Electric Dipole Moments of atomic Yb and

Ra

K.V.P. Latha, Department of Physics, Pondicherry University, Puducherry

PCPV-2013-Mahabaleshwar

Many-body Hamiltonian

The relativistic many-body atomic Hamiltonian in the Born-Oppenheimer approximation is

$$H = \sum_i c lpha_i \cdot p_i + eta_i m_i c^2 + \sum_{i < j} rac{e^2}{r_{ij}}$$

where α_i and β_i are the Dirac matrices, the last term is the electron-electron repulsion term and p_i is the momentum of the *i*th electron.

V_{es}

In the Hartree-Fock formalism,

$$H = \sum_i c lpha_i \cdot p_i + eta_i m_i c^2 + \sum_i U_{ ext{HF}}(r_i) + \left(\left(\sum_{i < j} rac{e^2}{r_{ij}} - \sum_i U_{ ext{HF}}(r_i)
ight)
ight)$$

 $U_{HF}(r)$ is the Hartree-Fock/Dirac-Fock potential

Hartree-Fock formalism

The Hartree-Fock equations are

$$\left(\sum_i c lpha_i \cdot p_i + eta_i m_i c^2 + \sum_i U_{ ext{HF}}(r_i)
ight) |\psi_a
angle = \epsilon_a |\psi_a
angle$$

where $|\psi_a\rangle$ are the single-electron wavefunctions that makeup the atom and ϵ_a are their energies. The potential $U_{\rm HF}(r_i)$ represents the average Coulomb interaction of an electron a with the other electrons in the atom.

- Effects of residual Coulomb interaction are treated as perturbations to the Hartree-Fock Hamiltonian.
- If atom has a non-zero EDM, the EDM interaction is treated as a perturbation in addition to V_{es}.

Slater-determinant formed from single-electron orbitals,

$$|\Psi\rangle = rac{1}{N!} egin{pmatrix} \psi_a(r_1) & \psi_a(r_2) & \psi_a(r_3) & \cdots \\ \psi_b(r_1) & \psi_b(r_2) & \psi_b(r_3) & \cdots \\ \psi_c(r_1) & \psi_c(r_2) & \psi_c(r_3) & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$
(1)

Dipole moment as an expectation value

The quantum mechanical definition of atomic EDM

$$D_{a}=rac{\langle ilde{\Psi} | {f D} | ilde{\Psi}
angle}{\langle ilde{\Psi} | ilde{\Psi}
angle}$$

where D = e r is the electric dipole operator, expectation value of which is calculated with exact atomic wavefunctions.

where $|\tilde{\Psi}\rangle$ are the perturbed atomic exact states, given by

$$| ilde{\Psi}
angle = |\Psi_0
angle + oldsymbol{\lambda}|\Psi_1
angle$$

Then,

$$D_a/\lambda = rac{\langle \Psi_0 |ec{D}| \Psi_1
angle \langle \Psi_1 |ec{D}| \Psi_0
angle}{\langle \Psi_0 | \Psi_0
angle}$$

Perturbed HF theory

A many-body atomic state is the Slater determinant of single-electron orbitals.

Hamiltonian perturbed by V_{es} as well as H_{EDM} is,

 $H' = H + \lambda H_{ ext{EDM}}$

where H_{EDM} may be due to any P, T violating interaction. The wavefunctions also get modified to

$$| ilde{\psi}_a
angle = |\psi^0_a
angle + \lambda |\psi^1_a
angle$$

Substitute them in the perturbed equation,

$$\left(h^{0}+g^{0}-\epsilon_{a}^{0}
ight)\ket{\psi_{a}^{1}}=\left(-h_{ ext{EDM}}-g^{1}
ight)\ket{\psi_{a}^{0}}$$

This is the final form of the perturbed HF equation.

The perturbed HF operator is

$$egin{aligned} g^1|\psi^0_a
angle &=\sum_{ar{ar{b}}}ig[\langle\psi^0_b|v|\psi^1_b
angle|\psi^0_a
angle - \langle\psi^0_b|v|\psi^0_a
angle|\psi^1_b
angleig] \ &+\sum_{ar{b}}ig[\langle\psi^1_b|v|\psi^0_b
angle|\psi^0_a
angle - \langle\psi^1_b|v|\psi^0_a
angle|\psi^0_b
angleig] \end{aligned}$$

Contd..

Expand the perturbed wavefunctions in terms of a complete set of unperturbed wavefunctions,

$$|\psi^1_a
angle = \sum_p C_{pa} |\psi^0_p
angle$$

C's are the mixing coefficients determined by solving perturbed HF equations.

