Electric Dipole Moment of Neutron, Deuteron and Mercury in Supersymmetry w/o R-parity Phys. Rev. D 76:013003,2007 C.C. Chiou, O.C.W. Kong and RV

PCPV-2013@Mahabaleshwar Feb. 19-23 2013

RISHIKESH VAIDYA

Department of Physics, BITS Pilani

Introduction

EDMs: Why should one care?

B Decays

Though it is like hunting for needle in a haystack, there is no escape. B decays are our best bet to discover CPV in flavor changing sector.

Electric Dipole Moment

- the only place to hunt for flavor diagonal menifestation of CPV
- table top experiments (Compare this with B factories !)
- provide essentially background free probe
- proposed EDM exp. to probe CPV to unprecedented sensitivity
- ideal playground to study interplay of leptons, quarks, hadrons, nuclei, atoms and molecules.

< > -

An Elementary Slide

Classical EDM:
$$\vec{d} = q\vec{x}$$

- \Rightarrow its a polar vector
- $\Rightarrow P\vec{d} = -\vec{d} \quad T\vec{d} = \vec{d}$

A Quantum EDM

- ⇒ Coefficient of <u>dim 5</u> operator
- $\Rightarrow \vec{d} \propto \vec{s}$ An axial vector !!
- $\Rightarrow P\vec{d} = \vec{d} \quad T\vec{d} = -\vec{d}$
- \Rightarrow It violats P and T

Classical MDM: $\vec{\mu} = I\vec{A}$

- \Rightarrow its an axial vector
- $\Rightarrow P\vec{\mu} = \vec{\mu} \quad T\vec{\mu} = -\vec{\mu}$
- A Quantum MDM:
- ⇒ Coefficient of <u>dim 5</u> operator

$$\Rightarrow \vec{\mu} \propto \vec{s}$$

$$\Rightarrow P\vec{\mu} = \vec{\mu} \quad T\vec{\mu} = -\vec{\mu}$$

 \Rightarrow It conserves P and T

Three main categories

- EDMs of paramagnetic atoms and molecules (${}^{85}Rb, {}^{133}Cs, {}^{205}Tl$) most sensitive to leptonic sources of P - T violation Best bound so far: $|d_{Tl}| < 6.9 \pm 7.4 \times 10^{-28}$ e cm
- EDMs of diamagnetic atoms (${}^{129}Xe$ and ${}^{199}Hg$ most sensitive to hadronic sources of P - T violation Best bound so far: $|d_{Hg}| < 3.1 \times 10^{-29}$ e cm (95% C.L.)
- EDMs of hadrons and nucleons Best bound so far: $d_n < 2.9 \times 10^{-26}$ e cm (90 % C.L.)

Shiff showed that EDM interaction of a non-relativistic atom vanishes irrrespective of whether its constituents have EDMs or not

It is based on two assumptions

- Atoms consist of non-relativistic particles which interact only electrostatically
- The EDM distribution of each atomic constituent is identical to its charge distribution

EDM vanishes due to screening of applied electric field

It is based on two assumptions

- Atoms consist of non-relativistic particles which interact only electrostatically
- The EDM distribution of each atomic constituent is identical to its charge distribution

EDM vanishes due to screening of applied electric field

Parmagnetic and diamagnetic EDMs result due to relativistic and finite size effects and such effects are maximized in heavy atoms

EDM: Hierarchy of Scales

Neutron EDM

Three fundamental sources of contributions

- **QCD** θ -term $\frac{g_s^2}{32\pi^2} \bar{\theta} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$
- quark EDMs $d_i \bar{\psi}_i (F\sigma) \gamma_5 \psi_i$ & CEDMs $d_i^c \bar{\psi}_i g_s (G\sigma) \gamma_5 \psi_i$

Three different techniques

- Non-relativistic SU(6) quark model
- Chiral Lagrangian technique
- QCD sum rules

Non-relativistic SU(6) (Naive) quark model

Associate a non-relativistic wavefunction to the neutron consisting of three constituent quarks with two spin states each.

$$d_n = \Delta q d_q$$

where $\langle N | \bar{q} \gamma_{\mu} \gamma_{5} q | N \rangle = \Delta q \bar{N} \gamma_{\mu} \gamma_{5} N$ and q = u, d.

