature; for example, C2
N(R) is estimated using in situ observations of Helios [Marsch

and Tu, 1990] and very long baseline interferometry (VLBI) observations [Sakurai, 1993; Spangler and Sakurai,
1995; Spangler et al., 1996]. Using VLBI observations of phase scintillations, Spangler and Sakurai [1995] and
Spangler et al. [1996] empirically quantified the dependence of C2

N on heliocentric distance as

C2
N(R) = 1.8 × 1010(R∕10)−3.66 (2)
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over R≈10–60 R⊙. They assumed a Kolmogorov spectrum (𝛼=11∕3) for the density fluctuation, and the units
of C2

N in equation (2) are m−20∕3. We note that the spatial scales of the density inhomogeneities probed using
VLBI are ≈200–2000km, which are substantially larger than the scales we are interested in (≤10km). To the
best of our knowledge, our work provides the only parametrization of the density turbulence amplitude as a
function of heliocentric distance since Spangler and Sakurai [1995] and Spangler et al. [1996].

Another important quantity of interest to us is the magnitude of the turbulent density fluctuations 𝛿Nki
at

the inner-scale (li), which can be related to the spatial power spectrum (equation (1)) as follows [Chandran
et al., 2009]:

𝛿N2
ki
(R) ∼ 4𝜋k3

i P𝛿N

(
R, ki

)
= 4𝜋C2

N(R)k
3−𝛼
i e−1 , (3)

where we have used ki ≡ 2𝜋∕li. Equation (3) can be used to calculate the density modulation index 𝜖N(R)
defined as

𝜖N(R) ≡
𝛿Nki

(R)
N(R)

, (4)

where N is the solar wind background density.

3. Observations, Structure Function, and the Scattering Measure

We now briefly describe the Crab occultation observations and detail how we obtain the structure function
and scattering measure from the measurements. These quantities will be used to compute C2

N (equation (1))
and 𝜖N (equation (4))

3.1. Crab Occultation Observations
Since the Crab occultation technique is a well established one, we only briefly mention the aspects essential
to our purpose. The Crab nebula is usually observed with a single-element interferometer as it passes through
the solar wind from ≈10 to 45R⊙ during mid-June of every year. As it gets close to the Sun, its angular size
increases due to enhanced scattering by the solar wind turbulent density irregularities. Eventually, its size
increases to such an extent that it gets resolved out by the interferometer; the interferometer visibility
decreases to unobservable levels, causing it to appear “occulted.”

Figure 2 (bottom) shows the variation in the observed flux density of the Crab nebula during June 2011 and
2013, while Figure 2 (top) shows the solar disk view of the occultation geometry. While there is a steady
decrease in the observed flux density (from the preoccultation value of ≈2015 ± 100 Jy) from 10 June
(R ≈ 23 R⊙) during the ingress in 2011, the decrease is noticeable from 8 June onward (R ≈ 30 R⊙) in 2013
(see Figure 2). A similar situation occurs during the egress. While the preoccultation value is reached around
21 June (R ≈ 21 R⊙) in 2011, it is only around 23 June (R≈29 R⊙) in 2013. No fringes were observed during
12–18 June in both 2011 and 2013. The distance of the line of sight to the Crab nebula from the Sun was
R ≈15 R⊙ on 12 June (ingress) and was R≈10 R⊙ on 18 June (egress). Considering the fact that the heliographic
latitudes encountered by the Crab nebula during the ingress and egress are different [Kundu, 1965], we find
that the occultation curves for the years 2011 and 2013 in Figure 2 are fairly symmetric. This is expected since
the maximum of the solar cycle 24 was in the year 2013, and it has been shown that the distribution of solar
wind density fluctuations is spherically symmetric close to the solar maximum [Manoharan, 1993].

In the present work, we have used these observations as well as similar ones made earlier. Crab nebula
occultation observations were reported by Machin and Smith [1952] in 1952 at 38 and 80.5MHz. Similar obser-
vations during 1952–1958 were reported in Hewish [1957, 1958]. These observations were made at 38, 81,
and 158MHz over baselines ranging from 60 to 1000m. Crab nebula occultation observations at 26.3 and
38MHz over the baselines of≈ 700–1630m were made during 1961 and 1962 by Hewish and Wyndham [1963].
Furthermore, the normalized visibilities from the earlier observations, which were observed over different
baselines and frequencies, are used after scaling them to 80MHz and a baseline of 1.6km using the general
structure function discussed in section 3.2.

