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Abstract. The current status of electric dipole moments (EDMs) of diamagnetic atoms which involves the
synergy between atomic experiments and three different theoretical areas – particle, nuclear and atomic is
reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence
of such EDMs, are presented. These include the standard model (SM) of particle physics and various
extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violation
(CP-odd) interactions are derived taking into consideration different ways in which a nucleon interacts with
other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment
(NSM) are discussed using the shell model and other theoretical approaches. Results of the calculations
of atomic EDMs due to the interaction of the NSM with the electrons and the P and time-reversal (T)
symmetry violating (P,T-odd) tensor-pseudotensor (T-PT) electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the EDMs of diamagnetic atoms
are outlined. Upper limits for the NSM and T-PT coupling constant are obtained combining the results
of atomic experiments and relativistic many-body theories. The coefficients for the different sources of
CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current
experimental interest and their implications for physics beyond the SM is discussed. Possible improvements
of the current results of the measurements as well as quantum chromodynamics (QCD), nuclear and atomic
calculations are suggested.

PACS. 11.30.Er CP invariance – 14.20.Dh Protons and neutrons – 24.80.+y Nuclear tests of fundamental
interactions and symmetries – 31.15.ve Electron correlation calculations for atoms and ions: ground state

1 Introduction

The important predictions of the standard model (SM)
of particle physics [1] have been verified largely due to
the remarkable advances in accelerator technology [2,3].
A number of ingenious high energy experiments are cur-
rently underway to search for new phenomena beyond the
SM. Many of these experiments are being performed us-
ing the Large Hadron Collider (LHC) at the TeV scale. A
complementary approach to search for new physics beyond
the SM is characterized by non-accelerator low energy pre-
cision tests of fundamental physics. It involves measuring
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observables and comparing the experimental results with
the predictions of the SM. This is an indirect approach to
new physics beyond the SM, but the observation of rare
or forbidden phenomena is an indubitable proof of the
existence of a new theory. Although conclusions reached
by such an approach may in some case not be as spe-
cific in identifying the underlying fundamental theory as
in the direct high energy physics approach, its sensitivity
to new physics may well exceed that of the high energy
experiments, which is absolutely bounded by the maximal
energy of the accelerator.

The combined charge conjugation (C) and parity (P)
symmetry (CP) violation is considered to have relevance
to the huge discrepancy from the SM prediction which is
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observed in the matter-antimatter asymmetry of the Uni-
verse [4], and is currently an issue of primary importance
in elementary particle physics [5–7]. CP violation has been
studied in various physical systems, but has so far been
observed only in the K [8] and B mesons [9–12], in which
cases the experiments are in agreement with predictions
of the SM. In the SM, it arises from the complex phase
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [13,
14]. It is well known that this phase cannot generate ex-
cess of matter over antimatter in the early Universe [15–
17]. It is therefore imperative to find one or several new
sources of CP violation beyond the SM. A variety of stud-
ies on CP violation including experiments to observe the
electric dipole moments (EDMs) of different systems have
lent themselves to searches for new physics beyond the SM
[18–28].

A non-degenerate physical system can possess a per-
manent EDM due to violations of P and time-reversal
(T) symmetries [29,30]. T violation implies the CP vi-
olation as a consequence of the CPT theorem [31]. An
atom could possess an EDM due to the possible existence
of (i) the electron EDM (de) (ii) P and T violating (P,T-
odd) electron-nucleus interactions and (iii) the hadronic
CP violation. EDMs of open shell (paramagnetic) atoms
arise primarily due de and the P,T-odd electron-nucleus
scalar-pseudoscalar (S-PS interaction, but the dominant
contributions to the EDMs of closed-shell (or diamag-
netic) atoms come from the hadronic CP violation and
the electron-nucleus tensor-pseudotensor (T-PT) interac-
tion. Atomic EDMs are sensitive to new physics beyond
the standard model (BSM) and can probe CP violating
interactions corresponding to mass scales of tens of TeV
or larger [32–35]. The results of atomic EDM experiments
and theory currently constrain various extensions of the
SM. Experiments are underway to improve the limits of
EDMs in paramagnetic (open-shell) [36–38] and diamag-
netic (closed-shell) atoms [39–45]. Their results in combi-
nation with state of the art theoretical calculations can
extract various CP violating coupling constants at the
elementary particle level via the hadronic, nuclear and
atomic theories [5,34,46–49].

It is necessary at this stage to emphasize the impor-
tance of the study of EDMs of the diamagnetic atoms.
Many low energy observables used in the precision tests
of fundamental physics, including EDMs of the param-
agnetic atoms, are sensitive to limited sectors (e.g. lep-
tonic, hadronic, Higgs, etc) of a particular particle physics
model. However, the EDMs of diamagnetic atoms arise
from new physics in multiple sectors of a variety of ex-
tensions of the SM, since the hadronic sector opens up
many possible scenarios for CP violation at the elementary
level (quark EDMs, quark chromo-EDMs, gluon chromo-
EDMs, quark-quark (q-q) interactions, etc.). This means
that one experimental constraint cannot in principle de-
termine the unknown coupling constants of the models.
Unraveling new physics beyond the SM in the context of
EDMs of diamagnetic atoms is equivalent to finding the
values for the couplings of new interactions that are so-
lutions of a set of coupled equations obtained from ex-

periments on atomic EDMs. The number of systems for
EDM experiments must be at least equal to the number
of coupling constants in order to uniquely determine those
constants; assuming that uncertainties associated in all
the results are of similar order. It is therefore desirable
to perform EDM experiments on a number of different
diamagnetic atoms.

The experimental limit on the EDM of mercury atom
(199Hg) has improved several times since the first mea-
surement in 1987 [19], and it is currently the lowest limit
reported for the EDM of any system (dHg < 7.4× 10−30e
cm) [27]. Improvements are expected in the EDM mea-
surements of other diamagnetic systems such as the Xe
and Ra in the near future. However, since the EDMs of
the diamagnetic atoms depend on many fundamental sec-
tors, considerable theoretical effort has to be put in relat-
ing these EDMs to new physics beyond the SM (see Fig.
1). In particular, the atomic and nuclear level many-body
physics as well as the nonperturbative effects of quan-
tum chromodynamics (QCD) contribute to the theoret-
ical uncertainties in the determination of their sensitivity
to fundamental theories. Recent advances in the atomic
and nuclear many-body as well as QCD calculations us-
ing numerical methods have reduced these uncertainties,
but further progress is necessary in this direction.

The focus of this review article is the recent advances
in the EDMs of the diamagnetic atoms which arise pre-
dominantly from the nuclear Schiff moment (NSM) [50]
and CP violating electron-nuclear interaction. The former
arises from CP violating nucleon-nucleon (N-N) interac-
tions and EDMs of nucleons, which in turn originate from
CP violating quark level. The latter is fundamentally due
to the CP violating electron-quark (e-q) interactions. We
shall summarize our current understanding of physics be-
yond the SM that has been obtained by combining the
results of experiment as well as atomic theory, nuclear
theory and QCD relevant in the evaluation of the EDMs
of diamagnetic atoms. The theoretical uncertainty in the
determination of these EDMs is the combined uncertain-
ties resulting from the calculations in these three different
theories. It is therefore important to identify the large
sources of errors in extracting the CP violating couplings
at the particle physics level from the EDM experimental
data.

The article is organized in the following manner: Sec. 2
covers CP violations at the particle physics level that are
suitable for the kind of atomic EDM that is considered in
this review. The derivation of hadron level effective CP-
odd interactions are then presented in Sec. 3. Sec. 4 deals
with the NSM and the nuclear structure issues involved
in its calculation. Different features of relativistic many-
body theories which are necessary to calculate the EDMs
of diamagnetic atoms are presented in Sec. 5.1. An intro-
duction to the principles of the measurement of EDMs of
diamagnetic atoms and the current status of the search
for EDMs of these atoms are given in Sec. 6. We sum-
marize the effect of CP-odd interactions at the particle
physics level on the EDMs of diamagnetic atoms in Sec.
7, and analyze the candidates for BSM physics which can
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be constrained. Finally, our concluding remarks regarding
the search for the EDMs of diamagnetic atoms are made
in Sec. ??.

2 Sources of P and CP violations in particle
physics

In this section, we describe the physics of CP violation at
the level of elementary particle physics. First, we present
the relevant CP violating operators, and then show that
the SM contribution to them is small. We then briefly re-
view several motivated candidates of new theories beyond
SM.We also introduce the Peccei-Quinn mechanism which
is almost mandatory to resolve the problem of too large
QCD θ-term. We finally see the procedure to renormalize
the CP-odd operators from the elementary physics to the
hadronic scale, to pass on to the hadron level analysis.

2.1 CP violating operators after integration of heavy
degrees of freedom

After integrating out heavy new physics particles of BSM,
we are left with an infinite number of operators which
form the quark and gluon level effective interactions. As
the coupling constants of those interactions are suppressed
by the power of the energy scale of new physics, opera-
tors with the lowest mass dimension are important in the
physics of strong interaction. Here we list the CP violating
operators generated at the elementary level up to mass di-
mension six, which are relevant in the physics of the EDM
of atoms:

– θ-term:

Lθ =
g2s

64π2
θ̄ εµνρσGa

µνG
a
ρσ. (1)

– Fermion EDM:

LEDM = − i

2
df ψ̄σµνγ5ψF

µν , (2)

where ψ denotes the electron or the quark and also it
follows ψ̄ = γoψ

†.
– quark chromo-EDM:

LcEDM = − i

2
dcq gsψ̄qσµνtaγ5ψqG

µν
a , (3)

where ψq is the field operator of the quark q.
– Weinberg operator:

Lw =
1

6
w
GF√
2
fabcεαβγδGa

µαG
b
βγG

µ,c
δ , (4)

where fabc is the SU(3) structure constant of the Lie
algebra.

– P, CP-odd or equivalently P,T-odd 4-quark interac-
tions:

L4q =
GF√
2

∑
q

[
Cq

4 q̄q q̄iγ5q + Cq
5 q̄σ

µνq q̄iσµνγ5q
]

+
GF

2
√
2

∑
q 6=q′

[
2C̃q′q

1 q̄′q′ q̄iγ5q + 2C̃q′q
2 q̄′αq

′
β q̄βiγ5qα

+ C̃q′q
3 q̄′σµνq′ q̄iσµνγ5q + C̃q′q

4 q̄′ασ
µνq′β q̄βiσµνγ5qα

]
,(5)

where the color indices α and β were explicitly written
when the color contraction is not taken in the same
fermion bilinear.

– P, CP-odd or equivalently P,T-odd e-q interactions:

Leq = −GF√
2

∑
q

[CSP
eq q̄q ēiγ5e+ CPS

eq q̄iγ5q ēe

+
1

2
CT

eqε
µνρσ q̄σµνq ēσρσe] , (6)

where superscripts SP, PS, and T denote the scalar-pseudoscalar
(S-PS), pseudoscalar-scalar (PS-S), and T-PT e-q interac-
tions, respectively.

We must note that these effective interactions are de-
fined at some energy scale. In perturbative evaluations,
they are usually given at the energy scale where the new
particle BSM is integrated out (typically at the TeV scale).

2.2 The SM contribution

Let us start with the SM contribution to the elementary
level CP violation [1]. Apart from the strong θ term, CP-
violation comes from the Kobayashi-Maskawa phase [13]
in the form of Jarlskog invariant [14]. The standard form
of Cabibbo-Kobayashi-Maskawa (CKM) matrix is given
by

V ≡

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 ,

and the Jarlskog invariant is

JCP ≡
∣∣=(VαjV

∗
βjV

∗
αkVβk)

∣∣ = s12s23s13c12c23c
2
13 sin δ. (7)

Here = implies an imaginary part and sij = sin θij and cij =
cos θij . This combination of CKM matrix elements is the min-
imal requirement to generate CP violation.

The CP violation in the SM therefore requires at least two
W boson exchanges. For the quark EDM and the chromo-
EDM, the two-loop level contribution is also known to vanish
due to the GIM mechanism [51–54], and the leading order one
is given by at the three-loop level [55] (see Fig. 3). Their ef-
fect on the nucleon EDM is around dN ∼ 10−35e cm, much
smaller than the present experimental limit of that of the neu-
tron (dn < 10−26e cm) [22,28].

The EDM of the electron is also generated by the CP phase
of the CKM matrix. This effect starts from the four-loop level,
and its value is de ∼ 10−44e cm [56–58]. We must note that
the effect of the CP phase of the neutrino mixing matrix is
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Fig. 1. Flow diagram of the dependence of the elementary level P,CP-odd processes on the EDMs of composite systems, whose
EDMs can be measurable. “RGE” means renormalization group evolution and “PQM” means Peccei-Quinn mechanism.

negligible due to the small neutrino mass. If the neutrinos are
Majorana fermions the effect of additional CP phases can gen-
erate the electron EDM from the two-loop level, and a larger
value will be allowed for de [59–62].

Purely gluonic CP-odd processes such as the θ-term or the
Weinberg operator are also known to be very small. The θ-term
generated by the CKM phase is θ̄ ∼ 10−17 [63,64], which yields
a nucleon EDM of |dN | ∼ 10−33e cm. The Weinberg operator
gives an even smaller nucleon EDM, of order 10−40e cm [65].

In the strongly interacting sector, the most widely accepted
leading hadronic CP violation due to the CP phase of the CKM
matrix is generated by the long distance effect. The long dis-
tance contribution of the CKM phase arises from the interfer-
ence between the tree level strangeness violating |∆S| = 1 W
boson exchange process and the penguin diagram (see Fig. 2),
which forms the Jarlskog invariant (7). From a naive dimen-
sional analysis, the nucleon and nuclear EDMs are estimated
as d ∼ O(αs

4π
G2

FJΛ
3
QCD) ∼ 10−32e cm, which is larger than the

contribution from the short distance processes (quark EDM,
chromo-EDM, Weinberg operator, etc). Previous calculations
of the nucleon EDM are in good agreement with this estima-
tions [66–75].

The CP violating effects in the SM exhibit an EDM well
smaller than the experimental detectability, and a large room
is left for the discovery of new source of CP violation BSM.

u

d

s

u

W

sd

u, d u, d

W

g

t t

Fig. 2. Tree level |∆S| = 1 W boson exchange diagram (left)
and the penguin diagram (right).

2.3 Sources of CP violation from BSM physics

In many scenarios of BSM, large EDMs are predicted, because
of higher order contributions that can arise at the one- or
two-loop levels. These contributions are overwhelmingly ex-
ceed over the loop suppressed SM contribution. In Fig. 4, we
present the typical lowest order CP violating processes of BSM
contributing to the EDMs at the elementary level. In this sub-
section, we would like to elaborate several such well motivated
candidates of BSM which can generate EDMs.
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(a) (b) (c) (d)

Fig. 4. Leading contribution of the new physics of BSM to the effective interaction at the TeV scale. (a) One-loop level fermion
EDM, (b) Barr-Zee type diagram, (c) CP-odd four-fermion interaction, (d) Weinberg operator. The external wavy lines of (a)
and (b) are either a photon or a gluon, and the internal one of (b) is either a photon, weak gauge bosons, or gluon.

W

g

q q

γ, g

Fig. 3. Example of a diagram contributing to the EDM
(chromo-EDM) of light quark at the three-loop level in the
SM [55]. The external electromagnetic (or color) field, denoted
by the isolated wavy line, is to be inserted in all possible prop-
agators of electrically charged (colored) particles.

2.3.1 Higgs doublet models

The Higgs boson was recently discovered [2,3], but the de-
tailed Higgs potential is still unknown. There are currently
many well-motivated extensions of the Higgs sector BSM. The
most well-known one is the two-Higgs doublet model (2HDM),
and extensive studies have been performed [76–94].

As the Higgs boson has a small coupling with light fermions,
the one-loop level fermion EDM and the CP-odd four-fermion
interactions are suppressed in 2HDM [95,96]. The leading con-
tribution to the elementary level CP violation contributing to
the EDM is the two-loop level Barr-Zee type diagram [76] [Fig.
4 (b)], enhanced by the large Yukawa coupling of the top quark
of the inner loop. The Barr-Zee type diagram contribution to
the EDM of SM fermion can be written as [76]

df =
Qfeαem

48π3mt

[
(Y

(+)
f Y

(+)
t )(f + g)− (Y

(−)
f Y

(−)
t )(f − g)

]
,

(8)
where

f ≡ m2
t

2m2
H

∫ 1

0

dx
1− 2x(1− x)

x(1− x)−m2
t/m

2
H

ln
x(1− x)

m2
t/m

2
H

, (9)

g ≡ m2
t

2m2
H

∫ 1

0

dx
1

x(1− x)−m2
t/m

2
H

ln
x(1− x)

m2
t/m

2
H

, (10)

and Y
(±)
f and Y

(±)
t are the Yukawa couplings relating the light-

est Higgs boson (mH = 125 GeV) with the fermion f = e, u, d
and the top quark, respectively. The first (second) term of
Eq. (8) is generated by the vacuum expectation value 〈φ0

iφ
0∗
1 〉

(〈φ0
iφ

0
1〉), where φi is the Higgs doublet interacting with the

up-type quark (i = 1) or the down-type fermion (i = 2, for
the electron or down-type quarks). These vacuum expectation
values strongly depend on the Higgs potential. Those couplings
are obtained from the diagonalization of the Higgs doublets.

In diamagnetic atoms, the most important CP violating
process is the quark chromo-EDM:

dcq =
gsαs

32π3mt

[
(Y (+)

q Y
(+)
t )(f + g)− (Y (−)

q Y
(−)
t )(f − g)

]
.

(11)

With Y
(±)
q ∼ 10−6, we have dcf ∼ Y

(+)
t × 10−25 cm. We must

note that the Weinberg operator (4) is also generated in the
2HDM [see Fig. 4 (d)] [77,78]. Its typical value is w ∼ 10−10

GeV−2, with mH = 125 GeV. We will see in later sections that
this contribution is subleading for the nucleon EDM.

2.3.2 Supersymmetric (SUSY) models

As the next attractive model for BSM physics, we have the
minimal supersymmetric standard model (MSSM) [97–99]. The
MSSM contains several phenomenological interactions which
generically possess CP phases. In the most simplified parametriza-
tion, the Higgs bilinear µ-term

Lµ = eiθµµ2Hu ·Hd, (12)

from the superpotential, which is required to give mass to hig-
gsinos, and the supersymmetry breaking sfermion trilinear in-
teractions

LA = eiθAAuũRHu · Q̃L + eiθAAdd̃RHd · Q̃L

+eiθAAeẽRHd · L̃L + h.c., (13)

are CP violating. Here the dot denotes the SU(2)L inner prod-
uct. For the sfermion trilinear interactions, we often assume
a flavor diagonal one, with a common CP phase θA. This as-
sumption is due to the strong constraints on flavor changing
neutral current from phenomenology [35,100].

Under this MSSM Lagrangian, the fermion EDM appears
at the one-loop level [95,101–112] [see Fig. 4 (a)]. The electron
EDM and the quark EDM, in the simplified parametrization
of MSSM where masses of all the supersymmetric particles as
well as |µ| are given by MSUSY, are given by [34]

de ≈ emf

16π2M2
SUSY

(
5g22 + g21

24
sin θµ tanβ +

g21
12

sin θA

)
, (14)

dq ≈ Qqemf

16π2M2
SUSY

2g2s
9

(
sin θµ[tanβ]

−2Qq+
1
3 − sin θA

)
, (15)
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respectively, with Qq is the electric charge of the quark q, and
g1, g2 and gs are the couplings of the U(1)Y and SU(2)L gauge
theories and QCD, respectively. The quark chromo-EDM is
similarly given by

dcq ≈ gsmf

16π2M2
SUSY

5g2s
18

(
sin θµ[tanβ]

−2Qq+
1
3 − sin θA

)
, (16)

where tanβ ≡ vd
vu

is the ratio between the vacuum expecta-
tion values of the up-type and down-type Higgs fields. As for
the Higgs doublet models, we also see here a dependence on
tanβ. By assuming MSUSY = O(TeV) and θµ, θA, β = O(1),
the MSSM contribution to the EDMs of the fermions and the
chromo-EDMs of quarks at the scale µ = 1 TeV [αs(µ =
1TeV) ≈ 0.09] become de = O(10−27)e cm, dq = O(10−25)e
cm and dcf = O(10−25) cm1.

To conceive natural scenarios in MSSM, it is often assumed
that the first and the second generations have no sfermion tri-
linear interactions. In such a case, the leading order CP viola-
tion are given by the two-loop level effect, namely the Barr-Zee
type diagrams [Fig. 4 (b)] [113–124] and the Weinberg opera-
tor [Fig. 4 (d)] [125–127]. We must note that the Barr-Zee type
diagram and the four-fermion interaction are enhanced when
tanβ is large [119,128–131]. Global analyses with constrained
supersymmetric parameters by the Grand unification theory
(GUT) strongly constrain CP phases [132–137].

Another natural supersymmetric scenario is the split SUSY
model [138,139], relying on the GUT. In this case, the sfermions
are much heavier than the gauginos, and one-loop level di-
agrams, which must contain sfermions, are suppressed. The
Barr-Zee type diagram with chargino inner loop therefore be-
comes dominant [140–143].

The SUSY model can be extended with additional interac-
tions, with several motivations. The first possibility is to take
into account additional soft supersymmetry breaking terms,
in particular the flavor violating ones which are not forbid-
den by any symmetries or by other experimental constraints.
The flavor non-diagonal soft breaking terms can generically
have CP phases. This extension was motivated by the devia-
tion of the CP violating B → φKs decay [144,145] suggested
by Belle experiment [146]. The effects of those flavor violating
terms on the EDM are however large, and it was found that
the EDM experimental data can strongly constrain their CP
phases [147–154].