Naive quark model $\Rightarrow \Delta u = -1/3$ and $\Delta d = 4/3$ (C.G. coefficients).

However, Naive quark model may not be sufficient as the contribution to nucleon spin from the strange quark (Δs) is non-vanishing.

$$d_q = \eta^E d_q^E + \eta^C \frac{e}{4\pi} d_q^C$$

 $\eta^E = .61$ $\eta^C = 3.4$ are QCD running factors.

Chiral Techniques

 π^{-}

p

n

Chiral Techniques

First calculation [Crewther, Veneziano, Witten PLB'79] $d_n = \frac{e}{\pi^2 M_n} g_{\pi NN} \bar{g}_{\pi NN}^0 \ln \frac{\Lambda}{m_{\pi}}$

For θ -term contribution, PCAC reduction of pion works well $\bar{g}_{\pi NN}^{0}(\theta_{q}) = \frac{\theta_{q}m_{*}}{f_{\pi}} \langle p | \bar{q}\tau^{3}q | p \rangle \left(1 - \frac{m_{\pi}^{2}}{m_{\eta}^{2}}\right)$ One can determine

 $\langle N | \bar{q} \tau^3 q | N \rangle$ from Lattice calculations or using global SU(3).

Chiral Techniques

First calculation [Crewther, Veneziano, Witten PLB'79] $d_n = \frac{e}{\pi^2 M_n} g_{\pi NN} \bar{g}^0_{\pi NN} \ln \frac{\Lambda}{m_{\pi}}$

- Imposing $U(1)_{PQ} \theta$ -term contribution vanishes However, the presence of CP-odd operators (CEDM) can shift the position of axion expectation value, leading to additional contributions $d_n(\theta_{ind})$ [Bigi, Uraltsev JETP'91]
- CEDM contribution is not calculable in Chiral Lagrangian method(?) Nevertheless, we have [Hisano and Shmizu PRD'2004]

 $d_n = -(1.6 \times d_u^C + 1.3 \times d_d^C + 0.26 \times d_s^C) \text{ e cm}$

QCD Sum Rule

Pros –

- The only method that allows for systematic treatment of all CP violating sources
- Reduced uncertainly due to cancellation of light quark mass dependence

Cons -

Sea quark and gluon dynamics difficult to incorporate

Treatment of CPV operators upto dim=5

 $d_n^{PQ}(d_q^E, d_q^C) = (1 \pm 0.5 \frac{|\langle \bar{q}q \rangle|}{(225MeV)^3}) [1.1e(d_d^C + 0.5d_u^C) + 1.4(d_d^E - .25d_u^E)]$

QCD sum rule reproduces ratio of quark EDM contribution expected from non-relativistic SU(6) quark model !

Mercury EDM – Finite size nucleus gives rise to CPV N - Ninteraction inducing Schiff moment $S(d^C, W, \theta)$ which generates CP-odd electrostatic potential $V_{\text{eff.}} = 4\pi S(\vec{I} \cdot \vec{\nabla})\delta(\vec{r})$ for electron and hence giving rise to atomic EDM. The QCD sum rule approach gives

$$d_{Hg} = -(d_d^C - d_u^C - 0.012d_s^C) \times 3.2 \cdot 10^{-2}e.$$

The Chiral Lagrangian approach gives –

$$d_{Hg} = -8.7 \times 10^{-3} \times e(d_d^C - d_u^C - 0.0051d_s^C).$$

For Deuteron EDM $d_D = d_n + d_p + d_D^{NN}$

$$d_D = -e(d_u^C - d_d^C)5_{-3}^{+11}$$

Neutron EDM in SM

- (\hat{L}_i, \hat{H}_d) carry identical gauge quantum numbers
- \Rightarrow gauge int. respect an SU(4) symmetry in (\hat{L}_i, \hat{H}_d) space
- \Rightarrow Yukawa int. break SU(4) symmetry
- \Rightarrow several choices before you write Superpotential W:

 (\hat{L}_i, \hat{H}_d) carry identical gauge quantum numbers

- \Rightarrow gauge int. respect an SU(4) symmetry in (\hat{L}_i, \hat{H}_d) space
- \Rightarrow Yukawa int. break SU(4) symmetry
- \Rightarrow several choices before you write Superpotential W:

Choice A: impose L and B conservation \Rightarrow **MSSM** $W_{MSSM} = \mu_0 \hat{H}_u \hat{H}_d + h^u_{ij} \hat{Q}_i \hat{H}_u \hat{U}^c_j + h^d_i \hat{H}_d \hat{Q}_i \hat{D}^c_i + h^e_i \hat{H}_d \hat{L}_i \hat{E}^c_i$

 $\left(\hat{L}_{i},\hat{H}_{d}\right)$ carry identical gauge quantum numbers

- \Rightarrow gauge int. respect an SU(4) symmetry in (\hat{L}_i, \hat{H}_d) space
- \Rightarrow Yukawa int. break SU(4) symmetry
- \Rightarrow several choices before you write Superpotential W:

Toward Choice B: Since L is accidental – forsake L conservation $W_{MSSM} = \mu_0 \hat{H}_u \underbrace{\hat{H}_d}_{\hat{L}_i} + h^u_{ij} \hat{Q}_i \hat{H}_u \hat{U}^c_j + h^d_i \underbrace{\hat{H}_d}_{\hat{L}_i} \hat{Q}_i \hat{D}^c_i + h^e_i \underbrace{\hat{H}_d}_{\hat{L}_i} \hat{L}_i \hat{E}^c_i$

 $\left(\hat{L}_{i},\hat{H}_{d}\right)$ carry identical gauge quantum numbers

- \Rightarrow gauge int. respect an SU(4) symmetry in (\hat{L}_i, \hat{H}_d) space
- \Rightarrow Yukawa int. break SU(4) symmetry
- \Rightarrow several choices before you write Superpotential W:

Choice B: L violation $\Rightarrow \hat{H}_d \rightarrow \hat{L}_\alpha = (\hat{L}_0, \hat{L}_i)$

$$h_i^d \rightarrow \lambda'_{\alpha j k} = (\underbrace{\lambda'_{0 i i}}_{h_i^d}, \lambda'_{i j k})$$

$$h_i^e \to \lambda_{\alpha\beta k} = (\underbrace{\lambda_{0ii}}_{h_i^e}, \lambda_{ijk})$$

 \hat{H}_d

 (\hat{L}_i, \hat{H}_d) carry identical gauge quantum numbers

- \Rightarrow gauge int. respect an SU(4) symmetry in (\hat{L}_i, \hat{H}_d) space
- \Rightarrow Yukawa int. break SU(4) symmetry
- \Rightarrow several choices before you write Superpotential W:

Choice B: L violation $\Rightarrow \hat{H}_d \rightarrow \hat{L}_\alpha = (\hat{L}_0, \hat{L}_i)$

 $W_{MSSM+LV} = \mu_{\alpha}\hat{H}_{u}\hat{L}_{\alpha} + h^{u}_{ik}\hat{Q}_{i}\hat{H}_{u}\hat{U}^{c}_{k} + \lambda'_{\alpha jk}\hat{L}_{\alpha}\hat{Q}_{j}\hat{D}^{c}_{k} + \frac{1}{2}\lambda_{\alpha\beta k}\hat{L}_{\alpha}\hat{L}_{\beta}\hat{E}^{c}_{k}$