The primary observational quantity inferred from the Crab nebula occultation technique is the visibility V(s),
which is essentially the correlation between the voltages recorded by a pair of antennas. The visibility is a
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Figure 2. (top) Solar disk view of the Crab nebula occultation. The filled circle indicates the Sun, and open circles
represent the position of Crab nebula with respect to the Sun on different dates; ΔR.A. and ΔDec are the offset
distances of Crab nebula from the Sun in right ascension and declination, respectively. The closest concentric circle
around the Sun has a radius of 5 R⊙, and the radii of the rest of the circles differ from their adjacent ones by 5 R⊙ .
(bottom) The observed flux densities of the Crab nebula on different days during its occultation by the solar corona.
The periods before and after 16 June correspond to the ingress and egress, respectively. The circles and asterisks
correspond to measurements during June 2011 and June 2013, respectively.

function of the observing baseline s. We will work with a quantity called the normalized visibility defined as
Γ(s)=V(s)∕V(0). The structure function D𝜙(s)which characterizes the phase perturbations caused by the den-
sity inhomogeneities in the medium is defined as [Prokhorov et al., 1975; Ishimaru, 1978; Coles and Harmon,
1989; Armstrong et al., 1990]

Γ(s) = e−D𝜙(s)∕2 . (5)

In other words,

D𝜙(s) = −2lnΓ(s) = −2ln
[

V(s)∕V(0)
]
, (6)

where V(s) and V(0) are the ensemble averaged values. For our purposes, V(0) is the flux density of the Crab
nebula when it was far from the Sun. Crab occultation observations are typically made using a single baseline,
i.e., one value of s.

3.2. The General Structure Function
Over the years, theoretical developments and observations have converged on a well-accepted formulation
for the structure function to describe density fluctuations in the solar wind [e.g., Coles et al., 1987; Armstrong
et al., 2000; Bastian, 1994; Subramanian and Cairns, 2011]. These expressions for the structure function,
however, are valid only for situations where the baseline s is≪ the inner-scale li(R)or is≫ the inner scale. These
approximations might not hold in our situation; for (depending upon the inner-scale model one assumes)
there are situations where the observing baseline s might be comparable to the inner scale. If this is the case,
using the asymptotic expressions for the structure function will yield inaccurate results, and it is necessary to
use the General Structure Function (GSF) that is valid for the asymptotic regimes s≪ li(R) and s≫ li(R) and also
straddles the intermediate regime s ≈ li(R) [Ingale et al., 2014]. Scatter-broadened images of sources observed
against the background of the solar wind are observed to be anisotropic only for heliocentric distances
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≤5–6R⊙ [Anantharamaiah et al., 1994; Armstrong et al., 1990]. Since our observations are made for distances
ranging from 10 to 45R⊙, it is adequate to use the isotropic GSF, which is defined as follows:

D𝜙(s) =
8𝜋2r2

e𝜆
2ΔL

2𝛼−2(𝛼 − 2)
Γ
(

1 − 𝛼 − 2
2

) C2
N(R)li(R)𝛼−2

(1 − f 2
p (R)∕f 2)

×

{
1F1

[
−𝛼 − 2

2
, 1,−

(
s

li(R)

)2
]
− 1

}
, (7)

where 1F1 is the confluent hypergeometric function, re is the classical electron radius, 𝜆 is the observing
wavelength, R is the heliocentric distance, ΔL is the thickness of the scattering medium, and fp and f are
the plasma and observing frequencies, respectively. The functional form of the structure function is thus
well known; the visibilities from the Crab occultation observations will provide one point that constrains its
amplitude. The functional form of the structure function depends explicitly on the observing wavelength and
the baseline. We use this dependence to normalize visibilities from Crab occultation observations made at dif-
ferent observing frequencies, wavelengths, and baselines to an observing frequency of 80MHz and a baseline
of 1.6km.