Another possible way to extend the MSSM is to add new
interactions in the superpotential. The scenario on these lines is
the next-to-minimal supersymmetric standard model (NMSSM)
which considers an additional scalar superfield in the Higgs sec-
tor [155]. This model can dynamically generate the µ-term (12)
and circumvent the problem of µ-term. It is also motivated by
the difficulty to explain the appearance of the light Higgs boson
in the simple parametrization of the MSSM. In the NMSSM,
the EDMs of fermions do not become large [156]. If we further
enlarge the superpotential by adding new local gauged terms
(BLMSSM) [157,158], the fermion EDMs can become large,
and the CP phases will be strongly constrained by the current
experimental data [159]. The EDM is even more enhanced if

1 Unfortunately such models, except for the few predictive
ones, have so many undetermined parameters and we should
be careful about under what assumptions such and such pre-
dictions have been made. On this point one can refer to Ref.
[?] for more detailed clarification.

we also allow the R-parity violation, where baryon and lepton
numbers are not conserved [160–163]. If we neglect the one-loop
level fermion EDM which is only generated in the presence of
soft breaking bilinear R-parity violating interaction [164–167],
the leading CP violation processes are the Barr-Zee type dia-
gram [168–174] and the CP-odd four-fermion interaction [171,
175–177]. The majority of CP phases of the R-parity violating
couplings are strongly constrained by the current EDM exper-
imental data.

Obviously, the SUSY extensions allow larger observable
EDMs as the number of parameters increases. This fact does
not depend on whether we have extended the superpotential
or the soft supersymmetry breaking interaction. The super-
symmetric SM is an excellent example of new physics which
contributes to the EDM of composite systems through various
elementary level CP-odd operators. Current EDM experimen-
tal data strongly constrain the CP phases of models with large
degree of freedom. In the analysis of theories and models which
have a large parameter space, it was often assumed that only
a small numbers of couplings are active, and the effect of the
others were neglected. We however have to note that cancella-
tions may occur among supersymmetric CP phases [178–192].
In that case, still large CP phases may be allowed, and they
may be relevant in the ongoing EDM experiments.

2.3.3 Left-Right symmetric models

The Left-Right symmetric models contain an additional gauge
theory which couples to the right-handed fermions of SM [193–
195]. An SU(3)c × SU(2)L × SU(2)R × U(1)B−L gauge group
is assumed to be spontaneously broken at some high energy
scale, and gives the SM as an effective theory below it. Phe-
nomenologically, a mixing ofW boson with a heavierWR boson
is possible. The mass of additional weak gauge boson is con-
strained by LHC experiment, and the current lower bound is
a few TeV [196–200].

In low energy effective theory, we obtain a 4-quark inter-
action with the structure (V −A)× (V +A):

LLR = iIm(Ξ)
[
ūRγµdR · d̄LγµuL − d̄RγµuR · ūLγ

µdL
]

=
Im(Ξ)

12

[
2(q̄q · q̄iγ5τzq − q̄τzq · q̄iγ5q)

+3(q̄taq · q̄iγ5τztaq − q̄taτzq · q̄iγ5taq)
]
, (17)

where the coupling constant Ξ scales as O(m−2
WR

). The terms
in the last line are the color octet four-quark interaction, with
ta the generator of the SU(3)c group. If Ξ has a CP phase, the
EDM is induced in hadronic systems [201–209]. It is important
to note that the above four-quark interaction breaks both the
chiral and isospin symmetries [207]. This property is useful in
estimating the leading CP-odd hadron level effective interac-
tion generated by it [210]. Moreover, the effective interaction
(17) is generated at the scale µ = mW , where the W boson is
integrated out.

2.3.4 Models with vectorlike fermion

The vectorlike fermions are spin 1
2

particles which have the
same gauge charges for their left- and right-handed compo-
nents [211]. They are not constrained by the analysis of the
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Higgs boson in collider experiments, as it was for extensions
with extra generations of chiral fermions [212]. This class of
models are attractive since those particles are often relevant in
extensions of SM with composite sectors [213,214] or extradi-
mensions [215,216].

As a model independent feature, the vectorlike fermions
may mix with SM fermions, but those processes are strongly
constrained by the flavor changing neutral current [211,217–
227]. Regarding more model dependent aspects, additional dy-
namically generated bosons may accompany vectorlike fermions,
such as the Higgs bosons, Kaluza-Klein particles, or higher
energy resonances, and their interactions with SM fermions
may generate EDM at the one-loop level. This process is also
strongly constrained by phenomenology [224,228–233]. Under
those constraints, the vectorlike fermions may appear in the
intermediate states connected only by the exchange of gauge
bosons. The leading CP violating process is therefore the Wein-
berg operator [234].

The contribution of the Weinberg operator in the vectorlike
fermion models can be written as

wVF = −
NF∑
i

gsαsYiYPi

(4π)3M2
i

h(Mi,mH′), (18)

with h(M,mH′) ≡ M4

2

∫ 1

0
dx
∫ 1

0
du u3x3(1−x)

[M2x(1−ux)+m2
H′ (1−u)(1−x)]2

.

Here we have assumed a boson H ′ which couples to NF vec-
torlike fermions with mass Mi (i = 1, · · · , NF ). In the limiting
case M � mH′ , we have h(M,mH′) ≈ 1

16
[111]. In techni-

color theories, an effective WWγ interaction is generated by a
similar mechanism [235].

2.3.5 Leptoquark models

The leptoquarks are bosons which couple to both leptons and
baryons, and often appears in scenarios with GUT. Those which
violate the baryon number are strongly constrained by the pro-
ton decay, but those which conserve lepton and baryon num-
bers are allowed up to the constraints from the LHC exper-
iments [236–241], and their interaction can be probed using
low energy precision tests [242]. The simplest interaction of
the scalar leptoquark is given as

LLQ =
∑
i,j

ϕ(λijQ̄Li · eRj + λ′
ij ūRi · LLj) + h.c., (19)

where ϕ is the leptoquark field, and the indices i, j denote the
flavor.

If the couplings λ and λ′ have relative CP phases, the EDM
will be induced in atomic systems. The leading CP violation is
given by the one-loop level fermion EDM [95,243] and the CP-
odd e-q interaction [see Eq. (6)] [96,244,245]. For the atomic
system, the latter is especially important, since it contributes
to the tree level. The Leptoquark model is one of the rare
models which contribute to the T-PT CP-odd e-N interaction
[the term with CT in Eq. (6)].

2.4 Renormalization group evolution (RGE)

In the usual discussion of particle physics, the effect of BSM
physics is calculated at some high energy scale, much higher

than that of the strong interaction µ � ΛQCD ∼ 200 MeV.
On the other hand, their matching with the hadronic effective
interaction is done at the hadron scale, we must evolve the
Wilson coefficients of elementary level interactions down to
the hadronic scale. In this Sub-sec., we first present the RGE
of purely hadronic CP-odd operators, and then that of CP-odd
e-q interactions, which do not mix with each other.

2.4.1 RGE of strong CP-odd operators

The effective CP-odd Lagrangian and their Wilson coefficients
are given as

Leff =
∑

i=1,2,4,5

∑
q

Cq
i (µ)O

q
i (µ) + C3(µ)O3(µ)

+
∑
i=1,2

∑
q 6=q′

Cq′q
i (µ)Õq′q

i (µ)

+
1

2

∑
i=3,4

∑
q 6=q′

Cq′q
i (µ)Õq′q

i (µ), (20)

with

Oq
1 = − i

2
mq q̄QqeσµνF

µνγ5q, (21)

Oq
2 = − i

2
mq q̄gsσµνG

µν
a taγ5q, (22)

O3 = −1

6
gsfabcGµν,aG

ν
ρ,bGαβ,cε

ρµαβ , (23)

Oq
4 = q̄q q̄iγ5q, (24)

Oq
5 = q̄σµνq q̄iσµνγ5q, (25)

Õq′q
1 = q̄′q′ q̄iγ5q, (26)

Õq′q
2 = q̄′αq

′
β q̄βiγ5qα, (27)

Õq′q
3 = q̄′σµνq′ q̄iσµνγ5q, (28)

Õq′q
4 = q̄′ασ

µνq′β q̄βiσµνγ5qα, (29)

where the color indices α and β were explicitly written when
the color contraction is not taken in the same fermion bilinear.
The summation of the quark q for the above operators must
be taken for the relevant flavor at the renormalization scale
chosen (e.g. q = u, d, s for µ = 1 GeV).

The evolution of the Wilson coefficients is dictated by the
renormalization group equation, which mixes the CP-odd op-
erators when the scale is changed. It is given by the following
differential equation

d

d lnµ
C(µ) = γ̂T (αs)C(µ). (30)

The anomalous dimension matrix is given by

γ̂ = Ẑ−1 d

d lnµ
Ẑ, (31)

with Ẑ the renormalization matrix. By integrating (30) with
the initial condition at the scale of new physics µ′ = MNP, we
have

C(µ) = Û(µ, µ′ = MNP)C(µ′ = MNP), (32)

where

Û(µ, µ′ = MNP) = Tg exp

∫ g(µ)

g(MNP)

dg′
γ̂T (g′)

β(g′)
, (33)



8 N. Yamanaka et al.: Title Suppressed Due to Excessive Length

with the strong coupling g ≡
√
4παs, and the coupling ordered

product operator Tg. The anomalous dimension matrix and the
beta function β(g) are expanded in terms of the QCD coupling
as

γ̂(g) = γ̂(0) + γ̂(1) + · · · , (34)

β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
+ · · · . (35)

Let us see the leading logarithmic order contribution. The
leading order coefficient of the beta function is β0 = 11

3
nc− 2

3
nf

with the color number nc = 3. The anomalous dimension ma-
trix γ̂(0), depending on nf , is expressed in terms of submatrices
as [246–254]

γ̂(0) =


αs
4π

γ̂s 0̂ 0̂
αs

(4π)2
γ̂sf

αs
4π

γ̂f 0̂
αs

(4π)2
γ̂′
sf 0̂ αs

4π
γ̂f

 , (36)

where 0̂ is the null matrix with arbitrary dimension, and

γ̂s =

 8CF 0 0
8CF 16CF − 4nc 0
0 2nc nc + 2nf + β0

 , (37)

γ̂f =

(
−12CF + 6 1

nc
− 1

2
48
nc

+ 24 4CF + 6

)
, (38)

γ̂′
f =



−12CF 0 0 0 1
nc

−1

−6 6
nc

0 0 − 1
2

c1
0 0 −12CF 0 1

nc
−1

0 0 −6 6
nc

− 1
2

c2
24
nc

−24 24
nc

−24 4CF 0

−12 c3 −12 c4 6 c5

 , (39)

γ̂sf =

(
4 4 0

−32nc − 16 −16 0

)
, (40)

γ̂′
sf =



0 0 0
0 0 0
0 0 0
0 0 0

−16nc
mq′
mq

Qq′
Qq

0 0

−16
mq′
mq

Qq′
Qq

−16
mq′
mq

0


, (41)

where CF = 4/3, c1 = −CF + 1
2nc

, c2 = −CF + 1
2nc

, c3 =

−24CF + 12
nc

, c4 = −24CF + 12
nc

, and c5 = −8CF − 6
nc

.
Let us show the results for three explicit cases with the

initial condition µ = MNP = 1 TeV. For the quark EDM, there
is no mixing with other operators. If only the quark EDM is
dominant at the initial scale, we have

dq(µ = µhad)

dq(µ = MNP)
=

Cq
1 (µ = µhad)mq(µ = µhad)

Cq
1 (µ = MNP)mq(µ = MNP)

= 0.79, (42)

for µhad = 1 GeV. The running of the quark mass is

mq(µ = µhad)/mq(µ = MNP) = 2.0. (43)

We have used the quark masses mt(µ = mt) = 160GeV,
mb(µ = mb) = 4.18 GeV, and mc(µ = mc) = 1.27 GeV as
input [255].

If the quark chromo-EDM is dominant at µ = MNP, the
Wilson coefficients at the hadronic scale mixes with the quark

EDM:

dq(µ = µhad)

dcq(µ = M)
=

Cq
1 (µ = µhad)mq(µ = µhad)

Cq
2 (µ = MNP)mq(µ = MNP)

= −0.80, (44)

dcq(µ = µhad)

dcq(µ = MNP)
=

Cq
2 (µ = µhad)mq(µ = µhad)

Cq
2 (µ = MNP)mq(µ = MNP)

= 0.89. (45)

Note that the flavor of the quark q is conserved during the
running in the leading logarithmic order.

In the case where only the Weinberg operator is present at
µ = MNP, we have

Cq
1 (µ = µhad)/C3(µ = MNP) = 7.7× 10−2, (46)

Cq
2 (µ = µhad)/C3(µ = MNP) = −0.14, (47)

C3(µ = µhad)/C3(µ = MNP) = 0.16. (48)

Here the Wilson coefficients Cq
1 and Cq

2 are generated for all
relevant quark flavors (q = u, d, s). It is also important to note
that C3 is sizably suppressed after the running. By compar-
ing Eqs. (45) and (48), we see that the chromo-EDM becomes
large at the hadronic scale, even if the Wilson coefficients of
the Weinberg operator and the chromo-EDM are of the same
order of magnitude. This is the case for 2HDM, where the con-
tribution from Barr-Zee type diagrams are the most important.

We also show the evolution of the four-quark operator of
the Left-right symmetric model [see Sec. 2.3.3]. The CP-odd
four-quark coupling of Eq. (17), renormalized at the electroweak
scale µ = mW , is evolved down to the hadronic scale as [254]

Cu
4 (µ = µhad)

Im(Ξ)(µ = mW )
=

Cd
4 (µ = µhad)

Im(Ξ)(µ = mW )

= − Cud
1 (µ = µhad)

2 Im(Ξ)(µ = mW )
= − Cdu

1 (µ = µhad)

2 Im(Ξ)(µ = mW )

= 4.8 (µhad = 1GeV). (49)

Although we obtain several other Wilson coefficients at the
hadronic scale, here we focus on Cu

4 , C
d
4 , C

du
1 and Cud

1 , since
their corresponding operators are the components of the opera-
tor q̄q q̄iγ5τzq, which is suggested to be the leading contribution
of the isovector pion-nucleon interaction (see Sec. 3.3). We also
note again that the running of the Wilson coefficient Im(Ξ) be-
gins at the electroweak scale µ = mW , since the W boson has
to be integrated out to generate the four-quark operator in
Left-right symmetric model. At the scale above µ = mW , the
coupling of the right-handed WR boson with quarks does not
run. In running from µ = mW to µhad, the left-right four-quark
operator mixes with several other four-quark operators, but it
is interesting to note that it does not mix with the quark EDM,
the quark chromo-EDM, and the Weinberg operator.

In the case where several CP-odd processes are simulta-
neously relevant at the TeV scale, the RGE of them down to
the hadronic scale is just given by the linear combination of
Wilson coefficients seen above. This is because the RGE is cal-
culated only in QCD and the effect of CP-odd interactions on
the running is negligible.

Finally, let us also briefly present the running of SM con-
tribution, although we do not discuss the detail. The SM con-
tribution at the electroweak scale is expressed by ten |∆S| = 1
four-quark operators [256]. The next-to-next-to-leading loga-
rithmic order evolution of the SM contribution enhances one
of the penguin operator (see Fig. 2) by a factor of about 40
when the scale is varied from µ = mW to µ = 1 GeV [256–258].
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This effect is nontrivial and enhances the SM contribution to
the nucleon level CP-odd processes from the naive estimation.

Note that the RGE of this subsection is calculated in the
perturbative framework, and systematics due to nonpertura-
bative effects may be important at the hadronic scale µ = 1
GeV.

2.4.2 RGE of CP-odd e-q interaction

We now present the QCD RGE of the CP-odd e-q interactions.
The change of the Wilson coefficients of the CP-odd e-q inter-
actions depends on the Lorentz structure of the quark bilinears.
For the S-PS and PS-S type ones [terms with CSP and CPS of
Eq. (6), respectively], the renormalization is the same as that
of the quark mass. We therefore have

CSP
eq (µ = µhad)

CSP
eq (µ = MNP)

=
CPS

eq (µ = µhad)

CPS
eq (µ = MNP)

=
mq(µ = µhad)

mq(µ = MNP)

=

{
2.0 (µhad = 1GeV)
1.8 (µhad = 2GeV)

, (50)

with MNP = 1 TeV. Here we also show the ratio for µhad =
2GeV, for which we have less theoretical uncertainty due to
the nonperturbative effect of QCD. This renormalization point
is often used in the lattice QCD calculations of nucleon matrix
elements.

For the T-PT CP-odd e-q interaction [the term with CT of
Eq. (6)], the renormalization is the same as that of the quark
EDM. The renormalization group evolution is then

CT
eq(µ = µhad)

CT
eq(µ = MNP)

=
dq(µ = µhad)

dq(µ = MNP)

=
Cq

1 (µ = µhad)mq(µ = µhad)

Cq
1 (µ = MNP)mq(µ = MNP)

=

{
0.79 (µhad = 1GeV)
0.83 (µhad = 2GeV)

. (51)

The S-PS and S-PS type P,CP-odd e-q interactions with
heavy quarks are integrated out at scale below the quark masses,
but their effects remain relevant through the P,CP-odd electron-
gluon (e-g) interaction. The P,CP-odd e-g interaction is defined
as

Leg = −GF√
2

[
CSP

eg Ga
µνG

µν
a ēiγ5e+ CPS

eg G̃a
µνG

µν
a ēe

]
. (52)

The matching of the couplings at each quark mass threshold
works as

CSP
eg (µ = mQ − ε) = CSP

eg (µ = mQ + ε)

+
αs(µ = mQ)

12πmQ
CSP

eQ(µ = mQ + ε), (53)

CPS
eg (µ = mQ − ε) = CPS

eg (µ = mQ + ε)

+
αs(µ = mQ)

8πmQ
CPS

eQ(µ = mQ + ε), (54)

where ε is the infinitesimal shift of energy scale. As αsG
a
µνG

µν
a

is invariant under the RGE, the couplings CSP
eg and CPS

eg run
in the same way as the strong coupling αs(µ).

If there is only one type of CP-odd e-q interaction CSP
eQ

(Q = t, b) at the scale µ = 1 TeV, the running of its effect
down to the hadronic scale is given by

12πmt
CSP

eg (µ = µhad)

CSP
et (µ = MNP)

=
αs(µ = µhad)mq(µ = mt)

αs(µ = mt)mq(µ = MNP)

=

{
3.7 (µhad = 1GeV)
2.8 (µhad = 2GeV)

, (55)

12πmb
CSP

eg (µ = µhad)

CSP
eb (µ = MNP)

=
αs(µ = µhad)mq(µ = mb)

αs(µ = mb)mq(µ = MNP)

=

{
2.7 (µhad = 1GeV)
2.0 (µhad = 2GeV)

. (56)

If we consider a hadronic scale lower than the charm quark
mass, the charm quark is also integrated out. The CP-odd e-g
coupling generated by CSP

ec is then

12πmc
CSP

eg (µ = µhad)

CSP
ec (µ = MNP)

=
αs(µ = µhad)mq(µ = mc)

αs(µ = mc)mq(µ = MNP)

= 2.2 (µhad = 1GeV). (57)

Obviously, the contributions of the CP-odd electron-heavy quark
interactions are suppressed as the quark mass increases. This
additional damping is because the CP-odd e-g operator has
one mass dimension higher than that of the CP-odd electron-
quark interaction. We reiterate that the same running of the
Wilson coefficients of Eqs. (55), (56) and (57) also applies for
CPS

eg (we must replace 12πmQ by 8πmQ in the right-hand side
of the equalities).

2.5 θ-term and Peccei-Quinn mechanism

The QCD θ-term is a dimension-4, P and CP violating inter-
action [see Eq. (1)], which is not constrained by symmetries
in the SM. In the point of view of the naturalness, θ ∼ O(1),
but it is known to generate a too large EDM of neutron. The
contribution of θ̄ to the neutron EDM was extensively studied
[34,259–274], and the most recent analysis based on the chiral
effective field theory (EFT) is giving [275–280]

dn = −(2.7± 1.2)× 10−16θ̄ e cm, (58)

dp = (2.1± 1.2)× 10−16θ̄ e cm. (59)

From the experimental data [22,28]

dn < 2.9× 10−26e cm, (60)

we therefore have
θ̄ < 10−10, (61)

which is a too strong constraint to the θ-term, which should
naturally be of the same order of magnitude as the CP-even
QCD Lagrangian. This problem is known as the Strong CP
Problem. This problem is also accentuated in the context of
new sources of CP violation of BSM. A large θ-term is also
generated in many models of new physics such as SUSY mod-
els [34,101,102,106], and this gives rise to a serious fine-tuning
problem, as their effects must cancel to fulfill the constraint
(61). If we want to extend the SM to a theory with large source
of CP violation, a mechanism which makes the θ-term irrele-
vant to observables are at least mandatory.
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A natural solution to the strong CP problem was proposed
by Peccei and Quinn [281]. Their mechanism forces the θ-term
to have a zero expectation value by adding a new scalar field,
the axion. The newly introduced lagrangian of the axion is

La =
1

2
∂µa∂

µa+
a(x)

fa

αs

8π
Ga

µνG̃
µν,a , (62)

where the axion field a has replaced the parameter θ̄ of the
strong CP lagrangian.

The effective potential of the axion will then become

Leff
a =

1

2
∂µa∂

µa−K1

(
a

fa
+ θ̄

)
−1

2
K

(
a

fa
+ θ̄

)2

+· · · , (63)

where K = −m∗〈0|q̄q|0〉 + O(m2
∗) is the topological suscepti-

bility with

m∗ ≡ mumdms

mumd +mums +mdms
≈ mumd

mu +md
, (64)

and K1 is the correlation between the topological charge and
the isoscalar CP-odd operators with high mass dimensions.
The decay constant fa is given by the spontaneous breaking of
a chiral U(1)PQ symmetry of BSM. Here the vacuum expec-
tation value of the axion becomes the θ-term 〈a〉/fa = −θ̄. If
there are no other CP-odd operators than the θ-term, this value
is zero, which means that the θ-term is dynamically canceled.
This mechanism of Peccei and Quinn is the most attracting
scenario to naturally resolve the strong CP problem.