 \hat{H}_d

 (\hat{L}_i, \hat{H}_d) carry identical gauge quantum numbers

- \Rightarrow gauge int. respect an SU(4) symmetry in (\hat{L}_i, \hat{H}_d) space
- \Rightarrow Yukawa int. break SU(4) symmetry
- \Rightarrow several choices before you write Superpotential W:

Choice B: L violation $\Rightarrow \hat{H}_d \rightarrow \hat{L}_\alpha = (\hat{L}_0, \hat{L}_i)$

 $W_{MSSM+LV} = \mu_{\alpha}\hat{H}_{u}\hat{L}_{\alpha} + h^{u}_{ik}\hat{Q}_{i}\hat{H}_{u}\hat{U}^{c}_{k} + \lambda'_{\alpha jk}\hat{L}_{\alpha}\hat{Q}_{j}\hat{D}^{c}_{k} + \frac{1}{2}\lambda_{\alpha\beta k}\hat{L}_{\alpha}\hat{L}_{\beta}\hat{E}^{c}_{k}$ Choice C: R-parity violation $\Rightarrow W_{MSSM+LV} + \frac{1}{2}\lambda''_{ijk}\hat{U}^{c}_{i}\hat{D}^{c}_{j}\hat{D}^{c}_{k}$

 \hat{H}_d

Freedom of SU(4) Rotation: use and misuse

RPV Framework: though Yukawa break SU(4), LV implies a freedom of SU(4) rotation in (\hat{L}_i, \hat{H}_d)

Two popular choices:

- ⇒ single μ parametrization (SMP): all $\mu_i = 0$ for i = 1, 2, 3
- \Rightarrow single VEV parametrization (SVP): all $\tilde{\nu}_i = 0$ for i = 1, 2, 3

Which one is the best?

Freedom of SU(4) Rotation: use and misuse

RPV Framework: though Yukawa break SU(4), LV implies a freedom of SU(4) rotation in (\hat{L}_i, \hat{H}_d) Two popular choices:

- \Rightarrow single μ parametrization (SMP): all $\mu_i = 0$ for i = 1, 2, 3
- \Rightarrow single VEV parametrization (SVP): all $\tilde{\nu}_i = 0$ for i = 1, 2, 3

Which one is the best ? Depends on who you ask ? In practise –

- ⇒ both choices present their own complications [principle of conservation of difficulty]
- \Rightarrow it is important to specify a basis choice and work consistently
- \Rightarrow we shall work in SVP.

EDM from R-parity Violation

2-loop contribution [Godbole, Pakvasa, Rindani, Tata PRD'2000]

1-loop EDMs from R-parity Violation

quark EDM is given as:

$$\left(\frac{d_f}{e}\right)_{\phi} = -\frac{\alpha_{\text{em}}}{4\pi \sin^2 \theta_W} \sum_{m}' \sum_{n=1}^{3} \operatorname{Im}(\widetilde{\mathcal{C}}_{nmi}^L \widetilde{\mathcal{C}}_{nmi}^{R*}) \frac{M_{f'_n}}{M_{\tilde{\ell}_m}^2} \left[\left(\mathcal{Q}_f - \mathcal{Q}_{f'}\right) F_4\left(\frac{M_{f'_n}^2}{M_{\tilde{\ell}_m}^2}\right) - \mathcal{Q}_{f'} F_3\left(\frac{M_{f'_n}^2}{M_{\tilde{\ell}_m}^2}\right) \right] ,$$

and for the chromo-electric dipole form factor,

$$\left(d_f^C\right)_{\phi} = \frac{g_s \alpha_{\text{em}}}{4\pi \sin^2 \theta_W} \sum_m' \sum_{n=1}^3 \operatorname{Im}(\widetilde{\mathcal{C}}_{nmi}^L \widetilde{\mathcal{C}}_{nmi}^{R*}) \frac{M_{f'_n}}{M_{\tilde{\ell}_m}^2} \mathcal{Q}_{f'} F_3\left(\frac{M_{f'_n}^2}{M_{\tilde{\ell}_m}^2}\right) .$$