The origin of the inner (dissipation) scale li(R) is a subject of intense ongoing research. While some researchers
identify the inner scale with the proton inertial length [Coles and Harmon, 1989; Harmon, 1989; Yamauchi et al.,
1998; Verma et al., 1996; Leamon et al., 1999, 2000; Smith et al., 2001; Bruno and Trenchi, 2014], some use the
proton gyroradius for the inner scale [Bale et al., 2005; Sahraoui et al., 2013; Bisoi et al., 2014a]. These inner-scale
prescriptions are widely used in the literature, and we outline them in section 3.3 for completeness. There are
several instances where the baseline lengths for the observations we consider are comparable to the inner
scale. As shown in section 3.3, the baseline length used in the 2011 and 2013 observations (s=1600 m) is
comparable to the proton gyroradius for the relevant heliocentric distance range (≈10–45 R⊙). However, if
the proton inertial length prescription is used for the inner scale, the typical baseline lengths are far smaller
than the inner scale. We use the GSF (equation (7)), which covers all these situations; it is accurate for s≪ li(R)
through s≈ li(R) and extending to s≫ li(R).

3.3. Inner-Scale Models
In this section we evaluate the inner scales in the solar wind using two different physical prescriptions and
compare it with a fiducial interferometric baseline of 1600m.
3.3.1. Proton Inertial Length
The mechanism of proton cyclotron damping by Alfvén waves is often invoked to account for the dissipation
scale of solar wind turbulence. The inner scale predicted by this mechanism is the proton inertial length (di),
[Coles and Harmon, 1989; Harmon, 1989; Yamauchi et al., 1998; Verma et al., 1996; Leamon et al., 1999, 2000;
Smith et al., 2001; Chen et al., 2014; Bruno and Trenchi, 2014] which can be written as

di(R) = 228 × Ne(R)−1∕2 km, (8)

where Ne(R) is the background plasma density at heliocentric distance R in cm−3. In order to calculate the
background solar wind density, we start with daily peak values of the solar wind density at 1AU during June
2011 and 2013 which were obtained from the Low Resolution OMNI (LRO) data set (http://omniweb.gsfc.
nasa.gov/form/dx1.html). For the rest of the years, the background solar wind density at different heliocentric
distances R (here in units of AU) is extrapolated sunward using the scaling predicted by the density model of
Leblanc et al. [1998]

N(R) = 7.2R−2 + 1.95 × 10−3R−4 + 8.1 × 10−7R−6 cm−3. (9)

Equation (9) assumes a density of 7.2cm−3 at 1AU. To derive the background density at a specified R,
equation (9) is multiplied by N(1AU)/7.2, where N(1AU) denotes the peak value of the background density
from the LRO data set. For the rest of the years the default Leblanc density model is used.

Figure 3 shows the ratio of the interferometric baseline used in June 2011 and 2013 (s= 1600 m) to the pro-
ton inertial length. The open and filled circles correspond to the data points derived using observations in
June 2011 and 2013, respectively. While s is comparable to the inner scale for R < 10 R⊙, it is significantly
smaller than the inner scale for R>10 R⊙. Since our data span 45 R⊙ > R> 10 R⊙, it follows that the s ≪ li

asymptotic branch is adequate if the inner scale is described by the proton inertial length.
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Figure 3. Scatterplot of the ratio of the baseline to proton inertial length
(di) plotted against heliocentric distance. The open and filled circles
denote the data points derived using observations in June 2011 and 2013,
respectively.

3.3.2. Proton Gyroradius
Another popular prescription for the
inner/dissipation scale is the proton
gyroradius [Bale et al., 2005; Sahraoui
et al., 2013; Bisoi et al., 2014a; Chen
et al., 2014]:

𝜌i(R) = 1.02 × 102𝜇1∕2T 1∕2
i B(R)−1 cm,

(10)

where 𝜇(≡ mi∕mp) is the mass of an
ion, in units of the proton mass; Ti is
the proton temperature in eV; and B
is the interplanetary magnetic field in
Gauss. In order to estimate the mag-
netic field, we begin with the daily
average interplanetary magnetic field
(IMF) at 1AU from the LRO data set dur-
ing June 2011 and June 2013. In order
to obtain the IMF at a given heliocen-

tric distance R, we extrapolate these values Sunward using the Parker spiral magnetic field model in the ecliptic
plane [Williams, 1995]:

B(R) = 3.4 × 10−5R−2(1 + R2)1∕2 Gauss, (11)

where R is the heliocentric distance in units of AU. This equation assumes a magnetic field of = 4.7 × 10−5

Gauss at 1AU. We multiply equation (11) with B(1AU)/(4.7 × 10−5), where B(1AU) denotes the daily average
IMF (in Gauss) obtained from the LRO data. Parker spiral magnetic field model is used as it is for the years
other than 2011 and 2013. The inner-scale lengths are calculated using equation (10) by assuming a proton
temperature of Ti = 105 K.