In the presence of flavor SU(3) singlet CP-odd operators
other than the θ-term, the vacuum expectation value of the
axion is not canceled, and becomes θ̄ = θ̄ind ≡ −K1(OCP )/K.
It is controlled by the coefficient K1, which is expressed as [282]

K1(OCP ) = −i lim
k→0

∫
d4xeikx

×
〈
0
∣∣∣T { αs

8π
Ga

µνG̃
µν,a(x)OCP (0)

}∣∣∣ 0〉 . (65)

In this review, the relevant one is the chromo-EDM OCP =
− i

2
dcq q̄gsσ

µνGa
µνtaγ5q. In this case, the evaluation of the cor-

relator gives [282]

K1 =
m∗

2

∑
q=u,d,s

dcq
mq

〈0|q̄gsσµνGa
µνtaq|0〉 , (66)

where m2
0 ≡ − 〈0|gsq̄σµνtaGµν

a q|0〉
〈0|q̄q|0〉 = (0.8± 0.1)GeV2 [283,284].

The induced θ-term is then

θ̄ind = −m2
0

2

∑
q=u,d,s

dcq
mq

. (67)

The Weinberg operator is also a flavor SU(3) singlet, but the
induced θ-term is suppressed by a factor of light quark mass,
so it becomes negligible for the case of interest.

3 Hadron level effective P,CP-odd
interactions

The atomic EDM receives contribution from the hadron level
CP violation. The effective hadronic CP-odd interaction is gen-
erated by quark and gluon level CP-odd processes, but the cal-
culation of their relations is a highly nontrivial task due to the
nonperturbative nature of QCD. Here we summarize the cur-
rent situation of the derivation of the hadron level CP violation
from the QCD level physics.

3.1 Hadron level effective interaction at the hadronic
scale

After obtaining the QCD level operators and their Wilson co-
efficients at the hadronic scale, we must now match them to
the hadron level effective interactions. The P,CP-odd hadronic
interaction we consider is

Lhadron = LeN + LNedm + LπNN , (68)

with

– The P,CP-odd e-N interaction

LeN = −GF√
2

∑
N=p,n

[
CSP

N N̄N ēiγ5e+ CPS
N N̄iγ5N ēe

+
1

2
CT

N εµνρσN̄σµνN ēσρσe

]
. (69)

– The nucleon EDM

LNedm = − i

2

∑
N=p,n

dN N̄σµνγ5NFµν , (70)

– The P,CP-odd pion-nucleon (π-N-N) interaction [285,286]

LπNN =
∑

N=p,n

3∑
a=1

[ḡ
(0)
πNN N̄τaNπa + ḡ

(1)
πNN N̄Nπ0

+ḡ
(2)
πNN (N̄τaNπa − 3N̄τ3Nπ0)] , (71)

where a denotes the isospin index.

The schematic dependences of the hadronic scale operators on
the quark level operators are shown in Fig. 1. In this subsection,
we review the currently available results of the calculation of
the hadronic effective CP violation.

We can also extend Eq. (68) by adding several interactions
with low chiral indices. For example we have the three-pion
interaction [276]

L3π = mN∆3π πz
3∑

a=1

π2
a, (72)

the CP-odd η-nucleon interaction

LηNN =
∑

N=p,n

[
ḡ
(0)
ηNN N̄Nη + ḡ

(1)
ηNN N̄τzNη

]
. (73)

and the isoscalar CP-odd contact interaction

LC = C̄1N̄N∂µ(N̄SµN) +

3∑
a=1

C̄2N̄τaN · ∂µ(N̄SµτaN)(74)

The effect of those terms are subleading in the analysis of nu-
clear systems, but they may be important in the estimation of
the theoretical uncertainty.
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3.2 CP-odd e-N interaction

The CP-odd e-N interaction (69) is a CP violating effect which
can specifically be probed with the atomic EDM. It is related to
the CP-odd e-q interaction (6) and the CP-odd e-g interaction
(52) by several nucleon matrix elements, as

−GF√
2
CSP

N N̄N ēiγ5e = CSP
q 〈N |q̄q|N〉 ēiγ5e

+CSP
eg 〈N |Ga

µνG
µν
a |N〉 ēiγ5e, (75)

−GF√
2
CPS

N N̄iγ5N ēe = CPS
q 〈N |q̄iγ5q|N〉 ēe

+CPS
eg 〈N |Ga

µνG̃
µν
a |N〉 ēe, (76)

−GF√
2
CT

N
1

2
εµνρσN̄σµνN ēσρσe =

1

2
CT

q ε
µνρσ

× 〈N |q̄σµνq|N〉 ēσρσe. (77)

To calculate the nucleon matrix elements, evaluations of non-
perturbative effects of QCD are required. Here it is an excellent
opportunity to use the results of the lattice QCD, which has
recently made significant progress [287].

To determine the S-PS CP-odd e-N interaction (75), the
nucleon scalar density matrix elements 〈N |q̄q|N〉 and 〈N |Ga

µνG
µν
a |N〉

are required. To obtain the light quark contribution, we com-
bine the isoscalar and isovector nucleon scalar densities. The
isoscalar one can be derived from the nucleon sigma term
σπN ≡ mu+md

2
〈N |ūu+ d̄d|N〉, which has extensively been dis-

cussed in phenomenology [288–297] and in lattice QCD [298–
308] (see Fig. 5). The result is giving

σπN = (30− 60)MeV. (78)

The phenomenological extractions are centered to 60 MeV,
whereas the results of lattice QCD calculations are showing
values around 40 MeV. We consider this deviation as a system-
atic error. By using the Particle data group value of up and
down quark masses renormalized at µ = 2 GeV mu = 2.2+0.6

−0.4

MeV and md = 4.7+0.5
−0.4 MeV [255], the isoscalar nucleon scalar

density is then

〈N |ūu+ d̄d|N〉 ∼ 15 (µ = 2GeV), (79)

with a theoretical uncertainty of about 30%.
The isovector nucleon scalar density can be derived in the

leading order of the current quark masses in terms of the

proton-neutron mass splitting ∆m
(0)
N as [171,191,309–312]

〈p|ūu− d̄d|p〉 = ∆m
(0)
N

md −mu
= 0.9 (µ = 2GeV), (80)

with a theoretical uncertainty of about 30%. Here ∆m
(0)
N =

2.33 ± 0.11 MeV is the nucleon mass splitting without elec-
tromagnetic effects [255,313,314]. The isovector nucleon scalar
density has also been studied on lattice, and consistent results
with the above phenomenological value are given [315–322].

By combining Eqs. (79) and (80), we obtain

〈p|ūu|p〉 = 〈n|d̄d|n〉 ∼ 8, (81)

〈p|d̄d|p〉 = 〈n|ūu|n〉 ∼ 7, (82)

at µ = 2 GeV, with a theoretical uncertainty of 30%. It is
important to note that this error bar is mainly due to the un-
certainty of the current quark mass and to that of the determi-
nation of the nucleon sigma term. The nucleon scalar densities

due to light quarks are substantially enhanced compared with
the prediction of the nonrelativistic quark model (〈p|ūu|p〉 = 2,
〈p|d̄d|p〉 = 1). This enhancement is understood by the dynam-
ical gluon dressing effect [323–326].

For the strange and charm contents of the nucleon σs ≡
ms〈N |s̄s|N〉 and σc ≡ mc〈N |c̄c|N〉, there are also available
data from lattice QCD calculations [299–308,327–335] (see Fig.
5). Their averaged values at the renormalization point µ = 2
GeV are

〈N |s̄s|N〉 ∼ 0.4, (83)

〈N |c̄c|N〉 ∼ 0.07. (84)

Here we have used ms = 96+8
−4 MeV for the current strange

quark mass [255]. For the charm quark mass, we have adopted
mc = 1.17 GeV, which is obtained by running mc = 1.27 GeV
from the renormalization point µ = mc = 1.27 GeV [255] to
µ = 2 GeV. The theoretical uncertainty is not less than 100%
for the strange content. The results of phenomenological analy-
ses have a large error bar and cannot be used in the determina-
tion of the strange content of nucleon [295,336]. Lattice QCD
results also seem to have a systematic error, as some values are
not consistent (see Fig. 5). This situation may be improved in
the future by refining lattice QCD analyses. We may also ex-
pect improvement from phenomenology, with a new approach
which can more directly constrain the strange content through
the precise measurement of the decay of φ meson [337].

For the charm content the uncertainty of lattice QCD data
is about 30%. It agrees with the heavy quark expansion formula
[324,325,338–341]

〈N |c̄c|N〉 = −αs(µ = 2GeV)

12πmc
〈N |Ga

µνG
µν
a |N〉+O(1/m2

c)

≈ 0.054. (85)

To obtain the gluonic content of the nucleon, we use the
two-loop level trace anomaly formula of the nucleon mass:

mN =
βQCD

2gs
〈N |Ga

µνG
µν
a |N〉+

∑
q

mq〈N |q̄q|N〉

≈ αs(µ)

8π

[
β0 + β1

αs(µ)

4π

]
〈N |Ga

µνG
µν
a |N〉

+2σπN + σs + σc, (86)

with β0 = 25
3

and β1 = 154
3

(nf = 4 at µ = 2 GeV). By
subtracting the quark contents of nucleon in Eqs. (78), (83),
and (84), it yields

〈N |Ga
µνG

µν
a |N〉 ≈ (−6000± 450)MeV, (87)

where we have used αs(µ = 2GeV) = 0.30 (from two-loop
level renormalization group equation). Here the error bar is
only due to the nucleon scalar densities, and amounts to about
8%. The error of the perturbative expansion of Eq. (86) can
be estimated by evaluating the three-loop level correction. The
relative error is given by the ratio between the one-loop level

and three-loop level term
α2
sβ2

(4π)2β0
= 3%, where β2 = 1

2

[
2857−

20132
9

+ 5200
27

]
[nf = 4, αs(µ = 2GeV) = 0.3]. Here the most

important source of theoretical uncertainty of 〈N |Ga
µνG

µν
a |N〉

is the error bars of the strange and charm contents of nucleon.
To improve the accuracy of the S-PS type CP-odd e-N in-
teraction, continuous efforts in lattice QCD calculations are
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Fig. 5. Comparison of the results of several calculations of
the nucleon sigma term (σπN ) [295–297,304–308], the strange
content of nucleon (σs) [295,304–308,328,336] and the charm
content of nucleon (σc) [307,334,335].

required. We also have to remark that the contributions from
the light and charm quarks are determined within 30%, and
quantitative discussions are becoming possible.

To know the coupling of the PS-S type CP-odd e-N inter-
action (76), values of pseudoscalar nucleon matrix elements are
required. Let us first evaluate the gluonic pseudoscalar nucleon
matrix element 〈N |Ga

µνG̃
µν
a |N〉. It can phenomenologically be

calculated as [342]

〈N |Ga
µνG̃

µν
a |N〉 = −8πmN

αs

[(
2/3

1 + F/D
− 1

1 +mu/md

)
gA

−1

3
∆Σ

]
≈ −40GeV (µ = 2GeV), (88)

where the isovector axial coupling is given by gA = 1.27 [343],
the total proton axial charge by ∆Σ = 0.32±0.03±0.03 [344],
D = 0.80 and F = 0.47.

By using the anomalous Ward identity

2mN∆q = 2mq〈p|q̄iγ5q|p〉 − 2
αs(µ)

8π
〈N |Ga

µνG̃
µν
a |N〉, (89)

the quark pseudoscalar contents of nucleon can be calculated
phenomenologically, as [175,191,312,342]

〈p|ūiγ5u|p〉 = 120, (90)

〈p|d̄iγ5d|p〉 = −170, (91)

〈p|s̄iγ5s|p〉 = −4.5, (92)

〈p|c̄iγ5c|p〉 = −0.37, (93)

where we have used the central values of the nucleon axial
charges∆u = 0.73±0.04,∆d = −0.39±0.02 and∆s = −0.02±
0.01 [344]. The experimental value of ∆s is also consistent with
lattice QCD results [329,345]. For the charm quark contribu-
tion, we have neglected ∆c and used mc(µ = 2GeV) = 1170
MeV. We remark that the pseudoscalar nucleon matrix ele-
ments for light quarks are large. This is due to the pion pole
effect [326]. This enhancement has an important impact in the
evaluation of the atomic EDM, because it can counterbalance
the nonrelativisic suppression of the effect of PS-S CP-odd e-N
interaction (76). The main source of theoretical uncertainty of
Eqs. (90), (91) and (92) is due to the current quark masses.

The T-PT CP-odd e-N couplings are given in terms of the
nucleon tensor charge δq as

−CT
p = δuCT

eu + δdCT
ed

∑
q=s(,c)

δq CT
eq, (94)

−CT
n = δdCT

eu + δuCT
ed +

∑
q=s(,c)

δq CT
eq, (95)

where we have assumed the isospin symmetry. Here the proton
tensor charge δq are defined by

〈p(k, s)|q̄iσµνγ5q|p(k, s)〉 = 2(sµkν − sνkµ)δq, (96)

with s and k the 4-vector polarization and momentum of the
proton, respectively. The nucleon tensor charge is the trans-
versely polarized quark contribution to the nucleon polariza-
tion, where the nucleon is transversely polarized against its
momentum k. Currently, lattice QCD is giving the most accu-
rate data, and the results are giving [315–322,329,346–349]

δu ≈ 0.8, (97)

δd ≈ −0.2, (98)

|δs| < 0.02, (99)

at the renormalization point µ = 2 GeV, with theoretical un-
certainties of roughly 10% for the up and down quark con-
tributions. For δs, these are currently the only results consis-
tent with zero at the physical point [347,348]. In the litera-
ture, the nonrelativistic quark model predictions δu = 4

3
and

δd = − 1
3
were often quoted. The suppression of the nucleon

tensor charges (97) and (98) from the nonrelativistic quark
model prediction is partially understood by the gluon dressing
effect, which superposes spin flipped states of spin 1/2 quarks
due to the emission and absorption of spin 1 gluons, as sug-
gested by the Schwinger-Dyson analyses [350,351]. The nucleon
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Fig. 6. SM contribution to the CP-odd e-N interaction.

tensor charges can also be extracted from the experimental
data, but the information of the transversity distribution over
the whole momentum fraction is currently lacking [352–357].

Let us also discuss the SM contribution to the CP-odd e-
N interaction, generated by the CKM matrix elements. The
leading contribution is given by the S-PS type interaction CSP

N

(see Fig. 6) [58,244]. We estimate this effect as

CSP
N ∼ ḡ

(1)
πNN,SM

3α2
emme

2π2fπ

√
2

m2
πGF

ln
mπ

me
= O(10−17), (100)

where we have estimated the effective π0ēiγ5e vertex by solv-
ing the one-loop level renormalization group equation with

the nonrenormalizable Wess-Zumino-Witten term π0

4πfπ
Fµν F̃

µν

[358]. The CP-odd π-N-N coupling in SM ḡ
(1)
πNN,SM = O(10−17)

which was given in the factorization approach with the |∆S| =
1 four-quark interaction calculated obtained from the two-loop
level renormailzation group evolution (see also the end of Sec.
3.3) [258]. The CP-odd e-N interaction generated by the ex-
change of the Higgs boson in the SM is negligibly small [359].
In the SM, the PS-S and T-PT CP-odd e-N interactions are
generated at higher order than for the S-PS one, so we neglect
them.

3.3 The CP-odd π-N-N interaction

Now let us present the calculation of the hadron level CP vio-
lation. The most important CP-odd interaction is the CP-odd
π-N-N interaction, which is the base of hadronic effective CP-
odd interaction.

Let us first see the θ-term contribution to the CP-odd π-N-
N interaction (71). Using the partially conserved axial current
relation (PCAC), the isoscalar CP-odd π-N-N coupling is given
as

ḡ
(0)
πNN ≈ θ̄m∗

fπ
〈N |ūu− d̄d|N〉, (101)

where m∗ is defined in Eq. (64). A more refined calculation in
chiral EFT yields [279]

ḡ
(0)
πNN = (15.5± 2.5)× 10−3θ̄. (102)

In Ref. [279], the θ-term contribution to the isovector coupling
was also estimated, as

ḡ
(1)
πNN = −(3.4± 2.4)× 10−3θ̄. (103)

The large error bar is due to the uncertainty of the low energy
constants as well as higher order corrections. It can be noted

that the θ̄ contribution to the CP-odd π-N-N couplings is im-
portant even in the case when the Peccei-Quinn mechanism
is active, since the quark chromo-EDM induces θ̄ind [see Eq.
(67)].

Let us now see the contribution of the quark chromo-EDM
to the CP-odd π-N-N couplings. The chromo-EDM contributes
to the CP-odd π-N-N interaction through two leading pro-
cesses. The first one is the short distance contribution, which
can be obtained by applying the PCAC relation to the π-N-N
matrix element

〈Baπ
c|LcEDM|Bb〉 ≈

dcq
fπ

〈Ba|q̄gsσµνG
µν
a taTcq|Bb〉. (104)

The nucleon matrix element in the right-hand side of the above
equation cannot be reduced further, and we have to quote the
result of calculations using phenomenological models. Here we
use the result of QCD sum rules [34,360,361]:

Du ≡ 〈p|ūgsσµνG
µν
a tau|p〉 = −0.26GeV2, (105)

Dd ≡ 〈p|d̄gsσµνG
µν
a tad|p〉 = −0.17GeV2, (106)

at the renormalization point µ = 1 GeV. These matrix ele-
ments have an uncontrolled systematic uncertainty which is
certainly not less than O(100%).

The quark chromo-EDM also contributes to the CP-odd
π-N-N interaction through the pion pole. Combining the sec-
ond order term of the chiral Lagrangian with the pion tadpole
generated by the chromo-EDM, we have

ḡ
(0)
πNN ≈ −Du −Dd

4fπ
(dcu + dcd)

−m∗

2fπ
〈p|ūu− d̄d|p〉

[
2θ̄ +

m2
0

2

(mu −md

mumd
(dcu − dcd)

+
dcu + dcd − 2dcs

ms

)]
, (107)

ḡ
(1)
πNN ≈ −dcu − dcd

4fπ

[
Du +Dd +m∗〈p|ūu+ d̄d|p〉m2

0

]
, (108)

where m∗ ≡ mumdms

mumd+mdms+mums
. Here we have also written

the θ-term contribution to take into account the induced θ-
term for the case where the Peccei-Quinn mechanism is active
[281]. By substituting the induced θ-term (67), the isoscalar
CP-odd π-N-N coupling becomes

ḡ
(0)
πNN,PQ ≈ −dcu + dcd

4fπ

[
Du −Dd +m∗〈p|ūu− d̄d|p〉m2

0

]
. (109)

The total quark chromo-EDM contribution to ḡ
(0)
πNN,PQ and

ḡ
(1)
πNN is then [34,360]

ḡ
(0)
πNN,PQ(d

c
q) = ω̃

(0)
PQ

dcu + dcd
10−26cm

, (110)

ḡ
(1)
πNN (dcq) = ω̃(1) dcu − dcd

10−26cm
, (111)

with

ω̃
(0)
PQ = −6.9× 10−13 × |〈0|q̄q|0〉|

(265MeV)3
|m2

0|
0.8GeV2 , (112)

ω̃(1) = −1.0× 10−11 × |〈0|q̄q|0〉|
(265MeV)3

|m2
0|

0.8GeV2 . (113)

Here the coefficient of the isovector component of the quark
chromo-EDM is enhanced, due to large value of the isoscalar
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nucleon scalar density 〈p|ūu+ d̄d|p〉 (∼ 15 at µ = 2 GeV). It is
also important to note that the dominant contribution comes
from the pion pole effect. The short distance effect, due to
the matrix elements 〈N |q̄gsσµνG

µν
a taq|N〉, is less than 20% for

ḡ
(0)
πNN,PQ, and less than 10% for ḡ

(1)
πNN . From this fact, we can

estimate the theoretical uncertainty of the quark chromo-EDM
contribution to the CP-odd π-N-N interaction. The pion pole
effect depends on the light quark mass, scalar densities and
the mixed condensate m2

0, which have all sizable error bars.
The largest should be the light quark masses, which is about
O(30%). We also have keep in mind that the above analysis was
performed at the leading order of the chiral expansion. There
are also substantial uncertainties due to the unknown higher
order contributions, which are expected to be quantifiable in
the next-to-leading order analysis [279,362]. Being optimistic,
the error bars of the coefficients given by Eqs. (112) and (113)
are expected to be about 50%.

The last important contribution to the CP-odd π-N-N in-
teraction to be investigated is the P,CP-odd 4-quark interac-
tions. In this case, we also have to use model calculations. The
vacuum saturation approximation is often used in this problem
[363–367]. Let us as a concrete example derive the contribution
of the CP-odd 4-quark interaction giving from the Left-right
symmetric model [see Eq. (17)] to the isovector CP-odd π-N-N
coupling:

ḡ
(1)
πNN = CLR〈π0N |q̄iγ5τzq (ūu+ d̄d)|N〉

≈ CLR〈π0|q̄iγ5τzq|0〉〈N |ūu+ d̄d|N〉

= −2CLR
〈0|q̄q|0〉

fπ
〈N |ūu+ d̄d|N〉 , (114)

where we have used the PCAC assertion in the last equality.
The coefficient of the CP-odd four-quark operator is given by
CLR = Cu

1 = Cd
1 = −Cud

4 = −Cdu
4 [the corresponding op-

erators are defined in Eqs. (24) and (26). Their renormalized
values at µ = 1 GeV are given in Eq. (49)]. The chiral conden-

sate can be expressed as 〈0|q̄q|0〉 ≈ − m2
πf2

π
mu+md

.

Here it is important to remark that ḡ
(1)
πNN scales asO(Λ2

QCD/M
2
NP),

and that it is not suppressed by factors of light quark mass.
Moreover, it is enhanced by the scalar density of the light
quarks 〈N |ūu + d̄d|N〉 ∼ O(10) [see Eq. (79)]. We must how-
ever note that the vacuum saturation approximation only gives
accurate results if the gluonic correction is small, which is not
the case for the energy scale considered here (µ ∼ 1 GeV). In
the large Nc analysis, the error is estimated as O(100%) due to
the presence of baryons. In addition to the model dependence,
higher order correction due to the three-pion interaction (72),

which is known to contribute to ḡ
(1)
πNN , may also be sizable

[209,279,362].
We have to note that the contribution of the Weinberg

operator to the CP-odd π-N-N interaction (71) is suppressed
by at least a factor of light quark, due to its chiral symmetry
breaking nature.