Focussing on RPV part of $\operatorname{Im}(\widetilde{\mathcal{C}}_{nmi}^{L}\widetilde{\mathcal{C}}_{nmi}^{R*})$:

Focussing on RPV part of $\operatorname{Im}(\widetilde{\mathcal{C}}_{nmi}^{L}\widetilde{\mathcal{C}}_{nmi}^{R*})$:

For *d*-quark EDM, $\operatorname{Im}(\widetilde{\mathcal{C}}_{nm1}^{L}\widetilde{\mathcal{C}}_{nm1}^{R*})_{RPV} = \operatorname{Im}\left[(y_{u_n}V_{\mathsf{CKM}}^{n1}\mathcal{D}_{1m}^{l*}) \times (\lambda'_{jk1}V_{\mathsf{CKM}}^{nk*}\mathcal{D}_{(j+2)m}^{l})\right].$

For the *u*-quark dipole, we have

 $\mathrm{Im}(\widetilde{\mathcal{C}}_{nm1}^{L}\widetilde{\mathcal{C}}_{nm1}^{R*})_{RPV} = \mathrm{Im}\left[(\lambda'_{jkn} V_{\mathsf{CKM}}^{1k*} \mathcal{D}_{(j+2)m}^{l}) \ \times \ (y_u V_{\mathsf{CKM}}^{1n} \mathcal{D}_{1m}^{l*}) \right].$

Focussing on RPV part of $\operatorname{Im}(\widetilde{\mathcal{C}}_{nmi}^{L}\widetilde{\mathcal{C}}_{nmi}^{R*})$:

For *d*-quark EDM,

$$\operatorname{Im}(\widetilde{\mathcal{C}}_{nm1}^{L}\widetilde{\mathcal{C}}_{nm1}^{R*})_{RPV} = \operatorname{Im}\left[(\underbrace{y_{u_n}}_{V_{\mathsf{CKM}}}V_{1m}^{n1}\mathcal{D}_{1m}^{l*}) \times (\lambda'_{jk1}V_{\mathsf{CKM}}^{nk*}\mathcal{D}_{(j+2)m}^{l})\right].$$

For the *u*-quark dipole, we have

 $\operatorname{Im}(\widetilde{\mathcal{C}}_{nm1}^{L}\widetilde{\mathcal{C}}_{nm1}^{R*})_{RPV} = \operatorname{Im}\left[(\lambda'_{jkn} V_{\mathsf{CKM}}^{1k*} \mathcal{D}_{(j+2)m}^{l}) \times (\underbrace{y_u}_{\mathsf{CKM}}^{1n} \mathcal{D}_{1m}^{l*}) \right].$

Focussing on RPV part of $\operatorname{Im}(\widetilde{\mathcal{C}}_{nmi}^{L}\widetilde{\mathcal{C}}_{nmi}^{R*})$:

For *d*-quark EDM,

$$\operatorname{Im}(\widetilde{\mathcal{C}}_{nm1}^{L}\widetilde{\mathcal{C}}_{nm1}^{R*})_{RPV} = \operatorname{Im}\left[(\underbrace{y_{u_n}}_{V_{\mathsf{CKM}}}V_{1m}^{n1}\mathcal{D}_{1m}^{l*}) \times (\lambda'_{jk1}V_{\mathsf{CKM}}^{nk*}\mathcal{D}_{(j+2)m}^{l})\right].$$

For the *u*-quark dipole, we have

$$\operatorname{Im}(\widetilde{\mathcal{C}}_{nm1}^{L}\widetilde{\mathcal{C}}_{nm1}^{R*})_{RPV} = \operatorname{Im}\left[(\lambda'_{jkn} V_{\mathsf{CKM}}^{1k*} \mathcal{D}_{(j+2)m}^{l}) \times (\underbrace{y_u}_{\mathsf{CKM}}^{1n} \mathcal{D}_{1m}^{l*}) \right].$$

m = 1 Goldstone mode, m = 2 - 5 1st order in perturbation, m = 6 - 8 2nd order effects.