In the slow solar wind (300–400km/s) the proton temperature would be ≈1×105 to 6×105 K for heliocentric
distances ranging from ≈ 0.2 to 0.05AU (i.e., 45–10 R⊙). In the fast solar wind (700–800km/s), the proton
temperature would be ≈1.5 × 106 K at these heliocentric distances [Marsch, 1991]. The proton gyroradius for

Figure 4. Scatterplot of the ratio of the baseline to proton gyroradius (𝜌i )
plotted against heliocentric distance. The open and filled circles denote
the data points derived using observations in June 2011 and 2013,
respectively, for the proton temperature Ti = 105 K.

a proton temperature of 1.5× 106K is
≈60% larger than that for a proton
temperature of 105K. We show the
modulation index using a proton tem-
perature of 105 K as well as 1.5 × 106 K
in Figures 8 and 9.

Figure 4 shows the ratio of the interfer
ometric baseline used for the June
2011 and 2013 observations (s = 1600
m) to the proton gyroradius given by
equation (10). The open and filled cir-
cles denote the ratio corresponding
to the observations in June 2011 and
2013, respectively, for the proton tem-
peratures Ti = 105 K. Evidently, s≈ li(R)
for 10–45 R⊙, which is the heliocentric
distance range of interest to us. If the
inner scale is the proton gyroradius,
neither of the asymptotic approxima-
tions s ≪ li(R) or s ≫ li(R) is there-
fore appropriate, and the GSF needs to
be used.
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3.4. Estimating the Scattering Measure
The scattering measure (SM) is defined as the path integral

SM = ∫ C2
N(R)dl ≈ C2

N(R) ΔL , (12)

where the integration is carried out over the depth over which scattering takes place. When the scattering is
confined to a thin screen, the approximation indicated in equation (12) is acceptable, whereΔL is the thickness
of the scattering screen. We use the GSF defined in equation (7) to calculate the scattering measure, which in
turn will be used to determine C2

N(R). Accordingly,

SM = C2
N(R)ΔL

=
(

f (𝛼, 𝜆)
li(R)𝛼−2

rf (R, 𝜆)
(

1F1(𝛼, s, R) − 1
))−1

D𝜙(s),
(13)

where

f (𝛼, 𝜆) =
8𝜋2r2

e𝜆
2

2𝛼−2(𝛼 − 2)
Γ
(

1 − 𝛼 − 2
2

)
,

rf (R, 𝜆) = 1 − f 2
p (R)∕f 2,

1F1(𝛼, s, R) =1 F1

[
−𝛼 − 2

2
, 1,−

(
s

li(R)

)2
]
.

4. Results
4.1. Heliocentric Dependence of C2

N
As explained in section 3, the structure function D𝜙(s) can be computed from the basic observed quantity
V(s). In turn, the structure function can be used to calculate the scattering measure (equation (13)). We now
describe how the SM can be used to estimate the turbulence amplitude C2

N(R) at different solar elongations R0

(which correspond to different observation dates in June, and therefore to different heliocentric distances).

Assuming solar wind turbulence at these heliocentric distances (10–45 R⊙) to be spherically symmetric, the
SM can also be expressed as [Spangler and Sakurai, 1995]:

SM = ∫
∞

0
C2

N(R) dR = 𝜋

2
C2

N(R0) R0 (14)

C2
N(R0) =

2
𝜋

SM
R0

, (15)

where C2
N(R0) denotes the amplitude of density turbulence at impact parameter R0. The impact parameter R0

is related to the solar elongation [see Duffett-Smith and Zwart, 2011, section 52] by a fraction ≈60∕16, where
16 is the solar radius in minutes of arc. Comparing with equation (12) shows that the scattering screen
thickness is identified as ΔL=(𝜋∕2)R0, in computing C2

N(R0) from the scattering measure.