The SM contribution generated by the CP phase of the
CKM matrix can be estimated by using the factorization of
|∆S| = 1 four-quark operators. By combining the hyperon-
nucleon transition and the |∆S| = 1 meson-baryon interaction,

we can calculate ḡ
(0)
πNN and ḡ

(1)
πNN . The result is of the order of

ḡ
(0)
πNN,SM ∼ ḡ

(1)
πNN,SM ∼ 10−17 [5,258,368–371]. This estimation

also involves a theoretical uncertainty of O(100%), due to the
gluonic correction in the 1/Nc expansion.

N N

π

γ

Fig. 7. Diagrammatic representation of the meson-loop con-
tribution to the nucleon EDM. The solid line represents a
baryon, the dashed line a light pseudoscalar meson, and the
wavy line a photon.

3.4 The nucleon EDM

The nucleon EDM receives the leading order contribution from
the quark EDM, the quark chromo-EDM, and the Weinberg
operator, without suppression by the light quark mass:

dN = dN (dq) + dN (dcq) + dN (w), (115)

where N = p, n. The quark EDM contribution to the nucleon
EDM dN (dq) is simply given by the proton tensor charges (96),
as

dp(dq) = δu du + δd dd + δs ds, (116)

dn(dq) = δd du + δu dd + δs ds, (117)

where we have assumed the isospin symmetry. Note that the
quark EDM can only be probed with the nucleon EDM. It
therefore plays an important role in probing the CP violation
of several scenarios such as the split SUSY (see Sub-sec. 2.3.2).

The quark chromo-EDM contribution to the nucleon EDM
dN (dcq) can be estimated in the chiral approach. As we have
seen in the previous section, the quark chromo-EDM generates
the CP-odd π-N-N interaction. We can therefore infer that the
most important part of dN (dcq) is given by the long distance
effect, the meson cloud diagram of Fig. 7. The leading order
formula of the nucleon EDM in the chiral perturbation is given
by [148,177,191,192,207,210,259,261,275–280,361,372,373]

d0 = d̄0 −
egAḡ

(0)
πNN

2πfπ

(
3mπ

4mN

)
− egAḡ

(1)
πNN

8πfπ

mπ

mN
, (118)

and

d1 = d̄1 −
egAḡ

(0)
πNN

2π2fπ

(
2

4− d
− γE + ln

4πµ2

m2
π

+
5πmπ

4mN

)

−egAḡ
(1)
πNN

8πfπ

mπ

mN
, (119)

where d0 ≡ 1
2
(dp + dn) and d1 ≡ 1

2
(dp − dn). The low energy

constants d̄0 and d̄1 are the counterterm of the one-loop level
diagram (Fig. 7), and include the short distance effect which
does not come from the meson cloud. Roughly, they originate
from short distance effect (shorter than the renormalization
scale, µ = 1 GeV in our case).

Let us show the quark chromo-EDM contribution to the
nucleon EDM by neglecting d̄n and d̄p. The leading order chiral
analysis of the nucleon EDM generated by the quark chromo-
EDM, taking into account the effect of hadrons with strange
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quark, was done in Ref. [361]. These results are given by

dn(d
c
q) = eρ̃und

c
u + eρ̃dnd

c
d + eρ̃snd

c
s, (120)

dp(d
c
q) = eρ̃upd

c
u + eρ̃dpd

c
d + eρ̃spd

c
s, (121)

so that we have ρ̃un ≈ −0.76, ρ̃dn ≈ −0.17, ρ̃sn ≈ 0.55, ρ̃up ≈
−0.026, ρ̃dp ≈ −1.1, and ρ̃sp ≈ 1.3 when there is no Peccei-Quinn

mechanism, and ρ̃un ≈ 1.5, ρ̃dn ≈ 0.93, ρ̃sn ≈ 0.60, ρ̃up ≈ 0.37,

ρ̃dp ≈ −0.93, and ρ̃sp ≈ 1.3 when the Peccei-Quinn mechanism
is active. The neutron EDM was also evaluated using QCD
sum rules [374,375] and are giving smaller results. It is pos-
sible that the QCD sum rules approach could not take into
account the long distance physics due to the pion loop which
enhances the nucleon EDM. On the contrary, the QCD sum
rules can quantify the short distance physics which is in prin-
ciple impossible to treat in the calculation using the effective
CP-odd meson-nucleon interaction without the knowledge of
the low energy constants. It is to be noted that the above re-
sult may be affected by a sizable theoretical uncertainty due
to the effect of higher order corrections [279,362]. The ideal
way to obtain dN (dcq) is to evaluate it on lattice. There are
currently continuous efforts to achieve this goal [376,377].

The final important process contributing to the nucleon
EDM to be discussed is the Weinberg operator. The deriva-
tion is based on the CP violating rotation of the nucleon state
evaluated using the QCD sum rules [282,378]. By quoting the
calculation using the QCD sum rules, the nucleon EDM gen-
erated by the Weinberg operator constant w is

dN (w) ∼ aN

2mN
w
3gsm

2
0

32π2
ln

M2
b

µ2
IR

≈
{
−w × 20 eMeV (N = n)

w × 5 eMeV (N = p)
, (122)

where
M2

b

µ2
IR

= 2 and gs = 2.1. The anomalous magnetic moment

(g−2) of the nucleon N is given by aN (an = -3.91, ap = 0.79).
As we have seen previously, the Weinberg operator also induces
a θ-term when the Peccei-Quinn mechanism is relevant, but its
contribution is suppressed by a factor of light quark mass. The
theoretical uncertainty of Eq. (122) is large due to the model
dependence, and certainly exceeds O(100%).

As mentioned in Sec. 2.2, the nucleon EDM in the SM is of
order O(10−(31−32))e cm. It is estimated by the long distance
effect generated by the chiral loop diagram (see Fig. 7) with
|∆S| = 1 interactions [66–73,75]. A loopless process with high
mass dimension operator was also pointed out to contribute to
the nucleon EDM with the same order of magnitude [74]. Like
the other CP violating processes, the nucleon EDM in the SM
is much smaller than that generated by typical models of new
physics with TeV scale parameters.

3.5 CP-odd nuclear force

The CP-odd nuclear force is the leading CP violating process
in generating CP-odd nuclear moments. The most general CP-
odd nuclear force is given by

HP/T/ =
{
σ−V1(r) + τ1 · τ2 σ−V2(r)

+
1

2
(τz

+ σ− + τz
− σ+)V3(r) +

1

2
(τz

+ σ− − τz
− σ+)V4(r)

+(3τz
1 τ

z
2 − τ1 · τ2)σ−V5(r)

}
· r̂ , (123)

N

N N

N

Fig. 8. Diagrammatic representation of one-meson exchange
CP-odd nuclear force. The solid line represents the nucleon and
the dashed line a light pseudoscalar meson (π, η).

where r̂ ≡ r1−r2
|r1−r2|

with r1 and r2 are the coordinates of the

interacting two nucleons. The spin and isospin matrices are
given by σ− ≡ σ1 − σ2, σ+ ≡ σ1 + σ2, τ− ≡ τ1 − τ2, and
τ+ ≡ τ1 + τ2. As we can see, the CP-odd nuclear force is a
spin dependent interaction, so the CP-odd nuclear polarization
arises only for systems with nonzero angular momenta.

At the scale of nuclear physics, with the cutoff scale µ = 500
MeV, the pion exchange CP-odd nuclear force provides the
leading contribution to the CP-odd nuclear moment. At the
leading order, the CP-odd nuclear force is a one-pion exchange
process made by combining the CP-even and CP-odd pion-
nucleon interactions (see Fig. 8). Its nonrelativistic potential
is given by [286,379,380]

V π
2 (r)r̂ = −gπNN ḡ

(0)
πNN

2mN
∇Y(mπ, r), (124)

V π
3 (r)r̂ = −gπNN ḡ

(1)
πNN

2mN
∇Y(mπ, r), (125)

V π
5 (r)r̂ =

gπNN ḡ
(2)
πNN

2mN
∇Y(mπ, r), (126)

where Y(mπ, r) ≡ e−mπr

4πr
, and gπNN ≡ gAmN

fπ
. Note the sign

change for the isoscalar and isovector couplings which is due
to the difference of conventions [34,381].

We should also present some subleading processes. The first
one is the contact interaction [terms with C̄1 and C̄2 of Eq.
(74)], which can be written as

V C
1 (r)r̂ = −2mN C̄1∇δ(r), (127)

V C
2 (r)r̂ = −2mN C̄2∇δ(r), (128)

where the delta function is valid up to the cutoff (renormal-
ization) scale. In practice, it smeared with a Gaussian or a
Yukawa function with the cutoff scale as their range. An ex-
ample of the effect contributing to the contact interaction is
the CP-odd nuclear force with η meson exchange (see Fig. 8).
It can be matched with the isoscalar CP-odd N-N interaction
as [382]

gηNN ḡ
(0)
ηNN ≈ −2mNm2

ηC̄1, (129)

where gηNN = 2.24 [383] is the CP-even η-nucleon coupling.
Quantifying the effect of the CP-odd contact interaction is
potentially important since it receives contributions from the
Weinberg operator. Unfortunately, there are currently no hadron
level evaluations available.

Another possible subleading contribution is the CP-odd
three-nucleon interaction [207]. This interaction is generated by
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the three-pion interaction [terms with ∆ of Eq. (72)]. This pro-
cess however interacts with the spin and isospin of all the three
relevant nucleons. This kind of configurations is suppressed in
nuclei due to the pairing of nucleons, so the effect of the CP-
odd three-nucleon interaction is not important. Neglecting this
interaction should therefore be a good approximation.

Before going to the nuclear physics, we have to point out
that the renormalization scale where the CP-odd nuclear force
Eq. (123) was defined is not the same as that used in the cal-
culational approach adopted for heavy nuclei. If we respect the
“bare” CP-odd nuclear force, the model space of many-body
nuclear systems becomes too large, with exponentially growing
calculational cost. To treat the CP-odd nuclear force in some
many-body approaches, we actually have to construct an effec-
tive theory for heavy nuclei, respecting the model space. We
can expect that the long range pion exchange is not much af-
fected by this change of model space, since the pion exchange is
the most relevant interaction in low energy nuclear physics. We
must however note that the contact interaction which contains
the short range physics suffers from the renormalization in the
reduction of the model space, required in the construction of
the effective interaction in heavy nuclei.

In the context of the change of model space, a notable CP-
odd contribution is the isotensor CP-odd nuclear force. At the
scale of the hadron level effective theory [renormalization scale
of Eq. (123), e.g. µ = 500 MeV], this interaction is suppressed
by the isospin splitting of the quark mass. The situation may
however change in heavy nuclei, where the CP-odd nuclear
force must be renormalized into an effective theory with a re-
duced model space. As heavy nuclei have a medium with large
isospin breaking, they certainly induce an isotensor CP-odd
nuclear force through the renormalization of isovector CP-odd
interaction. There are currently no evaluations of the effective
CP-odd nuclear forces for heavy nuclei, but this is an impor-
tant subject to be discussed in the future. At the same time,
the evaluation of the effect of the isotensor CP-odd nuclear
force to the CP-odd nuclear moments are almost mandatory
in quantifying the EDM of heavy atoms.

The leading SM contribution to the CP-odd nuclear force is
generated by the pion-exchange process, which is just the com-
bination of the CP-even and CP-odd pion-nucleon interactions
(see Sec. 3.3). In SM, we can also consider additional effects
due to the exchange of K and η mesons, which contribute to
all terms of Eq. (123) [258].

4 Nuclear structure calculation

In this section we first give the definition of the NSM and then
review how it is evaluated in framework of the nuclear shell
model and other calculations based on the mean field theories.

4.1 Definition of NSM

The effective electric field Φ(r) which an electron at position
r feels can be expressed as [384]

〈Ψ | eΦ(r)− 1

Z
〈dN 〉 ·∇Φ(r) |Ψ〉

= −Ze2

|r| + 4πeS ·∇δ(r) + · · ·, (130)

where |Ψ〉 indicates the nuclear ground state, 〈dN 〉 is the nu-
clear electric dipole moment of the nuclear ground state and Z
is the number of protons. Here the kth component (k = x, y, z)
of the NSM Sk may be given as

Sk = Sch,k + Sint,k. (131)

The Sch,k is caused by the charge asymmetry of a nucleus and
is given as

Sch,k =
1

10

∫ (
r2rk − 5

3

〈
r2
〉
ch

rk − 2

3
〈Qkk′〉 rk′

)
ρ(r)dr,

(132)
where rk represents position of a nucleon, ρ(r) nuclear charge
density, 〈Qkk′〉 nuclear quadrupole moment of the nuclear ground
state, which can be dropped for the spin I = 1/2 nuclear state.〈
r2
〉
ch

is the charge mean square radius.
Then the NSM is defined as the maximum projection of

the NSM operator on the nuclear axis, S =< Ŝz > and is
calculated as

Sch =
〈
Ψ
∣∣∣Ŝch,z

∣∣∣Ψ,〉 , (133)

where |Ψ〉 is the PT -violating ground state, which is usually

evaluated by the nuclear mean field theories. The operator Ŝch

is expressed in terms of nucleon’s degree of freedom as

Ŝch =
1

10

A∑
i=1

ei

(
r2i − 5

3

〈
r2
〉
ch

)
ri. (134)

Here A is the mass number of a specific nucleus, and ei is
the charge for the ith nucleon. We take ei = 0 for a neutron
and ei = e for a proton. As inclusion of the relativistic effects,
Flambaum et al had pointed out the contribution to the NSM
operator as [385]

S′ =
Ze

10

1

1− 5
14
Z2α2

{[
〈rr2〉 − 5

3
〈r〉〈r2〉 − 2

3
〈ri〉〈qij〉

]
− 5

28

Z2α2

R2
N

[
〈rr4〉 − 7

3
〈r〉〈r4〉 − 2

3
〈ri〉〈qijr2〉

]}
,

(135)

where RN is the nuclear radius, qij is the nuclear quadrupole
moment operator and Z is the atomic number of the nucleus.

If P, T-odd, which is equivalent to P, CP-odd, interaction
V̂ PT
π(T ) exists in the total Hamiltonian, we have

H = H0 + V̂ PT
π(T ), (136)

where H0 does not break P and T. Here V̂ π
PT is the pion-

exchange CP-odd nuclear force, given by the sum of the isoscalar
[T = 0 , defined in Eq. (124)], isovector [T = 1 , defined in Eq.
(125)] and isotensor [T = 2 , defined in Eq. (126)] terms. The
coupling constants can be rewritten as

ḡ(0)g = −gπNN ḡ
(0)
πNN , (137)

ḡ(1)g = −gπNN ḡ
(1)
πNN , (138)

ḡ(2)g = gπNN ḡ
(2)
πNN , (139)

to respect the convention often adopted in the nuclear struc-
ture calculations. We note again that the bare CP-odd nuclear
force obtained at the hadron scale and that used in the calcu-
lations of the CP-odd moments of heavy nuclei (that of this
section) are not the same, since the model spaces where they
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are defined are different. The nuclear forces in the media are
usually calculated in terms of the Brueckner-Bethe-Goldstone
(BBG) many-body theory [386]. Another complexity comes in
from the shell-model calculation. In the shell-model calculation
we divide the model space into the core and valence spaces. The
effective interaction in the valence shell should be modified by
taking into account the core excitations. Since the treatment
of both of them is rather involved, we do not take into account
these effects in this paper.

Since V PT is very weak, the NSM which is P,T-odd is cal-
culated perturbatively as

Sch =
∑
k=1

〈
I+1

∣∣∣Ŝch,z

∣∣∣ I−k 〉 〈I−k ∣∣∣V̂ PT
π(T )

∣∣∣ I+1 〉
E+

1 − E−
k

+ c.c. (140)

Here
∣∣I+1 〉 represents the lowest state with spin I and positive

parity and
∣∣I−k 〉, the kth state with spin I and negative parity.

The energy Eπ
k of the kth state with parity π, is obtained by

diagonalizing the original shell model Hamiltonian H0. i.e.

H0 |Iπk 〉 = Eπ
k |Iπk 〉 .

Then the NSM is expressed in terms of ḡ(T ) as

Sch = a0 ḡ(0)g + a1 ḡ(1)g + a2 ḡ(2)g, (141)

where coefficients aT with T = 1, 2, 3 in front of ḡ(T )g ’s are
given in units of efm3. Coefficients aT are tabulated in the
following.

Another contribution to Ŝint coming from the nucleon in-
trinsic EDM is given by as [387]

Ŝint =
1

6

A∑
i=1

di

(
r2i −

〈
r2
〉
ch

)
+

1

5

A∑
i=1

[
ri (ri · di)− dir

2
i /3
]
,

(142)
where di is the ith nucleon intrinsic dipole moment (either
proton or neutron). Then the intrinsic component of NSM is
expressed as

Sint = spdp + sndn, (143)

where dp and dn are EDMs of the proton and the neutron,
respectively. Here sp and sn are the unknown coefficients that
have to be calculated using nuclear many-body methods.

4.2 Evaluation of NSMs

4.2.1 Simple Shell model approaches

As a simple shell model estimate, an odd-mass nucleus is ex-
pressed as a one-particle (either neutron or proton) plus the
core (even-even part of the nucleus). In Ref. [388] NSMs were
calculated for a set of nuclei (199Hg, 129Xe, 211Rn, 213Ra, 225Ra,
133Cs, and 223Fr) with full account of core polarization effects
(namely from the even-even part of the nucleus). Their results
are given in Table 1 without core polarization and in Table 2
with core polarization effects. The effects of core polarization
are found to have in general a large effect on the reduction
of the Schiff moments ( ten to hundred times reduction). It
is also found that the dominant contribution comes from the
isovector (T = 1) for 199Hg.

In Ref. [389], the Skyrme-Hartree-Fock method is used to
calculate the NSM for the octupole deformed nucleus 225Ra.

Table 1. Coefficients aT in Ref. [388] in units of efm3. The
bare values of the Schiff moment in Eq. (141), without core
polarization, are calculated. Note that the sign of tensor type
interaction is changed from the original paper in accordance
with the definition in the present paper.

a0 a1 a2
199Hg −0.09 −0.09 −0.18
129Xe 0.06 0.06 0.12
211Rn −0.12 −0.12 −0.24
213Ra −0.012 −0.021 −0.016
225Ra 0.08 0.08 0.16
133Cs 0.08 −0.02 0.21
223Fr −0.122 −0.052 − 0.300

Table 2. Coefficients aT in Ref. [388] with core polarization
in units of efm3.

a0 a1 a2
199Hg −0.00004 −0.055 −0.009
129Xe 0.008 0.006 0.009
211Rn −0.019 0.061 −0.053
213Ra −0.012 −0.021 −0.016
225Ra 0.033 −0.037 0.046
133Cs 0.006 −0.02 0.04
223Fr −0.009 −0.016 − 0.030

Table 3. Coefficients aT in Ref. [389] for 225Ra in units of
efm3.

a0 a1 a2
225Ra − 5.06 10.4 −10.1

225Ra is known as a possible candidate which has a large Schiff
moment. The first Iπ = 1

2

−
state is located at 55 keV above

the ground state with spin Iπg.s. =
1
2

+
and the energy denom-

inator in Eq. (140) becomes large. As intermediate states in

perturbation theory, they took only the first Iπ = 1
2

−
state

with excitation energy of ∆E = 55 keV.
Then, to a very good approximation, we have

S = −

〈
1/2+

∣∣∣Ŝz

∣∣∣ 1/2−〉〈1/2− ∣∣∣V̂ PT
∣∣∣ 1/2+〉

∆E
+ c.c., (144)

This is further simplified as

S = −2
J

J + 1

〈
Ŝz

〉〈
V̂ PT

〉
∆E

, (145)

where J = 1/2 and
〈
Ŝz

〉
and

〈
V̂ PT

〉
are expectation values

in terms of mean fields (intrinsic-states). Their result is sum-
marized in Table 3.

The effect of the intrinsic nucleon EDM to the Schiff mo-
ment can also be estimated in the simple shell model. It is
given by [5,47,191]

Sint =

 dN
[

1
10

2+j
1+j

〈r2〉val − 1
6
〈r2〉ch

]
(j = l + 1/2)

dN
[

1
10

1−j
1+j

〈r2〉val + 1
6

j
1+j

〈r2〉ch
]
(j = l − 1/2)

, (146)

where 〈r2〉val is the mean square radius of the valence nucleon
N . The nuclear angular momentum and the orbital angular
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momentum of the single valence nucleon are denoted by j and l,

respectively. In ordinary nuclei, 〈r2〉val ≈ 〈r2〉ch ≈ A
2
3 (1.1 fm)2

with A the nucleon number. In the simple shell model, 1
2

+
nu-

clei have an s-wave valence nucleon (e.g. 129Xe, 225Ra). From
Eq. (146), Sint of those nuclei vanishes. In reality, the single
valence nucleon approximation does not hold due to the con-
figuration mixing, and the intrinsic nucleon EDM contribution
does not cancel. We note that the effect of intrinsic nucleon
EDM is not enhanced, since the relativistic effect is weak in
nuclei, in contrast to that for the electrons in atoms [390–392].

For 1
2

+
nuclei, we should consider that |Sint| ∼ dN

6
〈r2〉ch is an

upper limit.

4.2.2 Mean field framework

In Ref. [393], the NSM of the nucleus 199Hg is calculated by
π-N-N interaction vertices that are P,T-odd. Their approach,
formulated in diagrammatic perturbation theory with impor-
tant core-polarization diagrams summed to all orders, gives
a close approximation to the expectation value of the Schiff
operator in the odd-A Hartree-Fock-Bogoliubov ground state
generated by a Skyrme interaction and a weak P,T-odd pion-
exchange potential. In the following their method is reviewed
in short.