To 1st order:
$$\mathcal{D}_{(j+2)2}^l \mathcal{D}_{12}^{l*} \sim rac{B_j^*}{M_s^2} imes \mathrm{O}(1)$$

What about μ_i ?

Term involving μ_i is given as:

$$\mathcal{D}_{(j+2)(j+5)}^{l} \mathcal{D}_{1(j+5)}^{l*} \sim \frac{\mu_{j}^{*} m_{j}}{M_{s}^{2}} \times \left[\frac{(A_{e}^{*} - \mu_{0} \tan \beta) m_{j}}{M_{s}^{2}} - \frac{\sqrt{2} M_{W} \sin \beta (\mu_{k} \lambda_{kjj}^{*})}{g_{2} M_{s}^{2}} \right]$$

 μ_i contribution is suppressed because:

- contributes at 2nd order in perturbation expansion
- proportionality to lepton mass
- in principle λ_{kjj} can also contribute but they have to be present in addition to μ_i and λ'_{ijk} making it 4th order in RPV.

So we will concentrate on $B_i \lambda'$ kind of contributions.

Numerical Results

Parameter Specifications:

- Keep a pair(a bilinear B_i and a trilinear λ') of RPV couplings non-zero at a time
- All sleptons and H_d to be 100 GeV, $\mu_0 = -300$ GeV
- up-type Higgs and B₀ determined from EW symmetry breaking condition
- $\tan \beta = 3$ (very little sensitivity to $\tan \beta$
- **CKM** phase + relative phase of $\pi/4$ in RPV couplings

Nemerics: the top loop conribution

< > - +

Table of bounds

Para	meter v μ_0 (GeV)	alues \tilde{m}_L (GeV)	m_{H_d} (GeV)	RPV phase	I	$\frac{\Im(B_i^*\cdot\lambda_{i31}')}{(100 \text{ GeV})^2}$ II	III
(a) (b) ^a (c) (d)	-100 -100 -400 -800	100 100 100	100 100 100	$\pi/4$ 0 $\pi/4$ $\pi/4$	$ \begin{array}{c} 1.5 \times 10^{-4} \\ 8.0 \times 10^{-5} \\ 5.5 \times 10^{-4} \\ 1.7 \times 10^{-3} \end{array} $	5.0×10^{-7} 2.5×10^{-7} 2.6×10^{-6} 5.5×10^{-5}	1.5×10^{-5} 2.0×10^{-5} 5.2×10^{-5} 1.5×10^{-4}
(u) (e) (f) (g) (h)	-100 -100 -100 -100	400 800 100 100	100 100 100 300 600	$\pi/4 \ \pi/4 $	$ \begin{array}{c} 1.7 \times 10 \\ 6.3 \times 10^{-4} \\ 1.9 \times 10^{-3} \\ 3.8 \times 10^{-4} \\ 1.0 \times 10^{-3} \end{array} $	$ \begin{array}{r} 5.5 \times 10 \\ 2.1 \times 10^{-6} \\ 6.4 \times 10^{-6} \\ 1.2 \times 10^{-6} \\ 3.5 \times 10^{-6} \end{array} $	1.3×10^{-5} 5.6×10^{-5} 1.6×10^{-4} 3.6×10^{-5} 9.2×10^{-5}

How do I experimentally detect a Permanant neutron EDM ?