The SM is estimated from the observed structure function (D𝜙(s)) using two inner-scale models: the proton
inertial length and proton gyroradius (see section 3.3). We use a proton temperature of 105 K in the proton
gyroradius prescription. Furthermore, the SM depends upon the assumed value of power law index (𝛼) of the
density fluctuation spectrum (equation (1)). Generally, the spectrum is observed to follow a Kolmogorov-like
scaling with 𝛼 = 11∕3. However, there is also some evidence for local flattening of the density fluctuation
spectrum at large wave numbers [Celnikier et al., 1987; Coles and Harmon, 1989; Bastian, 1994]; some authors
therefore use 𝛼=3. In view of the lack of consensus on this issue, we compute the SM for 𝛼=11∕3 as well as
𝛼=3. Subsequently, C2

N is calculated from the SM using equation (15).

Using all the available data described in section 2, we compute C2
N as a function of heliocentric distance

between 10 and 45R⊙. Since the observations span years corresponding to solar minimum as well as solar
maximum, we have studied the data from each year separately. For instance, Figure 5 shows the variation of
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Figure 5. A log-log scatterplot of C2
N against heliocentric distance (in R⊙)

derived from observations in 2013. We use 𝛼 = 3, and the inner scale is
the proton inertial length. The fit to C2

N(R) = AR−𝛾 yields 𝛾 = 3.4 and
A = 4 × 105 cm−6.

C2
N with heliocentric distance using data

from 2013. We fit a function of the form
C2

N(R)=A R−𝛾 to the data plotted in these
figures. We find that the data in Figure 5
suggest A = 4 × 105 cm−6 and 𝛾 = −3.4
with a goodness of fit (adjusted R2) 0.72.
Since we have a total of 44 such plots, we
only show one representative example
in Figure 5 and tabulate all our results
in Table 1. It summarizes the heliocen-
tric variation of C2

N for two values of 𝛼
(11/3 and 3) and two inner-scale models
(the proton inertial length and the pro-
ton gyroradius). For instance, in 2011,
C2

N(R) = 3.2×104R−2.8 for 𝛼 = 3 and the
proton inertial length as the inner scale.
On the other hand, C2

N(R)=400R−2.1 for
𝛼 = 3 and the proton gyroradius (with
proton temperature=105 K) as the inner
scale. Table 1 is thus a comprehensive
representation of the heliocentric dis-
tance dependence of C2

N between 10
and 45R⊙. To the best of our knowledge, the only such result in the literature so far is due to Spangler and
Sakurai [1995] and Spangler et al. [1996], who determined the heliocentric dependence of C2

N from 10 to 60R⊙

using VLBI observations during July and August 1991, which is ≈ 2 years past the maximum of cycle 22 in
the declining phase. Their result, which assumes a Kolmogorov spectrum (𝛼 = 11∕3) is C2

N(R) = 3.81R−3.66 in
units of cm−20∕3; the same result is quoted in a slightly different form in equation (2). Of the results we have
compiled, data from 1960 correspond to a similar phase in cycle 19. For this epoch, we obtain C2

N ∝R−𝛾 , with
𝛾 ranging from 3.2 to 3.3. Our results thus yield a remarkably similar dependence of C2

N with heliocentric
distance for the only instance in the published literature where such a comparison can be made.

4.2. Solar Cycle Dependence of C2
N
(R)

It is evident from Table 1 that the values of A and 𝛾 are significantly different for different observation years,
which correspond to different phases of the solar cycle. We investigate the solar cycle dependence of A and 𝛾

in Figures 6 and 7. Figures 6 (top and middle) and 7 (top and middle) show the temporal variation of 𝛾 and A. For
the comparison, the yearly averaged sunspot number (SSN)(http://www.sidc.be/silso/datafiles) for different

Table 1. C2
N as a Function of Heliocentric Distance Deduced From Our Observationsa

Yearly Proton Inertial Length Proton Gyroradius (Ti = 105 K)

Averaged Observed 𝛼 = 3 𝛼 = 11∕3 𝛼 = 3 𝛼 = 11∕3

Serial Number Sunspot Number Year 𝛾 A (cm−6) 𝛾 A (cm−20∕3) 𝛾 A (cm−6) 𝛾 A (cm−20∕3)