The NSM is approximately expressed as the expectation
value of the Schiff operator Sz in the completely self-consistent
one-quasiparticle ground state of 199Hg, constructed from a
two-body interaction that includes both a Skyrme potential
and the P,T-odd potential V PT . It is an approximation because
V PT is not treated in a completely self-consistent way. The
mean-field calculation in 199Hg itself is not carried out. Instead,
the HF+BCS ground-state of the even-even nucleus 198Hg is
first calculated and add a neutron in the 2p1/2 level. They the
core-polarizing effects of this neutron are treated in the QRPA
framework.

Following a spherical HF+BCS calculation in 198Hg, the
Hamiltonian is divided into unperturbed and residual parts.
The unperturbed part, expressed in the quasiparticle basis, is

H0 = T + V00 + V11, (147)

where T is the kinetic energy and V the Skyrme interaction,
with subscripts referring to the numbers of quasiparticles which
the interaction creates and destroys. The perturbed part is

Hres = V PT + V22 + V13 + V31 + V04 + V40. (148)

The interaction V PT can also be expanded in terms of quasi-
particle creation and annihilation operators. The model space
of effective operator theory is one-dimensional: a quasiparticle
in the a ≡

(
2p1/2,m = 1/2

)
level. The unperturbed ground

state |Φa〉 is simply this one-quasiparticle state. Then the ex-
pectation value of Sz, in the full correlated ground state is
given by

〈Ψa |Sz|Ψa〉 = N−1 〈Φa|
[
1 +Hres

(
Q

εa −H0

)
+ · · ·

]
Sz

×
[
1 +

(
Q

εa −H0

)
Hres + · · ·

]
|Φa〉 (149)

Here εa is the single-quasiparticle energy of the valence nu-
cleon, the operator Q projects onto all other single quasiparti-
cle states, N is the normalization factor.

Table 4. Coefficients aT in Ref. [393] in 199Hg for the five
different Skyrme interactions in units of efm3.

a0 a1 a2

SkM 0.009 0.070 0.022
SkP 0.002 0.065 0.011
SIII 0.010 0.057 0.025
SLy4 0.003 0.090 0.013
SkO’ 0.010 0.074 0.018

The terms that are first order in Hres do not include the
strong interaction V because it has a different parity from the
Schiff operator. Thus the lowest order contribution to the NSM
is

〈Ψa |Sz|Ψa〉LO = 〈−| ca
[
V PT

(
Q

εa −H0

)
Sz

]
c†a |−〉+ c.c.,

(150)

where c†a is the creation operator for a quasiparticle in the va-
lence level a and |−〉 is the no-quasiparticle BCS vacuum de-
scribing the even-even core, so that |Φa〉 is just c†a |−〉. The core
polarization is also considered, implemented through a certain
QRPA method. To assess the uncertainty in the results, they
carried out the calculation with several Skyrme interactions,
the quality of which is tested by checking predictions for the
isoscalar-E1 strength distribution in 208Pb. Their final results
are summarized in Table 4.

In Ref. [394] they present a comprehensive mean-field cal-
culation of the NSM of the nucleus 225Ra, the quantity that
determines the static electric-dipole moment of the correspond-
ing atom if T is violated in the nucleus. The calculation breaks
all possible intrinsic symmetries of the nuclear mean-field and
includes both exchange and direct terms from the full finite-
range T-violating N-N interaction, and the effects of short-
range correlations. The resulting NSM, which depends on three
unknown T-violating π-N-N coupling constants, is much larger
than in 199Hg, the isotope with the best current experimental
limit on its atomic EDM. In the following their work is reviewed
briefly.

The asymmetric shape of 225Ra implies parity doubling,
namely, the existence of a very low energy

∣∣1/2−〉 state, in this

case 55 keV above the ground state |Ψ0〉 ≡
∣∣1/2+〉 that domi-

nates the sum in Eq. (140) because of the corresponding small
denominator. With the approximation that the shape deforma-
tion is rigid, the ground state and its negative-parity partner in
the octupole-deformed nucleus are projections onto good par-
ity and angular momentum of the same “intrinsic state”, which
represents the wave function of the nucleus in its own body-
fixed frame with the total angular momentum aligned along
the symmetry axis. Equation (140) then reduces to

S ≈ − J

J + 1

〈
Ŝz

〉 〈V PT
〉

(55keV)
(151)

where J = 1/2 and the brackets indicate expectation values in

the intrinsic state. The octupole deformation enhances
〈
Ŝz

〉
,

making it collective, robust, and straightforward to calculate
with an error of a factor of 2 or less. To evaluate

〈
V PT

〉
they constructed a new version of the code Hartree-Fock code
(HFODD). HFODD works with any Skyrme energy functional.
Their results for various types of Skyrme interactions are given
in Table 5.
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Table 5. Coefficients aT in Ref. [394] in 225Ra, calculated with
the different types of Skyrme interactions in units of efm3.

a0 a1 a2

SkO’ −1.5 6.0 −4.0
SIII −1.0 7.3 −3.9
SkM* −4.7 21.5 −11.0
SLy4 −3.0 16.9 −8.8

Table 6. Coefficients aT in Ref. [395] in 211Rn in units of efm3.

a0 a1 a2 b
SLy4 0.042 −0.018 0.071 0.016
SkM* 0.042 −0.028 0.078 0.015
SIII 0.034 −0.0004 0.064 0.015

In Ref. [395], they calculate the NSMs of the nuclei 199Hg
and 211Rn in completely self-consistent odd-nucleus mean field
theory by modifying the Hartree-Fock-Bogoliubov code HFODD.
They allow for arbitrary shape deformation and include the
effects of nucleon dipole moments alongside those of a π-N-N
interaction that violates charge-parity (CP) symmetry. The re-
sults for 199Hg differ significantly from those of previous calcu-
lations when the CP-violating interaction is of isovector char-
acter.

Here they do not use perturbation theory, but instead the
NSM is directly calculated, by including the PT violating in-
teraction. Namely they have

Sch =
〈
Ψ
∣∣∣Ŝch,z

∣∣∣Ψ〉 , (152)

where |Ψ〉 is the P,T-odd ground state. Their results are given
in Tables 6 and 7.

They also calculate the Schiff moment coming from the
Schiff moment operator due to nucleon intrinsic electric dipole
moment [388] as in Eq. (142) where the nucleon EDM operator
in the leading chiral approximation [see also Eqs. (118) and
(119)] can be written as

d̂i =
eg

4π2mN
ln

mN

mπ

(
ḡ(0) − ḡ(2)

)
σ̂i(−τz

i )

≈ 5.2× 10−2GeV−1 eg
(
ḡ(0) − ḡ(2)

)
σ̂i(−τz

i ). (153)

where i represents ith nucleon. Here the minus sign of the
isospin matrix is due to the difference of convention. In terms
of the coefficient b of Tables 6 and 7, Eq. (143) is written as

Sint =
b dn

1.0× 10−2e fm
, (154)

where it is assumed that only the intrinsic EDM of the neutron
contributes.

In Ref. [387], they calculated the contribution of internal
dN to the NSM of 199Hg. The contribution of the dp was ob-
tained via core polarization effects that were treated in the
framework of random phase approximation (RPA) with effec-
tive residual forces. Their results are given in Table 8.

The NSM is predicted to be enhanced in nuclei with static
quadrupole and octupole deformation. The analogous sugges-
tion of the enhanced contribution to the NSM from the soft
collective quadrupole and octupole vibrations in spherical nu-
clei is tested in this article in the framework of the quasi RPA

Table 7. Coefficients aT in Ref. [395] in 199Hg in units of efm3.
The first three lines are in the HF approximation, and the next
two are in the HFB approximation.

a0 a1 a2 b
SLy4 0.013 −0.006 0.022 0.003
SIII 0.012 0.005 0.016 0.004
SV 0.009 −0.0001 0.016 0.002
SLy4 0.013 −0.006 0.024 0.007
SkM* 0.041 −0.027 0.069 0.013

Table 8. Values of sp and sn for different gs and g′s in 199Hg
where gs and g′s are strengths for the Landau-Migdal interac-
tion in Ref. [387] .

sp sn gs g′s
SIII 0.18 1.89 0.25 0.9
SV 0.19 1.86 0.25 1.0
SLy4 0.20 1.93 0.19 0.9
SkM* 0.22 1.90 0.19 1.0

Table 9. Schiff moments in units of η 10−8efm3 in Ref. [396]

217Ra 217Rn 219Ra 219Rn 221Ra 221Rn
−0.03 −0.01 0.30 −0.03 −0.07 0.06

(QRPA) with separable quadrupole and octupole forces ap-
plied to the odd 217−221Ra and 217−221Rn isotopes. In this
framework, we confirm the existence of the enhancement effect
due to the soft modes, but only in the limit when the frequen-
cies of quadrupole and octupole vibrations are close to zero.
According to the QRPA, in realistic cases the enhancement
in spherical nuclei is strongly reduced by a small weight of the
corresponding “particle+phonon” component in a complicated
wave function of a soft nucleus. They considered the following
weak P,T-odd interaction

W =
GF√
2

1

2m
η(σn)

1

4π

dρ(r)

dr
(155)

where GF is the Fermi constant of the weak interaction, and
η is the strength of the P,T-odd interaction and ρ(r) is the
nuclear charge distribution.

4.2.3 Configuration mixing shell model approaches

In Ref. [397], the NSMs for the lowest 1/2+ states of Xe iso-
topes are calculated. The nuclear wave functions beyond mean-
field theories are calculated in terms of the nuclear shell model,
which contains P, T-odd two-body interactions. In the follow-
ing their approach is reviewed in detail.

For a description of the first 1/2+ states (the 1/2+1 states) of
odd-mass nuclei, the pair-truncated shell model (PTSM) [398–
400] is adopted, where the gigantic shell model space is re-
stricted to an efficient and dominant model space in terms of
collective pairs. In the low-lying states angular momenta zero
(S) and two (D) collective pairs are most important. The S
and D pairs are defined as

Ŝ† =
∑
j

αjÂ
†(0)
0 (jj), (156)

D̂†
M =

∑
j1j2

βj1j2Â
†(2)
M (j1j2), (157)
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where the structure coefficients α and β are determined by
variation. Here the creation operator of a pair of nucleons in
orbitals j1 and j2 with total angular momentum J , and its
projection M is written by

Â†(J)
M (j1j2) =

∑
m1m2

( j1m1j2m2| JM) ĉ†j1m1
ĉ†j2m2

, (158)

where ĉ†j is the nucleon creation operator for the j orbital.
The many-body wave functions of even-nucleon systems for

neutrons or protons are created by applying the pair creation
operators Ŝ† and D̂† to the inert core |−〉:

|SnsDnd γI〉 =
(
Ŝ†)ns

(
D̂†)nd |−〉 , (159)

where I is a total angular momentum of the many-body sys-
tem, and γ an additional quantum number required to com-
pletely specify the states. The ns and nd are numbers of S
and D pairs, respectively. The total number of S and D pairs
(ns + nd) is restricted to half the number of valence nucleons
in the even-nucleon system. For the description of odd-nucleon
systems, an unpaired nucleon in the j orbital is added to the
even-nucleon system. The state is now written as

|jSnsDnd γI〉 = ĉ†j
∣∣SnsDnd γI ′

〉
. (160)

As for single-particle levels, all the relevant five orbitals,
0g7/2, 1d5/2, 1d3/2, 0h11/2, and 2s1/2, in the major shell be-
tween the magic numbers 50 and 82 are taken into account
for both neutrons and protons. In addition, four orbitals with
negative parity, 1f7/2, 1f5/2, 2p3/2 and 2p1/2, are considered
above the closed shell Z = 82 for protons. This is because the
shell model space is necessary to be expanded including the
negative-parity states connected to the 1/2+1 states in order to
calculate the NSMs coming from the P,T-odd two-body inter-
actions. For a description of those negative-parity states, in-
troduce proton negative-parity (Nk, k = 1, 2, 3, 4, 5) pairs that
are necessary in addition to the S and D pairs. i.e.

N̂†
1
(K1)
M = Â

†(K1)
M (g7/2, f7/2), (161)

N̂†
2
(K2)
M = Â

†(K2)
M (d5/2, f5/2), (162)

N̂†
3
(K3)
M = Â

†(K3)
M (s1/2, p1/2), (163)

N̂†
4
(K4)
M = Â

†(K4)
M (g7/2, f5/2), (164)

N̂†
5
(K5)
M = Â

†(K5)
M (d5/2, f7/2), (165)

where the coupled angular momenta take values of K1,2 =
0, 1, 2, 3, 4, K3 = 0, 1 and K4,5 = 1, 2, 3, 4. Then the wave
function of the even-nucleon system with negative parity is
constructed as

|SnsDndNk γI〉 =
(
Ŝ†)ns

(
D̂†)ndN̂†

k |−〉 , (166)

where ns + nd + 1 gives half the number of valence protons.
The odd-mass (neutron odd and proton even) nuclear state

with a total spin I and its projection M is written as a product
of the above state in neutron space and that in proton space
as

|Φ(IMη)〉

=
[∣∣jnSn̄sDn̄dInηn

〉
⊗ |SnsDndNnn

i Ipηp〉
](I)
M

, (167)

where 2(n̄s + n̄d) + 1 and 2(ns + nd + nn) are numbers of
valence neutron holes and proton particles, respectively. In this

mass region, valence neutrons are treated as holes, and valence
protons are treated as particles. The number of the proton
negative-parity pairs, nn, is limited to at most one (i.e., nn = 0
or 1).

As an effective two-body interaction, the monopole pairing
(MP) and quadrupole pairing (QP) plus quadrupole-quadrupole
(Q-Q) interaction is employed. The effective shell-model Hamil-
tonian is written as

Ĥ = Ĥn + Ĥp + Ĥnp, (168)

where Ĥn, Ĥp, and Ĥnp represent the interaction among neu-
trons, the interaction among protons, and the interaction be-
tween neutrons and protons, respectively. The interaction among
like nucleons Ĥt (t = n or p) consists of spherical single-particle
energies, MP, QP and QQ interactions. i.e.,

Ĥt =
∑
jm

εjtĉ
†
jmtĉjmt

−G0tP̂
†(0)
t P̂

(0)
t −G2tP̂

†(2)
t · ˜̂P (2)

t − κt : Q̂t · Q̂t :,

(169)

where :: denotes normal ordering. The interaction between neu-
trons and protons Ĥnp is given by the QQ interaction,

Ĥnp = −κnpQ̂n · Q̂p. (170)

As for the single-particle basis states, the harmonic oscillator
basis states with the oscillator parameter b =

√
~/Mω are em-

ployed. Further details of the effective interaction are presented
in Ref. [398–400].

The Hamiltonian given in Eq. (168) is diagonalized in terms
of the many-body basis wave functions in Eq. (167) as

Ĥ |Iπ; k〉 = E(Iπ; k) |Iπ; k〉 , (171)

where |Iπ; k〉 is the normalized eigenvector for the kth state
with spin I and parity π, and E(Iπ; k) is the eigenenergy for
the state |Iπ; k〉.

The single particle energies are determined by the following
procedure. Since the small change of the single particle ener-
gies hardly influences the energy levels of even-even nuclei, the
single particle energies are determined primarily to reproduce
the energy levels of low-lying states for odd-mass nuclei. Using
the same set of two-body interactions adopted in the previous
studies [399], the single particle energies are adjusted so as to
approximately reproduce the energy levels of low-lying states
for odd-mass nuclei. Next, the strengths of the two-body in-
teractions are determined to reproduce the energy spectra of
even-even nuclei. As shown later, the strengths of the two-body
interactions are changed linearly with the number of the va-
lence particles. Finally, the single particle energies are again
modified to get an improved fitting to the low-energy levels of
odd-mass nuclei. The single particle energies are thus obtained
by repeating the above procedure, iteratively. Fig. 9 shows
model space for neutrons and protons adopted. The single par-
ticle energy is listed for each single particle orbital in 129Xe.
In order to investigate the systematics of low-lying states in
the mass A ∼ 130 region, it is assumed that the strengths of
the two-body interactions change linearly with the number of
the valence neutron holes N̄n and the valence proton particles
Np [400].

In Table 10 total dimensions of the 1/2+ states and the
1/2− states are shown for Xe isotopes.
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Neutron

0  7/2g

Proton

1  5/2d

0  11/2h
2  1/2s
1  3/2d

0  7/2g

1  5/2d

0  11/2h
2  1/2s

1  3/2d

1  7/2f

1  5/2f
2  3/2p

2  1/2p

0.000
0.332

0.602

1.655

2.434 0.000

0.963

1.460

1.530
1.760

6.896

8.826

9.120

9.633

Fig. 9. (Color online) Model space for neutrons and protons
adopted in the calculations. The single particle energy is listed
for each single particle orbital in unit of MeV in the case of
129Xe from Ref. [397].

Table 10. Dimensions of the 1/2+ states of 129Xe built on
the neutron space with parity + and the proton space with
parity -, and those of the 1/2− states arising from the proton
negative-parity pairs from Ref. [397].

Nucleus 129Xe 131Xe 133Xe 135Xe

1/2+ 168 84 32 7
1/2− 4077 1968 718 419

The partial contribution of the kth state
∣∣ 1
2

−
k

〉
to the Schiff

moment is defined by

S(I)(k) =

〈
1
2

+

1

∣∣Ŝch,z

∣∣ 1
2

−
k

〉〈
1
2

−
k

∣∣V PT
π(I)

∣∣ 1
2

+

1

〉
E

(+)
1 − E

(−)
k

+ c.c.. (172)

In Fig. 10, the partial contribution S(I)(k) to the Schiff mo-
ment for the isovector (I = 1) two-body interaction in 129Xe is

shown as a function of the excitation energy Ek = E
(−)
k −E

(+)
1 .

The “SUM” indicates the sum of each NSM contribution de-
fined by

SSUM
(I) (k) =

k∑
i=1

S(I)(i), (173)

where the summation takes over contributions from the first
state to the kth state with spin 1/2 and parity −. There are
four large contributions around Ek = 9.0 MeV, one positive
and others negative. Almost no contributions are seen above
12.0 MeV.

In Fig. 11 the density of the 1/2− states is shown

ρ(Ek) =
dN

dE
(174)

for 129Xe, where dE = 0.2 MeV is taken and dN is the number
of the 1/2−states in the range dE. It is seen from the figure
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Fig. 10. (Color online) Partial contribution to the Schiff mo-
ment for the isovector type two-body interaction in 129Xe as a
function of excitation energies of 1/2− states from Ref. [397].
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Fig. 11. (Color online) Density of the 1/2− states ρ(Ek) for
129Xe from Ref. [397].

that the ρ has a Gaussian shape and increases exponentially
between 8 and 12 MeV. Around 13 MeV it becomes maximum,
but the contribution of each state to the NSM is marginal above
12 MeV as seen from Fig. 10. The density of the 1/2− states
presented in Fig. 11 is actually large enough to accommodate
the most contribution to the NSMs.

To investigate the components of the Schiff moment, the
strength function is evaluated for the NSM operator defined
by

S (k) =
〈
1
2

+

1

∣∣Ŝch,z

∣∣ 1
2

−
k

〉
, (175)

which is shown for 129Xe in Fig. 12. There are several strengths
in the range between 9 MeV and 10 MeV, but four large
strengths around 9.0 MeV contribute to the Schiff moment.

In Fig. 13, the off-diagonal potential matrix elements is
shown for the isovector (I = 1) part

V(I) (k) =
〈
1
2

−
k

∣∣V PT
π(I)

∣∣ 1
2

+

1

〉
. (176)
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Fig. 12. (Color online) Strength function for the Schiff mo-
ment operator in 129Xe from Ref. [397].
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Fig. 13. (Color online) Off-diagonal potential matrix elements
between 1/2+1 state and 1/2−k state within the energy ranges
below 6.9 MeV (left panel) and above 6.9 MeV (right panel)
from Ref. [397].

In contrast to the strength function for the NSM, there are
now two large contributions just above 6.8 MeV in enlarged
scale. However, they do not contribute to the total NSM at
all since there are no strong NSM strength functions in that
corresponding regime. In Fig. 14 the partial contributions to
the NSMs are shown and their total sums, respectively for
isoscalar (I = 0) and isotensor (I = 2) two-body interactions.
All the three isospin NSMs resemble to one another, but es-
pecially isovector and isotensor moments look quite similar to
each other besides absolute values.

The contribution to the NSM also comes from the intrinsic
dN . By assuming the intrinsic nucleon EDM, the NSMs are
evaluated for the 1/2+1 states in Xe isotopes, which are shown
in Fig. 15. These factors for neutrons are positively large for
135Xe, and negative for 129Xe. For all the nuclei, the factors
for protons are almost zero. spint = +0.00156 fm2 and snint =
−0.09420 fm2 are obtained for 129Xe.
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Fig. 14. (Color online) Same as in Fig. 10, but for the (a)
isoscalar (I = 0) and (b) isotensor (I = 2) type two-body
interactions from Ref. [397].
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Fig. 15. (Color online) The factors stint (t = p or n) for the
Xe isotopes. The circles and squares represent the snint and spint
values, respectively from Ref. [397].

Table 11. Coefficients aT in units of 10−3 efm3 (I = 0, 1, 2)
from Ref. [397].

Nucleus 129Xe 131Xe 133Xe 135Xe
isoscalar (I = 0) 0.507 0.514 0.464 0.630
isovector (I = 1) 0.399 0.352 0.285 0.323
isotensor (I = 2) 1.89 1.60 1.24 1.31
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Table 12. Coefficients aT in units of 10−3 efm3 (I = 0, 1, 2)
obtained by the closure approximation from Ref. [397].

Nucleus 129Xe 131Xe 133Xe 135Xe
isoscalar (I = 0) 0.701 0.691 0.666 0.733
isovector (I = 1) 0.501 0.448 0.394 0.379
isotensor (I = 2) 2.30 2.00 1.70 1.54

There is one limitation which requires better discussion,
namely, limitations of the model space used in the shell model.
The density of the 1/2− states after 12 MeV, presented in
Fig. 11, is a result of the model space cutoff. It is a question
whether the model space is rich enough for the converged de-
termination of the NSMs.