Projecting the above equation by $\langle \psi_m^0 |$,

$$\sum_p \langle \psi^0_m | \left(h^0 + g^0 - \epsilon^0_a
ight) | \psi^0_p
angle C_{pa} = \left. \langle \psi^0_m | \left(-h_{ ext{EDM}} - g^1
ight) | \psi^0_a
angle$$

Substituting g^1 and expanding $|\psi_b^1\rangle = \sum_q C_{qb} |\psi_q^0\rangle$, the mixing coefficients are solutions of the linear alegebraic equations

$$egin{aligned} C_{pa}\left(\epsilon_{p}^{0}-\epsilon_{a}^{0}
ight)+&\sum_{bq}\left[\left(\langle pq|v|ab
angle-\langle pq|v|ba
angle
ight)C_{qb}^{*}
ight]\ &+\left[\left(\langle pb|v|aq
angle-\langle pb|v|qa
angle
ight)C_{qb}
ight]+&\langle p|h_{ ext{EDM}}|a
angle=0 \end{aligned}$$

The zeroth order contribution

$$C_{pa}^{(0,1)} = -rac{\langle p | h_{ ext{EDM}} | a
angle}{ig(\epsilon_p^0 - \epsilon_a^0ig)}$$

These equations can be represented as a set of linear matrix equations,

$$\sum_{qb} A_{pa\ qb} C_{qb} = -B_{pa}$$

where

$$A_{pa\ qb} = \tilde{V}_{pq,ab} + \tilde{V}_{pb,aq} + \left(\epsilon_p^0 - \epsilon_a^0\right) \delta_{pq} \delta_{ab}$$
 and

$$B_{pa}=\langle p|h_{
m EDM}|a
angle$$

In the perturbed HF framework, the atomic EDM is

$$D_a = \sum_{ap} \langle a | d | p
angle C^{(\infty,1)}_{pa} + C^{st,(\infty,1)}_{pa} \langle p | d | a
angle$$

Perturbed HF diagrams

p

Tensor-pseudotensor EDM interaction

 $\mathsf{H}_{_{\mathrm{T-PT}}} = \bar{N} \sigma^{\mu\nu} N \cdot \bar{e} \sigma_{\mu\nu} \gamma^5 e \; (\text{T-PT - tensor-pseudotensor})$

$$H_{
m EDM} = i C_T G_F \sqrt(2) \sum_i \left(\gamma_i \cdot I
ight)
ho_N(r)$$

where $\rho_N(r)$ is the nuclear density, I is the nuclear spin, C_T is the T-PT coupling constant and G_F is the Fermi coupling constant.

EXPERIMENTS

₇₀Yb¹⁷¹:

$\frac{1s^2}{4d^{10}} \frac{2s^2}{4f^{14}} \frac{2p^6}{6s^2} \frac{3s^2}{3p^6} \frac{3s^2}{4s^2} \frac{4p^6}{4s^2} \frac{3d^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{5p^6}{3s^2} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{5s^2}{5p^6} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{5s^2}{5p^6} \frac{3q^{10}}{5s^2} \frac{5s^2}{5p^6} \frac{5s^2}{5$

₅₄Xe¹²⁹:

$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 4p^6 \ 3d^{10} \ 5s^2 \ 4d^{10} \ 5p^6$

₈₈Ra²²⁵:

$\frac{1s^2}{4d^{10}} \frac{2s^2}{4f^{14}} \frac{2p^6}{6s^2} \frac{3p^6}{5d^{10}} \frac{4s^2}{7s^2} \frac{4p^6}{6s^2} \frac{3d^{10}}{6s^2} \frac{5s^2}{4d^{10}} \frac{4d^{10}}{5s^2} \frac{5p^6}{5d^{10}} \frac{3d^{10}}{7s^2} \frac{5s^2}{6s^2} \frac{4d^{10}}{5s^2} \frac{5p^6}{5s^2} \frac{5d^{10}}{5s^2} \frac{5s^2}{5s^2} \frac{4d^{10}}{5s^2} \frac{5p^6}{5s^2} \frac{5d^{10}}{5s^2} \frac{5s^2}{5s^2} \frac{4d^{10}}{5s^2} \frac{5p^6}{5s^2} \frac{5d^{10}}{5s^2} \frac{5s^2}{5s^2} \frac{4d^{10}}{5s^2} \frac{5p^6}{5s^2} \frac{5s^2}{5s^2} \frac{4d^{10}}{5s^2} \frac{5p^6}{5s^2} \frac{5q^6}{5s^2} \frac{5q^6}{$

EDM results for Yb and Ra

Tensor-pseudotensor electron-nuclear interaction

System	Zeroth order EDM in units of $10^{-20} C_{T} \sigma$ ecm	All-order EDM in units of $10^{-20} C_{T} \sigma e cm$
Ytterbium	-0.71	- 3.38
Xenon	0.45	0.56
Radium	-3.47	-16.59
Mercury	-2.38	- 5.85

EDM arising from Schiff moment

System	Zeroth order EDM in units of 10 ⁻¹⁷ S/(e fm ³) e cm	All-order EDM in units of 10 ⁻¹⁷ S/(e fm ³) e cm
Ytterbium	-0.42	-1.91
Xenon	0.29	0.38
Radium	-1.84	-8.09
Mercury	-1.19	-2.91

Conclusions

- Perturbed HF is one of the important milestones in many-body calculations.
- Calculations with more accurate theories of EDM have shown that beyond the HF level, the perturbed HF gives a substantial contribution
- Perturbed HF captures only selected effects arising from the residual Coulomb interaction.
- More effects of Coulomb interaction need to be incorporated through coupled-cluster kind of methods.