- Ultracold neutrons (UCN) trapped in uniform \vec{E} and \vec{B} fields.
- $\blacksquare H = H_0 \mu_n . \vec{B} d_n . \vec{E}$

• Larmor frequencies are given by $h\nu_{\uparrow\uparrow} = |2\mu_n B + 2d_n E|$ for $\vec{s_n} \uparrow\uparrow$ to \vec{B}, \vec{E} $h\nu_{\uparrow\downarrow} = |2\mu_n B - 2d_n E|$ for $\vec{s_n} \uparrow\uparrow$ to \vec{B} and $\uparrow\downarrow \vec{E}$

Now measure any shift in the transition frequency ν as an applied field \vec{E} alternated between being parallel and then anti-parallel to \vec{B}

The electric field technique explains the focus on the neutral particles for EDM measurement

'Permanant' EDM of Polar Molecules (Ammonia and Water)

• H_2O and NH_3 have pair of nearly degenerate states with opposite parities $|+\rangle, |-\rangle$

'Permanant' EDM of Polar Molecules (Ammonia and Water)

In presence of external \vec{E} $|r\rangle = \frac{(|+\rangle+|-\rangle)}{\sqrt{2}}$ $|l\rangle = \frac{(|+\rangle-|-\rangle)}{\sqrt{2}}$ $E_{r,l} = \frac{1}{2}(E_{+} + E_{-}) \pm \left[\frac{1}{4}(E_{+} - E_{-})^{2} + (e\langle \vec{x} \rangle \cdot \vec{E})^{2}\right]^{\frac{1}{2}}$

- Because E_{\pm} are almost degenerate $e\langle \vec{x} \rangle \cdot \vec{E}$ dominates $E_{r,l} = \frac{1}{2}(E_{+} + E_{-}) \pm e\langle \vec{x} \rangle \cdot \vec{E}$
- Energy shift is linear in \vec{E} and the proportionality constant is called permanant EDM of this molecule
- If measurement were carried out infinitesimally weak \vec{E} at very low temp. the shift would be quadratic

'Permanant' EDM of Polar Molecules (Ammonia and Water)

In presence of external \vec{E} $|r\rangle = \frac{(|+\rangle+|-\rangle)}{\sqrt{2}}$ $|l\rangle = \frac{(|+\rangle-|-\rangle)}{\sqrt{2}}$ $E_{r,l} = \frac{1}{2}(E_{+} + E_{-}) \pm \left[\frac{1}{4}(E_{+} - E_{-})^{2} + (e\langle \vec{x} \rangle \cdot \vec{E})^{2}\right]^{\frac{1}{2}}$

- Because E_{\pm} are almost degenerate $e\langle \vec{x} \rangle . \vec{E}$ dominates $E_{r,l} = \frac{1}{2}(E_{+} + E_{-}) \pm e\langle \vec{x} \rangle . \vec{E}$
- Energy shift is linear in \vec{E} and the proportionality constant is called permanant EDM of this molecule
- If measurement were carried out infinitesimally weak \vec{E} at very low temp. the shift would be quadratic

These are induced EDMs and DO NOT violate P, T

Summary

- A combination of bilinear and trilinear RPV is the only way RPV parameters can contribute at one loop level. With top mass and top yukawa it gives large contribution.
- In our numerical exercise we have obtained robust bounds on the combinations $\frac{|B_i^* \cdot \lambda'_{ij1}|}{(100 \text{ GeV})^2}$ for i, j = 1, 2, 3 that have not been reported before.
- These contributions are not much sensitive to tan β and even with slepton mass at TeV scale it predicts EDM for neutron that is order of magnitude larger than sensitivity of Los Alamos expriment.
- Even if the RPV couplings are real, they could still contribute to neutron EDM via CKM phase. For some cases CKM phase induced contribution is as strong as that due to an explicit complex phase in the RPV couplings.

There also exist contributions involving $\mu_i^* \lambda_{ijk}'$. However these are higher order effects which are further suppressed by proportionality to charged lepton mass. Since μ_i are expected to be very small (of order 10^{-3} GeV) for sub-eV neutrino masses, such contributions are highly suppressed.

Thank you very much !