Only one negative parity pair with different kinds are con-
sidered as in Eq. (166). It should be examined how the bell-
shape density of the 1/2− states, presented in Fig. 11 is large
enough to accommodate the most contribution to the NSMs.

In order to consider all the intermediate states in Eq. (172),
the summation is carried out using the closure approximation.

Here the denominator E
(+)
1 −E

(−)
k is set constant as a represen-

tative value 〈E〉 =
〈
E

(+)
1 − E

(−)
k

〉
. Using this approximation,

the NSM is expressed as

Sclo
ch(I ) =

∑
k=1

〈
1
2

+

1

∣∣Ŝch,z

∣∣ 1
2

−
k

〉〈
1
2

−
k

∣∣V PT
π(I)

∣∣ 1
2

+

1

〉
〈E〉 + c.c.

=

〈
1
2

+

1

∣∣Ŝch,zV
PT
π(I)

∣∣ 1
2

+

1

〉
〈E〉 + c.c., (177)

where the identity
∑
k=1

∣∣ 1
2

−
k

〉〈
1
2

−
k

∣∣ = 1 is used. As shown in

Figs. 10 and 14, the contribution to the NSM S(I)(k) is dom-

inant around the excitation energy Ek(= E
(−)
k − E

(+)
1 ) =

9.0 MeV. Thus 〈E〉 = −9.0 MeV is adopted.
The NSMs using the closure approximation are shown in

Table 12. Each value is consistently about 1.3 times larger than
the corresponding one shown in Table 11, which validates their
discussion that the model space is rich enough to accommodate
the most contribution to the NSMs.

4.2.4 Recent shell model calculation with configuration
mixing

In a recent paper [401] any intermediate state given in Eq. (140)
is represented as a one-particle and one-hole excited state (1p1h-
state) from the state

∣∣I+1 〉. Since the NSM operator is a one-
body operator working only on protons, it is enough to consider
proton excited 1p1h-states. To evaluate the NSM in Eq. (140),
kth intermediate 1p1h-state is approximately given as

∣∣I−k 〉 ∼ ∣∣(ij)K; I−
〉
= N

(K)
ij

[[
c†iπ c̃jπ

](K)

⊗
∣∣I+1 〉](I) ,

(178)

where c†iπ (cjπ) represents the proton creation (annihilation)
operator in the orbital i (j), with c̃jm = (−1)j−mcj−m. Namely,
a 1p1h-state with spin K, in which one proton excites from or-
bital j to orbital i by the NSM operator, is coupled with the

nuclear ground state
∣∣I+1 〉 to form an excited state

∣∣(ij)K; I−
〉
.

N
(K)
ij is the normalization constant determined as〈

(ij)K; I−
∣∣(ij)K; I−

〉
= 1.

Here K can take 1 or 0 for I = 1/2.
Originally an intermediate state should satisfy H

∣∣I−k 〉 =

E−
k

∣∣I−k 〉, whereH is the original shell model Hamiltonian. Here

it is approximately assumed that H
∣∣(ij)K; I−

〉
= (εi − εj +

E+
1 )
∣∣(ij)K; I−

〉
, where εj (εi) represents the single-particle

energy in the orbital j (i). With this approximation in mind,
Eq. (140) is written as

S(T ) =
∑
Kij

〈I+1 |S(1)
0 |(ij)K; I−〉〈(ij)K; I−|V PT

π(T )|I+1 〉
∆Eij

+ c.c.

(179)

Here the denominator ∆Eij is explicitly written as ∆Eij ≡
εj − εi.

Here three types of 1p1h-excitations are considered. The
first type is a set of excitations from an orbital between 50
and 82 to an orbital over 82. These excitations are called type-
I excitations. The second type is a set of excitations from an
orbital under 50 to an orbital between 50 and 82. These ex-
citations are called type-II excitations. The third type is a set
of excitations from an orbital under 50 to an orbital over 82.
These excitations are called type-III excitations. Note that ex-
citations among orbitals between 50 and 82 are vanished since
these orbitals are not connected by the NSM operator.

For the type-I excitation, an intermediate state is explicitly
written as∣∣(ph)K; I−

〉
type−I

= N
(K)
ph

[[
a†
pπ c̃hπ

](K)

⊗
∣∣I+1 〉](I) . (180)

Here a†
pπ represents the proton creation operator in the orbital

p, where p indicates an orbital over 82. c̃hπ represents the pro-
ton annihilation operator in the orbital h, where h indicates
an orbital between 50 and 82. For the type-II excitation, an
intermediate state is written as∣∣(ph)K; I−

〉
type−II

= N
(K)
ph

[[
c†pπ b̃hπ

](K)

⊗
∣∣I+1 〉](I) . (181)

Here c†pπ represents the proton creation operator in an orbital

p, where p indicates an orbital between 50 and 82. b̃hπ repre-
sents the proton annihilation operator in the orbital h, where
h indicates an orbital below 50. For the type-III excitation, an
intermediate state is written as∣∣(ph)K; I−

〉
type−III

= N
(K)
ph

[[
a†
pπ b̃hπ

](K)

⊗
∣∣I+1 〉](I) . (182)

Here a†
pπ represents the proton creation operator in an orbital

p, where p indicates an orbital over 82. b̃hπ represents the pro-
ton annihilation operator in the orbital h, where h indicates
an orbital below 50.

In the study, all orbitals below the magic number 50 are
considered for core orbitals. However, 0d3/2, 1s1/2, and 0s1/2
orbitals are not connected by the NSM operator. For over-
shell orbitals over the magic number 82, all orbitals up to 8 ~ω
from the bottom are considered. However, 2d5/2, 0j15/2, 0j13/2,
1h11/2, 0k15/2, 0k17/2, 2g7/2, 3d3/2, 3d5/2, and 4s1/2 orbitals
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are also not connected by the Schiff moment operator. Orbitals
over 8 ~ω have less contributions to the NSM because the NSM
operator proportionals to the r-square radius and these orbitals
are not connected to low-lying orbitals by the NSM operator.

The energy of each single particle orbital is taken from the
Nillson energy as

εn`j =

(
2n+ `+

3

2

)
~ω−κ

(
2`·s+µ

(
`2 −

〈
`2
〉
N

))
~ω, (183)

with κ = 0.0637 and µ = 0.60, where
〈
`2
〉
N

= 1
2
N(N+3) with

the primary quantum number N and ~ω = 41A−1/3 MeV.

To analyze contributions to the NSMs from each orbital, a
partial contribution of the NSM from any orbital (h) between
50 and 82 to a specific orbital (p) over 82 (type-I excitations)
is defined in terms of ḡ(T )g as

stype−I
(T ) (p) = atype−I

(T ) (p) ḡ(T )g, (184)

where

stype−I
(T ) (p) =∑

Kh

〈I+1 |S(1)
0 |(ph)K; I−〉〈(ph)K; I−|V PT

π(T )|I+1 〉
∆Eph

+ c.c.,

(185)

and atype−I
(T ) (p)’s are coefficients so determined in evaluating the

partial NSM stype−I
(T ) (p).

A partial contribution to any orbital (p) between 50 and
82 from the specific orbital (h) below 50 (type-II excitations)
is defined as

stype−II
(T ) (h) = atype−II

(T ) (h) ḡ(T )g, (186)

where

stype−II
(T ) (h) =∑
Kp

〈I+1 |S(1)
0 |(ph)K; I−〉〈(ph)K; I−|V PT

π(T )|I+1 〉
∆Eph

+ c.c.

(187)

A partial contribution from the specific orbital (h) below 50
to any orbital (p) over 82 (type-III excitations) is also defined
as

stype−III
(T ) (h) = atype−III

(T ) (h) ḡ(T )g, (188)

where

stype−III
(T ) (h) =∑
Kp

〈I+1 |S(1)
0 |(ph)K; I−〉〈(ph)K; I−|V PT

π(T )|I+1 〉
∆Eph

+ c.c.

(189)

Using these definitions, the NSM is given as

S =
∑
T

(
stype−I
(T ) + stype−II

(T ) + stype−III
(T )

)
, (190)

Table 13. Calculated results of a(T ) for the nuclear ground
state 1/2+ state (in units of 10−3efm3) from Ref. [401]. Previ-
ous results (aprev

(T ) ) are taken from Ref. [397].

T atype−I
(T ) atype−II

(T ) atype−III
(T ) a(T ) aprev

(T )

0 2.357 0.670 −1.057 1.969 0.630
135Xe 1 1.297 1.693 −0.602 2.389 0.323

2 5.427 9.490 −2.554 12.363 1.31
0 1.812 1.716 −1.047 2.481 0.464

133Xe 1 0.949 1.510 −0.578 1.882 0.285
2 3.982 7.343 −2.419 8.906 1.24
0 1.575 2.097 −0.968 2.704 0.514

131Xe 1 0.787 1.282 −0.530 1.539 0.352
2 3.145 5.596 −2.177 6.564 1.60
0 1.322 2.897 −0.978 3.242 0.507

129Xe 1 0.586 1.140 −0.522 1.204 0.399
2 2.192 3.940 −1.961 4.172 1.89

with

stype−I
(T ) =

∑
p

stype−I
(T ) (p), (191)

stype−II
(T ) =

∑
h

stype−II
(T ) (h), (192)

stype−III
(T ) =

∑
h

stype−III
(T ) (h). (193)

Table 13 shows the calculated results of a(T ) for the lowest
I = 1/2 states of Xe isotopes. Here, using Eqs. (184), (186),
and (188), a(T ) is given as

a(T ) = atype−I
(T ) + atype−II

(T ) + atype−III
(T ) , (194)

with

atype−I
(T ) =

∑
p

atype−I
(T ) (p), (195)

atype−II
(T ) =

∑
h

atype−II
(T ) (h), (196)

(197)

and

atype−III
(T ) =

∑
h

atype−III
(T ) (h). (198)

The contributions of the core excitations are a few times larger
than those from the over-shell excitations for most of the com-
ponents. The isotensor (T = 2) components are largest for all
nuclei.

As a more elaborate configuration mixing framework of the
shell model [402], NSMs for the ground 1/2+ states around the
mass 130 are calculated in terms of the nuclear shell model. The
intrinsic NSM is evaluated as

S = spdp + sndn, (199)

where dp and dn are the electric dipole moments of the proton
and the neutron, respectively. The factors sp and sn for the
intrinsic NSM of 129Xe are calculated as sp = +0.0061 and
sn = −0.3169 (in fm2).
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Table 14. The neutron quenching factor < σ̂n
z > for each

nuclear 1/2+1 state from Ref. [404].

Nucleus < σ̂n
z >

129Xe 0.2306
131Xe 0.4644
133Xe 0.6546
135Xe 0.9777
129Ba 0.1090
131Ba 0.3537
133Ba 0.4360
135Ba 0.9811

4.3 Nuclear spin matrix elements

To evaluate the effect of the nucleon spin dependent CP-odd
e−N interaction, namely CT

N and CPS
N , on the atomic EDM,

the values of the nuclear spin matrix elements 〈Ψ |σp|Ψ〉 and
〈Ψ |σn|Ψ〉 are required. In the simple shell model, they are given
as [191]

〈(
l 1
2

)
j,m = j |σz|

(
l 1
2

)
j,m = j

〉
=

{
1 (j = l + 1/2)

− j
j+1

(j = l − 1/2)
,

(200)
where σz is the single valence nucleon spin-operator. The nu-
clear spin matrix element is also useful in evaluating the nu-
cleon EDM effect to the nuclear EDM. An extension of the
above formula using the magnetic moment are also available
[403].

In Ref. [402,404], the nuclear spin matrix elements for the
lowest 1/2+ states of Xe and Ba isotopes are calculated in
terms of the nuclear shell model with configuration mixing.
Values for several Xe and Ba isotopes (calculated in the con-
text of the nuclear EDM) are given in Table 14 of Ref. [404].
We see that the quenching of the nucleon spin becomes impor-
tant in the nucleus as the nucleon number goes away from the
magic number. This is due to the superposition of configura-
tions where the nucleon spin interferes destructively, due to the
mixing with the orbital angular momentum. This suppression
means that the effect of CT

N and CPS
N are attenuated in nuclei

far from magic numbers. The nuclear spin matrix elements are
still unknown for many nuclei, although their evaluation being
easier than the nuclear Schiff moment. It is therefore an im-
portant future subject to discuss for reducing the theoretical
uncertainty of the atomic EDM.

4.4 Enhancement due to octupole deformation

A charged particle, residing outside of the nucleus at distance
r like an electron, can see the potential due to electromagnetic
interactions within the nucleus as [47,405]

φ(r) =

∫
d3rN

ρ(rN )

|r − rN | . (201)

Carrying out the multipole expansion of 1
|r−rN | can give rise

to both P,T- odd and even potential terms. The first and dom-
inant P,T- odd term can arise as

φ(r) = −
∫

d3rNρ(rN )

(
rN ·∇r

1

r

)
(202)

As per the Schiff theorem, this term will exactly cancel out
with the NSM contribution for a point-like nucleus. In order to
obtain the P,T- odd interaction term from here, it is therefore
necessary to account the next leading order term, which yields

φoct(r) ' −1

6

∫
d3rNρ(rN )rirjrk∇i∇j∇k

1

r
, (203)

where subscript oct implies that it corresponds to contribution
from the electric octupole moment (EOM) for which the EOM
tensor is given by

Oijk =

∫
d3rNρ(rN )

×
[
rirjrk − 1

5
(δijrk + δjkri + δkirj)

]
. (204)

The EOM tensor Oijk has three units of angular momentum,
hence it can only exist in nuclei with spin I ≥ 3/2, whereas
the NSM can arise in nuclei with spin I ≥ 1/2. Without the
P,T-odd interactions the average value of the EOM for a rota-
tional state in the laboratory system is zero. However, in the
presence of such an interaction, the odd and even parity mix-
ing of rotational doublet states gives rise to a finite value of
the EOM. In particular for atoms with nuclei that have almost
degenerate rotational doublets, there is a large enhancement
of the EOM leading to an increase in the size of the observable
EDMs of the atoms. This contribution needs to be extracted
before estimating limits on various nuclear and particle physics
parameters from the observed atomic EDMs. From preliminary
investigations it has been found that the EOM enhances the
EDMs in 223Ra, 225Ra and 223Rn atoms by 400, 300 and 1000
times more than due to the other P,T- odd interactions [47,
405,406].

5 Atomic structure calculations

5.1 P,T-odd sources in atoms

As has been discussed before, the dominant P,T-odd inter-
actions in an atomic system can come from three important
sources [360,34,35,48]. They are (i) EDMs of constituent par-
ticles such as the de, dn and dp, (ii) P,T-odd e-N and N-N
interactions, and (iii) P,T-odd pion exchange interactions.

Considering the dominant P,T-odd interactions in the dia-
magnetic atoms, the interaction Hamiltonian due to the NSM
for the exchange of pions is given by [47,407]

HN
at =

3S.r

B4
ρ(r), (205)

where B4 =
∫∞
0

drr4ρ(r), and similarly by adding the coherent
contributions from the individual nucleons the net electron-
nucleus T-PT interaction Hamiltonian is given by

HT
at = i

√
2GFC

T
at

∑
e

σN · γρ(r), (206)

where CT
at is the T-PT electron-nucleus and σN= 〈σN 〉I/I is

the Pauli spinor of the nucleus.
Nevertheless, in the diamagnetic atoms the de and the P,T-

odd or P,CP-odd type S-PS type e-N interaction corresponding
to term with the coupling CSP

N of Eq. (69) can also contribute
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to the atomic EDM to some extent, mainly through the hy-
perfine induced interaction. Since these are not the dominant
contributions in these atoms, we estimate their contributions
using analytical formulas known in the literature instead of
performing rigorous numerical calculations.

The contribution of the electron EDM can analytically be
related to the T-PT type P,T-odd e-N interaction [i.e. term
with the coupling CT

N of Eq. (69)] as [5,47,408]

de ↔ 3mNe

7παemµ

R

R− 1

GF√
2

(
CT

p

∑
p

〈Ψ |σp|Ψ〉+ CT
n

∑
n

〈Ψ |σn|Ψ〉

)
,

(207)
where R is the atomic enhancement factor to the atomic EDM
due to T-PT e-N interaction and µI is the nuclear magnetic
moment in unit of nuclear magneton µN . The nuclear spin
matrix elements 〈Ψ |σN |Ψ〉 (N = p, n) is the expectation value
of the nucleon spin polarized in the z-direction.

Analogously, the contribution of CSP
N is analytically related

to CT
N by(

Z

A
CSP

p +
A− Z

A
CSP

n

)
↔ 1.9× 103

(1 + 0.3Z2α2
em)A−2/3µ

×

(
CT

p

∑
p

〈Ψ |σp|Ψ〉+ CT
n

∑
n

〈Ψ |σn|Ψ〉

)
. (208)

Assuming same number of protons and neutrons in the atom
and their interaction strengths are of similar order, we can
conveniently express [407]

CP
at ↔ 3.8× 103 × A1/3

Z
CT

at, (209)

where CP
at is the corresponding P,T-odd S-PS coupling con-

stant for the electron-nucleus interaction. Thus, with the knowl-
edge of CT

at and its enhancement factor, we can estimate con-
tributions due to CP

at and de in the diamagnetic atoms. Hence,
we only intend to estimate the CT

at coupling coefficient by ac-
counting the interaction Hamiltonian given by Eq. (206).

Again, the magnetic quadrupole moment (MQM) of the
nucleus can also contribute to the EDM of diamagnetic atoms
through hyperfine induced interaction, but that contribution
will be extremely small and has been neglected here.

5.2 Atomic many-body methods

The EDM of the ground state wave function (|Ψ0〉) in an atom
is given by

dat =
〈Ψ0|D|Ψ0〉
〈Ψ0|Ψ0〉

, (210)

where D is the electric dipole moment operator. The evalua-
tion of |Ψ0〉 should take into consideration the electromagnetic
and weak interactions in the atomic systems. In actual prac-
tice, the dominant one-photon electromagnetic interactions are
included in the first step followed by if necessary higher or-
der relativistic effects and the basic quantum electrodynamics
(QED) corrections. The much weaker P,T-odd interactions are
added subsequently only to first order either in a perturbative
or non-perturbative framework. Such an approach is compu-
tationally simpler than including the P and T violating in the
zeroth order Hamiltonian as it would would involve atomic

wave functions of a definite parity in the calculations as op-
posed to wave functions of mixed parity which would result
from the latter approach.

The starting point of the relativistic atomic many-body
calculations is the Dirac-Coulomb (DC) Hamiltonian which is

HDC =
∑
i

[
cαi · pi + (βi − 1)c2 + Vn(ri) +

∑
j>i

1

rij

]
, (211)

where α and β are the usual Dirac matrices and Vn(r) repre-
sents for the nuclear potential. We evaluate the nuclear poten-
tial considering the Fermi-charge distribution defined by

ρ(r) =
ρ0

1 + e(r−b)/a
, (212)

for the normalization factor ρ0, the half-charge radius b and
a = 2.3/4(ln3) is related to the skin thickness. The half-charge
radius is determined using the relation

b =

√
5

3
r2rms −

7

3
a2π2 (213)

and the root mean square (rms) charge radius of the nucleus
is evaluated by

rrms = 0.836A1/3 + 0.570. (214)

in fm.
The contribution from the frequency independent Breit in-

teraction is estimated by adding the term

VB = −
∑

i, j > i
1

2rij
{αi ·αj + (αi · r̂ij)(αj · r̂ij)}, (215)

to the DC Hamiltonian; i.e. Hat ≡ HDC + VB

We have also estimated the lower order quantum electrody-
namic corrections by considering the following QED potentials
in the atomic Hamiltonian; i.e. Hat ≡ HDC + VB + VQED

with VQED =
∑

i(VU (ri)+VWK(ri)+V ef
SE(ri)+V mg

SE (ri)) in a
manner similar to that described in Ref. [409,410] but for the
above nuclear Fermi-charge distribution. In this approximate
approach, the lower order vacuum polarization (VP) effects are
taken as the sum of the Uehling (VU (r)) and the Wichmann-
Kroll (VWK(r)) potentials, which are given by

VU (r) = −2α2

3r

∫ ∞

0

dx x ρ(x)

∫ ∞

1

dt
√

t2 − 1

×
(

1

t3
+

1

2t5

)[
e−2ct|r−x| − e−2ct(r+x)

]
(216)

and

VWK(r) = −8Z2α4

9r
(0.092)

∫ ∞

0

dx x ρ(x)

×
(
0.22

{
arctan[1.15(−0.87 + 2c|r − x|)]

− arctan[1.15(−0.87 + 2c(r + x))]
}

+0.22
{
arctan[1.15(0.87 + 2c|r − x|)]

− arctan[1.15(0.87 + 2c(r + x))]
}

−0.11
{
ln[0.38− 0.87c|r − x|+ c2(r − x)2]

− ln[0.38− 0.87c(r + x) + c2(r + x)2]
}

+0.11
{
ln[0.38 + 0.87c|r − x|+ c2(r − x)2]

− ln[0.38 + 0.87c(r + x) + c2(r + x)2]
})

. (217)
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The contributions from the self-energy (SE) interaction are
evaluated by considering the contributions due to the electric
form-factor given by

V ef
SE(r) = −A(Z)(Zα)4e−Zr +

B(Z, r)α2

r

∫ ∞

0

dxxρ(x)

×
∫ ∞

1

dt
1√

t2 − 1

{(1

t
− 1

2t3

)
×
[
ln(t2 − 1) + 4 ln

(
1

Zα
+

1

2

)]
− 3

2
+

1

t2
}

×
[
e−2ct|r−x| − e−2ct(r+x)

]
(218)

and from the magnetic form-factor given by

V mg
SE (r) =

iα

4πc
γ ·∇r

∫ ∞

0

d3x ρ(x)

×
[(∫ ∞

1

dt
e−2tcR

Rt2
√
t2 − 1

)
− 1

R

]
, (219)

where A(Z) = 0.074 + 0.35Zα, B(Z, r) = [1.071 − 1.97((Z −
80)α)2−2.128((Z−80)α)3+0.169((Z−80)α)4]cr/(cr+0.07(Zα)2)
and R = |r− x|.