1 261.7 1958 −4.2 8.6E+6 −4.9 3.6E+3 −3.7 2.1E+5 −4.7 1.1E+3

2 200.7 1956 −4.9 1.2E+8 −5.6 5.3E+4 −4.4 2.3E+6 −5.4 1.4E+4

3 159 1960 −2.7 8.1E+4 −3.3 3.3E+1 −2.3 3.7E+3 −3.2 1.2E+1

4 94 2013 −3.4 4.0E+5 −3.7 5.6E+1 −2.7 7.0E+3 −3.9 4.0E+1

5 80.8 2011 −2.8 3.2E+4 −3.2 4.9E+0 −2.1 4.0E+2 −3.0 1.2E+0

6 76.4 1961 −2.8 1.1E+5 −3.5 4.3E+1 −2.6 7.2E+3 −3.4 1.8E+1

7 54.2 1955 −4.9 4.0E+7 −5.6 1.8E+4 −4.2 5.2E+5 −5.3 4.2E+3

8 53.4 1962 −2.2 2.2E+3 −2.8 1.3E+0 −2.5 1.8E+3 −2.9 7.4E−1

9 45 1952 −2.1 3.7E+4 −2.7 1.1E+1 −1.7 1.4E+3 −2.6 5.3E+0

10 20.1 1953 −2.7 1.5E+5 −3.4 6.8E+1 −2.3 4.7E+3 −3.2 2.0E+1

11 6.6 1954 −2.9 1.4E+5 −3.6 6.4E+1 −2.8 1.1E+4 −3.6 2.7E+1
aWe fit the data for each year with a function of the form C2

N(R) = AR−𝛾 . This table shows values for A and 𝛾 .
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Figure 6. Parameters (top) 𝛾 and (middle) A (cm−6) as a function of time. The circles and squares represent the proton
inertial and proton gyroradius inner-scale models, respectively, with 𝛼 = 3. For the proton gyroradius model, we use a
temperature of 105 K. (bottom) The solid line shows the yearly averaged sunspot number, and the asterisk represents
the year in which the Crab occultation measurements were made. It is evident that both 𝛾 and A correlate well with the
solar cycle.

years are plotted in Figures 6 (bottom) and 7 (bottom). Figure 6 corresponds to 𝛼 = 3, while Figure 7 refers
to 𝛼=11∕3. Upon comparing the top and middle panels with the bottom ones, it is evident that both A and
𝛾 are well correlated with the sunspot number. These trends hold irrespective of whether we use the proton
gyroradius or proton inertial length prescription for the inner scale and whether we use 𝛼=11∕3 or 𝛼=3.

The correlation between A and the sunspot number is indicative of the fact that the overall magnitude of scat-
tering is higher during solar maximum as compared to solar minimum. This is consistent with earlier results
using interplanetary scattering observations [Janardhan et al., 2011; Manoharan, 2012; Janardhan et al., 2015].

The correlation between 𝛾 and the sunspot number indicates that the scattering strength falls off faster with
heliocentric distance when solar activity increases. This might be because the large-scale solar magnetic field
becomes more multipolar with increasing solar activity. For instance, this is reflected by the increasing com-
plexity of the streamer belt with solar activity [Wang et al., 2000; Richardson and Kasper, 2008]. Higher-order
multipolar fields are known to fall off more rapidly with heliocentric distance than a dipole, and this could be
reflected in the spatial behavior of the scattering strength, characterized by 𝛾 . Conversely, it has been reported
earlier [Tokumaru et al., 2000] that the scintillation index for IPS observations shows a rather shallow variation
with heliocentric distance toward solar minimum. It should also be borne in mind that the Crab nebula passes
from low latitudes to high(er) ones (Figure 2, top). Near solar minimum, this means that it progresses from
sampling the slow solar wind to the fast solar wind, and this is an additional complicating factor. Near solar
maximum, the solar wind is relatively more symmetric with latitude and is predominantly slow [McComas
et al., 2000; Asai et al., 1998].

4.3. Heliocentric and Solar Cycle Dependence of 𝝐N ≡ 𝜹Nki
∕N

We next use our knowledge of C2
N to estimate the density modulation index 𝜖N using equations (3) and (4).