To incorporate the first order corrections due to the P,T-
odd weak interactions, we express the total Hamiltonian of the
atom as

H = Hat + λHPT , (220)

where Hat represents the atomic Hamiltonian; i.e. the DC
Hamiltonian supplemented by higher order relativistic correc-
tions if necessary and λHPT corresponds to either of the P,T-
odd Hamiltonians given by Eqs. (205) and (206). Here λ can
be S or CT

at for the respective Hamiltonian. The atomic wave
function can be expressed as

|Ψ0〉 ≈ |Ψ (0)
0 〉+ λ|Ψ (1)

0 〉, (221)

where nonlinear terms in λ have been neglected, and |Ψ (0)
0 〉 and

|Ψ (1)
0 〉 are the wave functions of Hat and its first order correc-

tion due to the P,T-odd interaction Hamiltonian, respectively.
Hence Eq. (210) is approximated as

dat ' 2λ
〈Ψ (0)

0 |D|Ψ (1)
0 〉

〈Ψ (0)
0 |Ψ (0)

0 〉
. (222)

The actual quantity that is relevant for the calculation is

R = dat/λ = 2
〈Ψ (0)

0 |D|Ψ (1)
0 〉

〈Ψ (0)
0 |Ψ (0)

0 〉
(223)

and it can be combined with the experimentally measured dat
values to determine λ.

The first order perturbed wave function |Ψ (1)〉 can be cal-
culated by two different approaches. One is the sum-over-states
approach, where we express

|Ψ (1)
0 〉 =

∑
I 6=0

|Ψ (0)
I 〉 〈Ψ

(0)
I |HPT |Ψ (0)

0 〉
E

(0)
I − E

(0)
0

, (224)

where |Ψ (0)
I 〉s are the states other than |Ψ (0)

0 〉 of Hat with the

energies E
(0)
I and E

(0)
0 , which are the intermediate state and

the ground state energies respectively. The advantage of this

approach is that one can include only the dominant contri-
butions which come from the low-lying states. However, this
method cannot account for contributions from the core, the
high-lying excited states including the continuum which can
be significant in heavy atomic systems. The other approach,
which is often more desirable is to determine the first order
perturbed wave function by solving the following inhomoge-
neous equation

(Hat − E
(0)
0 )|Ψ (1)

0 〉 = (E
(1)
0 −HPT )|Ψ (0)

0 〉

= −HPT |Ψ (0)
0 〉, (225)

where the first order perturbed energy vanishes as HPT is an
odd parity operator. It is well known that the accurate calcu-

lation of |Ψ (0)
0 〉 in heavy atomic systems is challenging owing

to the presence of the two-body Coulomb and Breit interac-
tions. So establishing suitable many-body methods to deter-

mine |Ψ (0)
0 〉 and its correction |Ψ (1)

0 〉 with the simultaneously
inclusion of electromagnetic and weak interactions are of im-
mense interest.

We discuss some of the all order relativistic many-body
methods that have been employed to determine R in some
of the atoms of experimental interest such as 129Xe, 199Hg,
223Rn, and 225Ra. Earlier, only simpler approximated many-
body methods such as the relativistic third order many-body
perturbation theory (MBPT(3) and the relativistic RPA were
employed to determine these quantities in 129Xe and 223Rn
[411–413]. These methods cannot accurately determine the val-
ues of R in other atoms like 199Hg and 225Ra, where pair-
correlation effects contribute significantly. Two calculations,
where important classes of correlation effects were included
using a perturbed relativistic coupled-cluster (PRCC) method
[414] and a hybrid approach of configuration interaction with
finite-order many-body perturbation theory (CI+MBPT) [407]
were employed to calculate the above quantities in 199Hg the
results were fairly close. In the combined CI+MBPT method,
the initial single particle wave functions were determined using
the V Nc−2 potential with Nc as the total number of electrons
and the electron correlation effects are accounted for by divid-
ing the electrons into valence and core electrons. For 225Ra,
calculations using the CI+MBPT method with RPA correc-
tions by Dzuba and coworkers [407,412] were performed. We
shall discuss some of these methods below. It is also worth men-
tioning here that the PRCC method and a relativistic coupled-
cluster method that will be described subsequently are similar;
the difference between them lies in the treatment of the normal-
ization of the wave function in the two theoretical approaches
[415].

To obtain both |Ψ (0)
0 〉 and |Ψ (1)

0 〉, we first calculate the
Dirac-Hartree-Fock (DF) wave function |Φ0〉 using the DF Hamil-
tonian

Hat
DF =

∑
i

[cαi · pi + (βi − 1)c2 + Vnuc(ri) + UDF (ri)]

=
∑
i

[h0(ri) + UDF (ri)], (226)

with an average DF potential UDF (r), disregarding contribu-
tions from the residual interaction

Ves =
N∑
j>i

V (rij)−
∑
i

UDF (ri). (227)
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where V (rij) is(are) the two-body interaction (Coulomb or
Coulomb with Breit) interaction operator(s).

The DF potential and the single particle wave function

|φ(0)
i 〉 of |Φ0〉 are obtained by solving the following equations

〈φ(0)
i |UDF |φ(0)

j 〉 =
Nc∑
b

[〈φ(0)
i φ

(0)
b |V (rij)|φ(0)

b φ
(0)
j 〉

−〈φ(0)
i φ

(0)
b |V (rij)|φ(0)

j φ
(0)
b 〉] (228)

and

(h0 + UDF )|φ(0)
i 〉 = ε

(0)
i |φ(0)

i 〉 (229)

simultaneously in a self-consistent procedure. In the above ex-
pression, when the sum is considered up to Nc − M , for M
number of valence electrons M , this particular kind of DF po-
tential is referred to as the V Nc−M potential in the literature.

We now focus on the similarities and differences between
some of the many-body methods that have been widely em-
ployed to treat Ves in order to calculate atomic properties. In
particular, we present the pertinent details of certain methods
that consider Ves to all order. There are several ways to deal
with this, but different approaches will capture various corre-
lation effects corresponding to approximations in the levels of
particle-hole excitations. For a comprehensive understanding
of these theories, we take recourse to an approach based on
the Bloch equation [416] in which one expresses

|Ψ (0)
0 〉 = Ω(0)|Φ0〉 =

n∑
k

Ω(k,0)|Φ0〉, (230)

where Ω(0) is known as the wave operator in the MBPT(n)
method that accounts only up to n (say) orders of Coulomb
interactions and k represents the order of Ves associated with
each wave operator in a perturbative expansion of Ω(0). In
the presence of another external interaction, like the operator
HPT , the exact state can be written as

|Ψ0〉 = Ω|Φ0〉 =
n∑
β

m∑
δ

Ω(β,δ)|Φ0〉, (231)

where the perturbation expansion is described by n orders of
Ves and m orders of HPT . For our requirement of obtaining
the first order wave function due to HPT , we have

|Ψ (1)
0 〉 =

n∑
β

Ω(β,1)|Φ0〉. (232)

To obtain the solutions for the wave operators, we use the
following generalized Bloch equations

[Ω(β,0), Hat
DF ]P = QVesΩ

(β−1,0)P

−
β−1∑
m=1

Ω(β−m,0)PVesΩ
(m−1,l)P (233)

and

[Ω(β,1), Hat
DF ]P = QVesΩ

(β−1,1)P +QDΩ(β,0)P

−
β−1∑
m=1

(
Ω(β−m,1)PVesΩ

(m−1,0)P

−Ω(β−m,1)PDΩ(m,0)P
)
, (234)

where P = |Φ0〉〈Φ0| and Q = 1−P . It implies that Ω(0,0) = 1,

Ω(1,0) =
∑

I
〈ΦI |Ves|Φ0〉
EDF

I
−EDF

0
= 0 and Ω(0,1) =

∑
I

〈ΦI |HPT |Φ0〉
EDF

I
−EDF

0
.

Here |ΦI〉 with DF energy EDF
I is an excited state with respect

to |Φ0〉 and EDF
0 is the sum of DF single particle energies.

In the case of the V Nc−M potential, it requires a slightly
different formalism to account for the electron correlation ef-
fects. In this approach, electrons are divided into a closed core
and M valence electrons which are expected to play the major
role in describing the dominant part of the electron correlation
effects. The wave operator in such a scenario can be expressed
as

Ω = 1 + χc + χv, (235)

where χc and χv are the operators that are responsible for
excitations within the closed-core (say |Φc〉) and among the
valence orbitals (say |Φv〉), respectively. It is necessary to solve
a set of equations similar to those above by expanding the wave
operators as

χc =

n∑
β

m∑
δ

χ(β,δ)
c (236)

and

χv =

n∑
β

m∑
δ

χ(β,δ)
v . (237)

Core-valence correlations must also be taken into account in
this approach. The other demerit of this approach is that the
orbitals and all the correlation effects are not treated on equal
footing. In particular, the correlations among the valence elec-
trons are estimated ambiguously. This may not be appropriate
for the heavier atoms when the core correlations are quite sig-
nificant.

Below we discuss a few many-body methods starting with
a common DF wave function |Φ0〉 constructed using the V N

potential. Later we shall present results from these methods
to demonstrate the gradual inclusion of the electron correla-
tion effects from lower to higher order in a variety of all order
perturbative methods.

5.2.1 The DF method

Following Eqs. (210) and (234), we can obtain the lowest order
contribution to R, the DF result, as

R = 2〈Φ0|Ω(0,0)†DΩ(0,1)|Φ0〉 = 2〈Φ0|DΩ(0,1)|Φ0〉

= 2
∑
I

〈Φ0|D|ΦI〉〈ΦI |HPT |Φ0〉
EDF

I − EDF
0

. (238)

5.2.2 The MBPT(k) method

In this approximation, we assume (k − 1) orders of Coulomb
and one order HPT . Thus, it corresponds to

R = 2

∑k−1
β=0〈Φ0|Ω(k−β,0)†DΩ(β,1)|Φ0〉∑k−1
β=0〈Φ0|Ω(k−β,0)†Ω(β,0)|Φ0〉

(239)
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This quantity can be expressed at the MBPT(2) as

R =
2

N2
〈Φ0|[Ω(0,0) +Ω(1,0)]†D[Ω(0,1) +Ω(1,1)]|Φ0〉

=
2

N2
〈Φ0|DΩ(0,1) +DΩ(1,1) +Ω(1,0)†DΩ(0,1)

+Ω(1,0)†DΩ(1,1)|Φ0〉, (240)

and similarly in the MBPT(3) method it is

R =
2

N3
〈Φ0|[Ω(0,0) +Ω(1,0) +Ω(2,0)]†D

×[Ω(0,1) +Ω(1,1) +Ω(2,1)]|Φ0〉

=
2

N3
〈Φ0|DΩ(0,1) +DΩ(1,1) +DΩ(2,1) +Ω(1,0)†DΩ(0,1)

+Ω(1,0)†DΩ(1,1) +Ω(2,0)†DΩ(0,1)|Φ0〉, (241)

with the respective normalization constants N2 = 〈Φ0|1 +

Ω(1,0)†Ω(1,0)|Φ0〉 andN3 = 〈Φ0|1+Ω(1,0)†Ω(1,0)+Ω(1,0)†Ω(2,0)+

Ω(2,0)†Ω(1,0) +Ω(2,0)†Ω(2,0)|Φ0〉.
The above expressions clearly indicate that the complexity

of the calculations grows steadily as the order of perturbation
increases. We describe two all order perturbative methods to
describe the electron correlation effects on the properties of the
closed-shell atoms.

5.2.3 The RPA method

To arrive at the final working equation for the RPA method,
we start by perturbing the DF orbitals and the single particle
energies due to the perturbation HPT . i.e.

|φ(0)
i 〉 → |φ(0)

i 〉+ λ|φ(1)
i 〉 (242)

and

ε
(0)
i → ε

(0)
i + λε

(1)
i , (243)

where |φ(1)
i 〉 and ε

(1)
i are the first order corrections to the par-

ticle wave function and energy, respectively. Owing to the fact

that HPT is an odd parity operator, ε
(1)
i = 0. In the presence

of a perturbation, the modified DF equation for the single par-
ticle wave function yields

(h0 + λHPT )(|φ(0)
i 〉+ λ|φ(1)

i 〉) +
Nc∑
b

(〈φ(0)
b + λφ

(1)
b |V (rij)

|φ(0)
b + λφ

(1)
b 〉|φ(0)

i + λφ
(1)
i 〉

−〈φ(0)
b + λφ

(1)
b |V (rij)|φ(0)

i + λφ
(1)
i 〉|φ(0)

b + λφ
(1)
b 〉)

= ε
(0)
i (|φ(0)

i 〉+ λ|φ(1)
i 〉). (244)

Collecting only the terms that are linear in λ, we get

(h0 + UDF − ε
(0)
i )|φ(1)

i 〉 = (−HPT − U
(1)
DF )|φ

(0)
i 〉, (245)

where we use the notation U
(1)
DF for

U
(1)
DF |φ

(0)
i 〉 =

Nc∑
b

[〈φ(0)
b |V (rij)|φ(1)

b 〉|φ(0)
i 〉

−〈φ(0)
b |V (rij)|φ(0)

i 〉|φ(1)
b 〉

+〈φ(1)
b |V (rij)|φ(0)

b 〉|φ(0)
i 〉

−〈φ(1)
b |V (rij)|φ(0)

i 〉|φ(0)
b 〉]. (246)

We express the single particle perturbed wave function in
terms of the unperturbed single particle wave functions as

|φ(1)
i 〉 =

∑
j 6=i

Cj
i |φ

(0)
j 〉, (247)

where Cj
i s are the expansion coefficients. In the RPA approach,

we write∑
j 6=i

Ci
i (h0 + UDF − ε

(0)
j )|φ(0)

j 〉 = (−HPT − U
(1)
DF )|φ

(0)
i 〉,(248)

and solve this equation self-consistently to obtain the Cj
i coef-

ficients to all orders in the Coulomb interaction.
The RPA wave operator can be expressed as

Ω
(1)
RPA =

∞∑
k

∑
p,a

Ω(k,1)
a→p

=

∞∑
β=1

∑
pq,ab

{
[〈pb|V (rij)|aq〉 − 〈pb|V (rij)|qa〉]Ω(β−1,1)

b→q

εp − εa

+
Ω

(β−1,1)†

b→q [〈pq|V (rij)|ab〉 − 〈pq|V (rij)|ba〉]
εp − εa

}, (249)

where a → p means replacement of an occupied orbital a
from |Φ0〉 by a virtual orbital p which alternatively refers to a
singly excited state with respect to |Φ0〉. It can be shown in
the above formulation that the RPA method subsumes a cer-
tain class of singly excited configurations corresponding to the
core-polarization effects to all orders.

Using the above RPA wave operator, we evaluate R by

R = 2〈Φ0|Ω(0,0)†DΩ
(1)
RPA|Φ0〉

= 2〈Φ0|DΩ
(1)
RPA|Φ0〉. (250)

5.2.4 The RCC theory

In the RCC method, we express the unperturbed atomic wave
function as

|Ψ (0)
0 〉 = Ω

(0)
RCC |Φ0〉 =

∞∑
k

Ω
(k,0)
RCC |Φ0〉

= eT
(0)

|Φ0〉 (251)

and the first order perturbed wave function as

|Ψ (1)
0 〉 = Ω

(1)
RCC |Φ0〉 =

∞∑
k

Ω
(k,1)
RCC |Φ0〉

= eT
(0)

T (1)|Φ0〉, (252)

where T (0) and T (1) are the excitation operators from the ref-
erence state |Φ0〉 that take care of contributions from Ves and
Ves along with the perturbed HPT operator, respectively.

The amplitudes of the excitation T (0) and T (1) operators
are determined using the equations

〈Φτ
0 |Hat

N |Φ0〉 = 0 (253)

and

〈Φτ
0 |Hat

N T (1)|Φ0〉 = −〈Φτ
0 |H

PT
N |Φ0〉, (254)
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where the subscript N represents normal ordered form of the

Hamiltonian, O = (OeT
(0)

)con with con means only the con-
nected terms and |Φτ

0〉 corresponds to the excited configura-
tions with τ referring to level of excitations from |Φ0〉. In our
calculations, we only consider the singly and doubly excited
configurations (τ = 1, 2) by defining

T (0) = T
(0)
1 + T

(0)
2 and T (1) = T

(1)
1 + T

(1)
2 , (255)

which is known as the CCSD method in the literature. When
we consider the approximation O ' O+OT , we refer it as the
LCCSD method.

We have adopted an optimal computational strategy by
constructing the intermediate diagrams in the RCC method.

In this approach, we divide the effective Hat
N and H

PT
N oper-

ators containing the non-linear CC terms into effective one-
body, two-body etc. terms using the Wick’s generalized theo-
rem [416]. The intermediate diagrams for the computation of
the T (0) amplitudes are described at length in our previous
work [417,418]. We define intermediate diagrams for the eval-
uation of the T (1) amplitudes in a slightly different way. As
can be seen from Eq. (254), Hat

N contains all the non-linear
terms while for solving Eq. (253) it is required to express as

Hat
N = Hat

N

′
⊗Tτ . Thus the intermediate diagrams in the latter

case comprise terms from Hat
N

′
which require special scrutiny

of the diagrams to avoid repetition in the singles and doubles
amplitude calculations of T (0). These effective diagrams are fi-
nally connected with the respective T operators to obtain the
amplitudes of the singles and doubles excitations. Contribu-

tions from the terms of H
PT
N are evaluated directly in the T (1)

amplitude calculations.
R is evaluated by

R = 2
〈Φ0|eT

†(0)
DeT

(0)

T (1)|Φ0〉
〈Φ0|eT†(0)eT (0) |Φ0〉

. (256)

Since all the operators in the above expression are in normal

order form and eT
†(0)

DeT
(0)

is a non-terminating series, we can

express eT
†(0)

DeT
(0)

= (eT
†(0)

eT
(0)

)cl(e
T†(0)

DeT
(0)

)cc where
the subscript cl and cc mean closed and closed with connected
terms, respectively [419,420]. We can then show that

R = 2
〈Φ0|(eT

†(0)
eT

(0)

)cl(e
T†(0)

DeT
(0)

T (1))cc|Φ0〉
〈Φ0|(eT†(0)eT (0))cl|Φ0〉

= 2
〈Φ0|(eT

†(0)
eT

(0)

)cl|Φ0〉〈Φ0|(eT
†(0)

DeT
(0)

T (1))cc|Φ0〉
〈Φ0|(eT†(0)eT (0))cl|Φ0〉

= 2〈Φ0|(D
(0)

T (1))cc|Φ0〉, (257)

with D
(0)

= eT
†(0)

DeT
(0)

, which is a non-terminating series.

Note that its (eT
†(0)

eT
(0)

T (1))cl part will vanish owing to odd-

parity of T (1). In the LCCSD method, we get D
(0)

= D +
DT (0) + T †(0)D + T †(0)DT (0). To account for contributions

from D
(0)

in the CCSD method, we first evaluate terms from

D
(0)

that are very unique in the sense that they will not be
repeated after connecting with another T (0) or T †(0) opera-
tor. Then, the contributions from the other non-linear terms
are considered by contracting with another T (0) and T †(0) op-
erators till self-consistent results were achieved. We present
these contributions with k numbers of T (0) and/or T †(0) as the

CCSD(k) method to demonstrate convergence of the results
with k → ∞.

In order to estimate the dominant contributions from the
neglected triple excitations in the CCSD method, we define an
excitation operator by appealing to perturbation theory in the
RCC framework as following

T
(0),pert
3 =

1

3!

∑
abc,pqr

(HaT
(0)
2 )pqrabc

εa + εb + εc − εp − εq − εr
, (258)

where ε’s are the energies of the occupied (denoted by a, b, c)
and unoccupied (denoted by p, q, r) orbitals. From the differ-
ences between the results from the CCSD method and from the
calculations carried out including the T

(0),pert
3 operator with

T (0) in the expression given by Eq. (257), we find typical order
of magnitude estimates from the triple excitations. Note that
the contributions of the counterparts of these excitations com-
ing through the T (1) RCC operators will be extremely small.

5.3 Atomic results

In Table 15, we present the calculated R values from T-PT
and NSM interactions for 129Xe and 223Rn noble gas atoms
using the methods that we have described in this review, and
also from previously reported calculations. From a theoretical
point of view, it would be instructive to compare the corre-
lation trends for both the atoms as they belong to the same
periodic table of elements. As can be seen from the results
quoted from different methods with the lower to higher order
approximations, the magnitudes first decrease, then increase
and the final results increase marginally from their DF values
for both the atoms and for both the interactions. However, on
close scrutiny suggests it is evident that correlation effects are
stronger in 223Rn due to its larger size. The previous calcula-
tions, referred to in the above table were carried out using the
DF, MBPT(3) and RPA methods [407,411–413]. These meth-
ods cannot capture the correlation effects in R for the ground
states of heavy inert gases in an efficient manner. The RPA
method ignores pair correlation contributions and accounts for
only the core-polarization effects to all orders. It is therefore
not surprising that the results of the RPA and CCSD meth-
ods differ significantly. In fact, there are large cancellations
between the results from the all order RPA and the all-order
non-RPA contributions at the CCSD level. The importance of
including non-RPA correlation effects can be realized from the
differences in the results between the MBPT(2) and MBPT(3)
methods as the non-RPA contributions first start appearing at
the MBPT(3) approximation in a perturbative theory frame-
work. Also large differences in the results from the LCCSD and
CCSD methods and among the results obtained with various
levels of truncation in the CCSD(k) calculations suggest there
are strong cancellations between the linear and non-linear RCC
terms for estimating R values. More detailed discussions on
these results can be found elsewhere [421,422]. It is, therefore,
imperative to use an all order approach like our CCSD method
to capture both the RPA and non-RPA correlation contribu-
tions. To assess the accuracies of our CCSD results, we also
estimate order of magnitudes of the neglected effects, such as
corrections due to the truncated basis in the construction of
atomic orbitals and higher level excitations (estimating from
the leading order triply excitations). We provide recommended
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Table 15. Calculated values of R due to both T-PT (given as RTPT in ×10−20〈σ〉|e|cm) and NSM (given as RNSM in
×[10−17/|e|fm3]|e|cm) interactions in the 129Xe and 223Rn noble gas atoms. The final recommended values with uncertainties
are given as “Best value” for the respective quantities.