We use Leblanc et al. [1998] prescription to evaluate the background solar wind density N. The heliocentric
distance dependence of 𝜖N is shown in Figure 8 for different years. This quantity is computed using both the
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Figure 7. Same as Figure 6, except for 𝛼, which is 11/3. The dimensions of A are therefore cm−20∕3.

Figure 8. The measured density fluctuation index (𝜖N) over a heliocentric distance in different years using different inner-scale models. The asterisk indicates the
proton inertial length model, and circles and squares represent the proton gyroradius model with proton temperature 105 and 1.5 × 106 K, respectively.
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Figure 9. (top) The variation of the density fluctuations in different years is an evidence of their dependence on solar
cycle. The triangles indicate the proton inertial length model, and the circles and squares indicate the proton gyroradius
model with the proton temperature 105 and 1.5 × 106 K, respectively. (bottom) The asterisk indicates the average
sunspot number on corresponding years.

proton inertial length and proton gyroradius inner-scale models. The broad conclusion that can be drawn
from Figure 8 is that 𝜖N ranges between 0.001 and 0.1, and it is only weakly dependent on heliocentric
distance. The most we could discern was a linear dependence of 𝜖N with heliocentric distance with a slope of
1.45×10−3 R−1

⊙
in 1952. During solar maximum years, however, the slope was close to 0. We note that Asai et al.

[1998] have investigated the solar wind speed dependence of the density modulation index using IPS
observations; this, in turn, can be related to solar cycle dependence.

Since the heliocentric distance dependence of 𝜖N is rather weak, it is meaningful to compute an average for
this quantity for each year. The average of 𝜖N between 10 and 45R⊙ is plotted as a function of time in Figure 9
(top). Comparison with Figure 9 (bottom), which shows the sunspot numbers, shows that 𝜖N broadly follows
the solar cycle.

However, we note that 𝜖N shows a prominent dip around 1958, which happens to be the year with the highest
sunspot number of the data we have examined. Although the dip comprises only one data point, the following
could be a tentative explanation for it: Celnikier et al. [1987] notes that the modulation index (𝜖N) is positively
correlated with the temperature of solar wind protons. At 1AU, it is also observed that the proton temperature
is positively correlated with solar wind speed [Lopez and Freeman, 1986]. Taken together, this implies that
𝜖N should be larger in the fast solar wind than in the slow solar wind. During the solar minimum, the Sun’s
large-scale magnetic field is predominantly dipolar. Consequently, higher latitudes are dominated by fast
(≈700 km/s) solar wind emanating from coronal holes. Lower latitudes, on the other hand, are dominated by
the slow solar wind (≈ 400 km/s) emanating from near the streamer belt. During solar maximum, however,
the large-scale solar magnetic fields is multipolar. Coronal holes are not as prevalent and slow solar wind is
observed over all heliolatitudes [McComas et al., 2000; Asai et al., 1998]. Since 1958 was associated with a high
sunspot number (the highest of the years we have considered), we expect slow solar wind (and low proton
temperatures) at all heliolatitudes because the magnetic field is multipolar.
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Furthermore, Asai et al. [1998] suggest that the modulation index of the high-speed solar wind (which is
usually observed near solar minimum) shows significant evolution with heliocentric distance. Our results
(Figure 8) show that the modulation index does not vary appreciably with heliocentric distance during the
solar maximum years of 1956, 1958, 1960, 1961, and 2013, when the slow solar wind is expected to dominate.
Our results are thus consistent with the converse of the conclusions reached by Asai et al. [1998].

5. Summary and Conclusions

Density fluctuations are an important and relatively ill-understood facet of the phenomenon of solar wind
turbulence. Most studies of solar wind turbulence in general, and density fluctuations in particular, concen-
trate on the spectral slope (𝛼, equation (1)) and not so much on its spectral amplitude (C2

N, equation (1)).
Needless to say, the amplitude of the density turbulence spectrum is key to several important problems such
as extended solar wind heating and angular broadening of radio sources. Our knowledge of C2

N (and its helio-
centric dependence in particular) is currently limited to the investigations of Spangler and Sakurai [1995] and
Spangler et al. [1996] (quoted in equation (2)), who used VLBI observations made 2years past the maximum
of cycle 19 to probe scale sizes ≥200 km. Their formulation used the Kolmogorov scaling (𝛼 = 11∕3) and did
not consider an inner/dissipation scale. The density modulation index 𝜖N (equation (4)) is somewhat better
studied. However, most of these studies have rather sparse coverage, and the only comprehensive study of
this quantity that we are aware of [Bisoi et al., 2014a] is only for heliocentric distances > 40 R⊙.

We use results from the standard technique of Crab nebula occultation to obtain a comprehensive palette
of results concerning the heliocentric dependence of the density turbulence spectral amplitude (C2

N) and the
density modulation index (𝜖N) for 10<R<45 R⊙. This is a distance range that is typically not covered by either
IPS or interferometric techniques. We include the effects of the inner scale using currently prevalent models
for it. Since the spatial scales used are small enough to possibly be comparable to the inner/dissipation
scale, we use the general structure function (GSF) to model the observed visibilities rather than asymptotic
approximations. Since there is evidence for flattening of the spectrum near the inner scale, we quote results
for 𝛼=11∕3 as well as a flatter value of 3. We parametrize the heliocentric dependence of the density turbu-
lence amplitude as C2

N(R)=A R−𝛾 ; the values of A and 𝛾 from our observations are shown in Table 1. This gives
an idea of the range of possibilities for the behavior of C2

N using currently prevalent ideas. To the best of our
knowledge, this is the most extensive characterization of the density turbulence spectral amplitude to date.
For example, for the proton inertial length prescription for the inner scale and 𝛼=3, “A” ranges from 2.2× 103

to 1.2 × 108 cm−6, and 𝛾 ranges from −2.1 to −4.9. With the same inner-scale prescription, with 𝛼 = 11∕3, A
varies between 1.3 and 5.3×104 m−20∕3 and 𝛾 ranges from−2.7 to−5.6. With the proton gyroradius inner-scale
model and 𝛼 = 3, A ranges from 4 × 102 to 2.3 × 106 cm−6 and 𝛾 ranges from −1.7 to −4.4. With the proton
gyroradius inner-scale model and 𝛼=11∕3, A ranges from 0.74 to 1.4 × 104 cm−20∕3 and 𝛾 varies from −2.6 to
−5.4. In the only instance where our results can be compared with the existing results of Spangler and Sakurai
[1995] and Spangler et al. [1996], our values for 𝛾 agree well with theirs. Given the widely different observa-
tional and theoretical interpretation techniques we use, and the fact that the observations we are using for
comparison are from a different solar cycle, this is remarkable.

Since we have used data from varying stages of the solar cycle, we investigate the solar cycle dependence of
A and 𝛾 , the results for which are summarized in Figures 6 and 7. The behavior of A confirms the well-known
fact that the overall strength of scattering increases with increasing solar activity and vice versa. Our results
for 𝛾 imply that the scattering amplitude decreases more rapidly with heliocentric distance with increasing
solar activity. This is intriguing and could reflect the increasingly multipolar nature of the large-scale coronal
magnetic field near solar maximum, since higher-order multipoles decay more rapidly with distance. Taken
together, our results could have interesting implications for the connection between density fluctuations and
the large-scale solar magnetic field. The possible connection between declining (large-scale) polar fields and
the density turbulence levels probed by the IPS technique has been pointed out earlier [Janardhan et al., 2010,
2011, 2015; Bisoi et al., 2014b]. Our results are an interesting complementary take on this problem, using a
different technique and for heliocentric distances that are much closer to the Sun.

We also use our knowledge of C2
N to obtain the density modulation index as defined in equations (3) and (4).

In agreement with the results of Bisoi et al. [2014a] for larger heliocentric distances, we find that 𝜖N depends
only weakly on heliocentric distance. While Bisoi et al. [2014a] found that 𝜖N shows a monotonic decline of
around 8% over solar cycle 23, we find that 𝜖N closely tracks the solar cycle, with a peak-to-peak variation
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(from 1956 to 1962) of around 72%. Our results on the density modulation index can be used to investi-
gate some important questions regarding the solar wind: it can be used to calculate the extended solar wind
heating rate, and it provides yet another way of investigating the relation between density turbulence, the
large-scale magnetic field, and turbulent magnetic field fluctuations.
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