129Xe 223Rn

Method This Work Others This Work Others

RTPT RNSM RTPT RNSM RTPT RNSM RTPT RNSM

DF 0.447 0.288 0.45 [407] 0.29 [407] 4.485 2.459 4.6 [407] 2.5 [407], 2.47 [412]
MBPT(2) 0.405 0.266 3.927 2.356
MBPT(3) 0.515 0.339 0.52 [411] 4.137 2.398
RPA 0.562 0.375 0.57 [407], 0.564 [413] 0.38 [407] 5.400 3.311 5.6 [407] 3.3 [407], 3.33 [412]
LCCSD 0.608 0.417 5.069 3.055

CCSD(3) 0.501 0.336 4.947 2.925

CCSD(5) 0.489 0.334 4.851 2.890

CCSD(∞) 0.475 0.333 4.459 2.782

Best value 0.475(4) 0.333(4) 4.46(6) 2.78(4)

Table 16. Calculated values of R due to both T-PT (given as RTPT in ×10−20〈σ〉|e|cm) and NSM (given as RNSM in
×[10−17/|e|fm3]|e|cm) interactions in the 199Hg and 225Ra diamagnetic atoms. The final recommended values with uncertainties
are given as “Best value” for the respective quantities.

199Hg 225Ra

Method This Work Others This Work Others

RTPT RNSM RTPT RNSM RTPT RNSM RTPT RNSM

DF −2.39 −1.20 −2.0 [411] −1.19 [412] −3.46 −1.86 −3.5 [407] −1.8 [407]
−2.4 [407] −1.2 [407]

MBPT(2) −4.48 −2.30 −11.00 −5.48
MBPT(3) −3.33 −1.72 −10.59 −5.30
RPA −5.89 −2.94 −6.0 [411] −2.8 [412] −16.66 −8.12 −17 [407] −8.3 [407]

−5.9 [407] −3.0 [407] −16.59 [413] −8.5 [412]
CI+MBPT −5.1 [407] −2.6 [407] −18 [407] −8.8 [407]
PRCC −4.3 [414] −2.46 [414]
LCCSD −4.52 −2.24 −13.84 −8.40

CCSD(3) −3.82 −2.00 −10.40 −6.94

CCSD(5) −4.02 −2.00 −10.01 −6.79

CCSD(∞) −3.38 −1.78 −9.926 −6.215

Best value −3.4(5) −1.8(3) −9.93(8) −6.22(6)

values along with the net uncertainties at the end of Table 15
quoting as “Best value”. These results in combination with the
measured EDMs of the 129Xe and 223Rn atoms would provide
best limits on CT and S when they become available.

The diamagnetic atoms, 199Hg and 225Ra, are the two cur-
rent leading candidates for EDM experiments. The electron
correlation effects in these two atoms are strong. The primary
reason for this is that the leading ground state configuration
which has two s electrons, mixes fairly strongly with low lying
opposite configurations with s and p electrons and the corre-
lation effects modifying them make substantial contributions.
We present R values in Table 16 from all the methods that we
have discussed earlier in the same sequence as were given in
Table 15. As can be seen, the trends in the results are com-
pletely different from those in the noble gas atom discussed

in the previous paragraph. Unlike the noble gas atoms, the
differences between the results from RPA and RCC methods
are quite large. The final results, especially for 225Ra, are sig-
nificantly different from their corresponding DF results (refer
[415,423] for more discussions). In fact, our DF and RPA re-
sults are in close agreement with calculations reported earlier,
but our final CCSD result for Ra is very different from that
of the CI+MBPT method. This makes a strong case for using
a suitable relativistic many-body theory that can treat both
the core polarization and pair correlations to all orders and
treat them on equal footing. Adopting a procedure similar to
the one discussed earlier, we also estimate uncertainties of the
calculated R values of 199Hg and 225Ra and quoted the “Best
values” towards the bottom of Table 16. In our view, these
results are the most accurate calculations to date due to a
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Table 17. Breakdown of contributions to the R values
from the CCSD method due to the T-PT interaction (in
×10−20〈σ〉|e|cm) in the considered diamagnetic atoms.

CC term 129Xe 223Rn 199Hg 225Ra

DT
(1)
1 0.459 4.345 −4.400 −13.10

T
(0)†
1 DT

(1)
1 −0.001 0.005 0.027 −0.100

T
(0)†
2 DT

(1)
1 0.039 0.333 1.224 3.303

T
(0)†
1 DT

(1)
2 −0.006 −0.069 −0.058 −0.086

T
(0)†
2 DT

(1)
2 −0.009 −0.108 0.107 0.778

Extra −0.007 −0.047 −0.28 −0.721

Table 18. Breakdown of contributions to the R values
from the CCSD method due to the NSM interaction (in
×[10−17/|e|fm3]|e|cm) in the considered diamagnetic atoms.

CC term 129Xe 223Rn 199Hg 225Ra

DT
(1)
1 0.313 2.695 −2.388 −7.577

T
(0)†
1 DT

(1)
1 −0.001 −0.004 0.018 0.008

T
(0)†
2 DT

(1)
1 0.023 0.134 0.607 1.557

T
(0)†
1 DT

(1)
2 0.0002 −0.006 0.011 0.046

T
(0)†
2 DT

(1)
2 0.004 0.020 −0.026 −0.594

Extra −0.006 −0.057 −0.002 0.345

balanced treatment of all possible electron correlation effects
exhibited by these atoms.

5.4 Analyzing the CCSD results

It is possible to get insights into the contributions from the
singly excited and doubly excited configurations for the cal-
culation of R values using the expression given in Eq. (257).
The total sum of contributions from CCSD terms associated
with T

(1)
1 and T

(2)
2 represent contributions from the singly ex-

cited and doubly excited configurations, respectively. Unlike a
CI method where configurations are explicitly selected in the
calculations, the RCC operators generate all possible configu-
rations automatically that are allowed. In Table 17 and Table
18, we present contributions from various CCSD terms to the
R values due to the T-PT interaction and NSM respectively
for all the atoms we have considered. The net contributions
from the leading doubly excited odd parity configuration state
functions. Though it appears as if the contribution due to the
leading singly excited odd parity configuration state functions,
while the remaining terms represent for the contributions from
the leading doubly excited odd parity configuration state func-
tions. Though it appears as if the contributions from the non-
linear terms, given as “Extra”, in the table are small, but ac-
tually the major contributions from the non-linear RCC terms
have been included through the evaluation of the T (0) and T (1)

amplitude equations. It is also worth mentioning here is that in
accordance with the description in in Sec. 5.2.4, corrections due
to the normalization of the wave functions are not necessary
here.

Now comparing the trends of contributions to R due to
the T-PT interaction from all the atoms given in Table 17, we
find that the correlation trends for 129Xe and 223Rn are almost
similar, but they are very different for 199Hg and 225. With re-

spect to the DF values given in Tables 15 and 16, the DT
(1)
1

contributions are very large in 225Ra than for other atoms.
This means the correlation effects are very strong in 225Ra and
to account for these effects rigorously, it is imperative to use
a powerful many-body method like our RCC theory. Though
correlation trends between the 199Hg and 225Ra atoms are al-
most the same, but the strong correlation effects in the 225Ra
atom suggest that the latter behaves more like an open-shell
atom.

Since both the rank and parity of the P and T odd in-
teraction Hamiltonians given by Eqs. (205) and (206) are the
same, one would expect that the correlation trends forR values
due to the T-PT interaction and due to the interaction of the
atomic electrons with the NSM to be similar. However, a com-
parison between these values given in Tables 17 and 18 from
the different CCSD terms reveals that this is not the case. The
reason may be due to an extra r dependence appearing in Eq.
(205). One can also see that the trends for the contributions
from the NSM interaction are different for all the atoms.

6 Experiments on EDMs of closed-shell atoms

The EDM is a property of a spin carrying particle, and is de-
tected through observation of the difference in energy between
two spin states, i.e. with s parallel and antiparallel to a static
electric field E. In a typical EDM measurement, the particle
is placed under a static magnetic field B so that the Zeeman
energy splitting between the magnetic substates m = +1/2
and −1/2, or the spin precession frequency ω, changes upon a
reversal of E. Thus, the EDM d is determined from a relation

dat =
~(ω+ − ω−)

4E
(259)

where symbols + and − refer to the directions of the E field
parallel and antiparallel, respectively, to the B field. In order
to measure the precession frequencies ω±, typically the spin is
polarized and is pointed toward a direction transverse to B at
time t = 0, from which the spin starts precession about the
B direction. Figure 16 schematically illustrates geometry and
concepts relevant to such an experiment: (1) confinement of
polarized spins within some space (e.g. in a gas cell for the
cases of Hg [27] and Xe [20] atoms, in an optical dipole trap
for the Ra case [424], or in a beam path for the TlF case [425]),
(2) application of static B and E fields, and (3) detection of
spin direction (typically through transmission of a circularly
polarized laser light). To get a feeling on the typical scales
for experimental settings and signals, one might recall that
a size of EDM of 10−28 e cm aimed to be detected poses to
experimenter a requirement of frequency determination with
a nHz precision under an applied E field of 10 kV/cm and a
stabilization or monitoring of the B field within 0.1 fT.

With such demanding conditions required, any experiment
which either have provided the present lowest limits or are
newly proposed to revise them are equipped with their own
advantageous features: Currently the best restricting limit on
the EDM of a closed-shell atom has been obtained for 199Hg
in [23,27], in which a four-cell scheme is employed with the
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Fig. 16. Geometry and concepts relevant to typical EDM
measurements.

inner two cells placed under applied electric fields pointing
opposite directions to each other and the two outer cells un-
der a zero E field. The signal for the EDM is observed as
a difference of the precession frequencies for the middle two
cells, and the other combinations of the four cells are used to
measure the averaged magnetic field and its gradient. Optical
pumping is being used to spin-polarize the atoms orthogonal to
the applied magnetic field, and the Faraday rotation of near-
resonant light is observed to determine an electric-field-induced
perturbation to the Larmor precession frequency carrying in-
formation on EDM. As a result, they obtained d(199Hg) =
(−2.20± 2.75(stat)± 1.48(sys))× 10−30 ecm corresponding to
a new upper limit |d(199Hg)| < 7.4 × 10−30 ecm with 95%
confidence level [27].

The EDM of 129Xe has been studied in [20] by taking ad-
vantage of high Xe polarization obtained using spin exchange
optical pumping technique and of unlimitedly long spin co-
herence time realized by virtue of a spin maser, yielding the
result d(129Xe) = [0.7±3.3(stat)±0.1(syst)]×10−27ecm. Also
there are several currently ongoing developments on the 129Xe
EDM: Tokyo Tech-RIKEN group introduces a new scheme for
the spin-coherence time elongation, an external feedback spin
oscillator [40,45,426] which works even at very low B fields be-
low 0.2µT. Heil et al. [44] take advantage of remarkably long
transverse relaxation times which are only realized under ex-
tremely high homogeneity of their magnetic field. Kuchler et
al. [43] proposes a completely new method for detecting the
EDM, in which a rotating E field is used instead of a static
one.

Still another way is at work to confront the demanding con-
ditions posed to EDM experiments on closed-shell atoms: As
discussed in Sect. 4 the nuclear octupole deformation/vibration,
the parity-odd type collective degrees of freedom in the nucleus,
can bring a large enhancement to the Schiff moment [405]. At
present, the appearance of the octupole collectivity is known
to be in rather limited regions of the nuclear chart, and the
candidate nuclei currently attracting attention are radioactve
isotopes: EDM measurements of the radioactive 225Ra atom
have been carried out recently [26,424]. EDM of 225Ra nu-
cleus is calculated to be 2-3 orders of magnitude larger than
that of 199Hg [394,406,427] due to octupole deformation. This
means that even a one to two orders of magnitude less accu-
rate determination of the EDM of 225Ra atom than that of
199Hg is still advantageous for extracting the required physics.

To measure the EDM of 225Ra atom, a cold-atom technique
has been developed to detect spin precession of this atom held
in an optical dipole trap and an upper limit has been set as
|d(225Ra)| < 1.4 × 10−23 ecm with 95% confidence level [26].
Likewise, an experiment to measure EDM of 223Rn is under
development [41,42].

7 Discussion

7.1 EDMs of diamagnetic atoms and the underlying
elementary particle physics

By combining coefficients related to CP violating processes
mentioned in the previous sections, we can write a general for-
mula for the dependence of the EDMs of diamagnetic atoms
on elementary level CP violation in the following manner

dat =
∑
i

Kixi, (260)

where xi = de, du, dd, ds, d
c
u, d

c
d, d

c
s, w, CT

eq, C
SP
eq , CPS

eq , and
other CP-odd four-quark couplings (i is the index of CP-odd
effects considered) and Ki is the ratio of the atomic EDM to
the CP violating coefficient. We list these coefficients obtained
from different levels of calculations in Table 19.

We present first the “conventional” way of obtaining con-
straints from the EDM experimental and theoretical results by
assuming a single source of CP violation at the atomic level. It
has already been stated earlier that, currently, the most pre-
cise measurement of EDM of diamagnetic atoms comes from
199Hg. Thus, by combining the EDM of this atom reported as
|d(199Hg)| < 7.4 × 10−30|e| cm with 95% confidence level [27]
with the corresponding R value for the NSM and T-PT CP-
odd electron-nucleus interaction using the CCSD method given
in Table 17, we get

CT
N < 6.5× 10−10 (261)

and

SHg < 4.1× 10−13|e| fm3. (262)

The NSM of 199Hg considering the “best values” of aT from

Ref. [48] in terms of ḡ
(i)
πNN s is given by

SHg =
[
0.135ḡ

(0)
πNN ± 0.27ḡ

(1)
πNN + 0.27ḡ

(2)
πNN

]
|e| fm3. (263)

From the above limits, we can infer constraints on the
hadron level CP violating couplings as

|ḡ(0)πNN | < 3.0× 10−12 (264)

and

|ḡ(1)πNN | < 1.5× 10−12. (265)

Furthermore, using the relations |ḡ(0)πNN | = 0.018(7)θ̄ [209]

and ḡ
(1)
πNN = 2×10−12×(dcu−dcd) with the quark chromo-EDMs

are scaled by 10−26 |e|−1 cm−1 [34,360], we can extract the
upper limits on θ̄ and the differences isovector chromo-EDMs
as

|θ̄| < 1.7× 10−10 (266)
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and

|dcu − dcd| < 7.5× 10−27|e|cm. (267)

While inferring these limits, we have assumed that the PQ
mechanism is not active. As can be noticed the above inferred
limit of θ̄ from 199Hg and that is obtained from the combination
of measured dn and EFT calculation in Eq. (61) are of same
order.

We emphasize here that, in giving each of the above limits,
we have assumed that only one CP-odd coupling is finite, and
the others are zero. The above way of reasoning is expected
to work well to constrain the θ-term, since the θ-term is the
largest contribution to the atomic EDM under the current up-
per limit given by experiment, compared with the effects of
other TeV scale new physics or the CP violation of the CKM
matrix. In these optimistic approximation, it would be useful
to provide linear relationship between different atomic EDMs
with θ̄ following Table 19 as

– EDM of 129Xe atom:

dXe = 7× 10−22θ̄ e cm, (268)

– EDM of 199Hg atom:

dHg = O(10−20)θ̄ e cm, (269)

and

– EDM of 225Ra atom:

dRa = −3× 10−17θ̄ e cm. (270)

It is to be noted that the θ̄-term contribution to the 199Hg
EDM has a sizeable theoretical uncertainty.

This single source assumption is however not valid when
several sources contribute to the atomic EDM with similar or-
ders of magnitude, which is the case for the majority of the TeV
scale new physics (when the PQ mechanism is invoked and the
θ-term is unphysical). As a concrete example, dXe and dHg

have similar orders enhancement factors for the quark EDMs
and chromo-EDMs (see Table 19), which is due to the absence
of the enhancement or suppression of the contributions from
the nucleon EDMs and the CP-odd force between the nucle-
ons. Another important case is the effect of P,CP-odd e-N in-
teraction. We see that the effect of the quark level CPS

eu and
CPS

ed is comparable to that of CT
eq(q = u, d), although T-PT

interaction contributes larger than the S-PS interaction in the
diamagnetic atoms. This counterbalancing is due to the en-
hancement of the nucleon pseudoscalar charge [see Eqs. (90)
and (91)]. From these properties, we see that it is not possible
to give limits by simply assuming a single elementary level pro-
cess. Rather, we have to accurately evaluate the contributions
from each process to the final observable EDMs, as there could
be a destructive interference between the quark EDM and the
chromo-EDM, reducing the sensitivity and loosening the con-
straint. This fact increases the error bars of the constraints on
the CP violating parameters of the new physics generating the
quark EDM and the chromo-EDM of the same order of mag-
nitude. A typical example is the generic SUSY model, which
generates the quark EDM and the chromo-EDM of the same
order of magnitude. This also concerns the general new physics
candidates which generate the chromo-EDM or the Weinberg

operator at the TeV scale, as the RGE renders quark EDM
and chromo-EDM of the same order at the hadronic scale.

In relation to the quark chromo-EDM contribution, the
EDM of 225Ra is a cleaner system, since the effect of the CP-
odd nuclear force is much more enhanced compared to the
nucleon EDM. As was pointed in Sec. 4.4, this enhancement is
due to the nuclear octupole deformation. On the contrary, the
NSM due to the intrinsic nucleon EDM is suppressed, and the
upper limit on its contribution is suppressed by several orders

of magnitude, when it is expressed in terms of ḡ
(0)
πNN . This is a

very remarkable property, as the CP-odd nuclear force is sin-
gularly sensitive to the quark chromo-EDM, or the left-right
symmetric type four-quark operator. Of course, this enhance-
ment is only a nuclear level effect, and it does not prohibit the
suppression of the quark chromo-EDM effect at the elementary
level, which may counterbalance the effect of other sources. In
the analysis of the EDMs of diamagnetic atoms, careful inspec-
tions of the contributions from all possible important sources
of CP violation are required.

7.2 Implication for particle physics

We now discuss the implications of our current knowledge of
the EDMs of diamagnetic atoms for different particle physics
models. The first case we consider is the SUSY class of models.
In the generic SUSY model, the EDM and the chromo-EDM
of quarks are generated at the one-loop level. In Sec. 2.3.2, we
have seen that dq and dcq are of the order of 10−25e cm, at the
TeV scale with typical parameters in TeV scale SUSY breaking
scenarios. The RGE can be calculated without large theoret-
ical uncertainty, but the hadron and nuclear level evaluations
involve a large error bar. As can be seen in Table 19, the error
might be enlarged due to the destructive interference for the
EDMs of 129Xe and 199Hg. If we consider the most conservative
case, the best limit of the EDM of 199Hg cannot even constrain
the SUSY CP phases (θµ and θA), related to dq and dcq by Eqs.
(15) and (16). The EDM of 225Ra can overcome this problem,
since its sensitivity to the chromo-EDM is enhanced. In ordi-
nary SUSY models, the right-handed current of light quarks
is strongly suppressed due to the Yukawa couplings, so there
is no possibility of destructive interference with the left-right
four-quark interaction [428,429].

In the split SUSY scenarios, the leading CP violation is
given by the quark and electron EDMs, as mentioned in Sec.
2.3.2. In that case, the hadronic uncertainty is better controlled
since the quark EDM contribution to the NSM is better known.
In this case however, we have to consider the interference be-
tween the electron and quark EDMs. It is also important to
note that 225Ra EDM is not sensitive to the split SUSY sce-
nario, since the quark chromo-EDM is suppressed. The same
remarks apply to several R-parity violating models for which
the leading contribution comes from the Barr-Zee type dia-
grams with heavy leptons in the inner loop. In the baryon num-
ber violating R-parity violating scenarios, the right-handed
quark current is also generated, which leads to the left-right
type four-quark interaction and may interfere with the quark
chromo-EDM [311,430].

In the Higgs-doublet models, the leading process is the
Barr-Zee type diagram of quarks and electrons, as discussed
in Sec. 2.3.1. Here the quark chromo-EDM gives the most im-
portant contribution, as the electromagnetic Barr-Zee type di-
agram is suppressed by αem. As for the one-loop level SUSY
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fermion EDM and chromo-EDM, this process generates after
the renormalization group evolution down to the hadronic scale
a quark EDM with the same order of magnitude. The 225Ra
EDM is again the most efficient way of probing it. The Wein-
berg operator also contributes to the hadronic effective CP-odd
interaction, but it is subleading since its Wilson coefficient at
the TeV scale is smaller by about two orders of magnitude for
the Higgs mass mH = 125 GeV. It is also additionally sup-
pressed by the RGE, down to the hadronic scale, so that its
final contribution to the nucleon EDM is smaller than that
generated by the quark chromo-EDM by more than an order
of magnitude.

In the left-right symmetric models, the leading CP viola-
tion is given by the left-right type four-quark interaction (see
Sec. 2.3.3), which generates the isovector CP-odd π-N-N inter-
action at the hadron level, without largely mixing with other
hadronic interactions (see Sec. 2.4.1). This process can there-
fore be probed with all diamagnetic atoms. If we can observe
a clear hierarchy respecting the coefficients a1 times the coef-
ficients relating the NSM and the atomic EDM in the exper-
imental values of the EDMs of 129Xe, 199Hg, and 225Ra, it is
strongly probable that the left-right symmetric model is the
source of CP violation. We might think that this hierarchy can
be mimicked by the electron EDM or the CP-odd e-N inter-
actions, but the huge enhancement of the EDM of 225Ra is
difficult to realize. Of course, continuous efforts in determining
the NSM and reducing theoretical uncertainties are desirable.

Regarding the leptoquark model, the EDM of diamagnetic
atoms is singularly important, as it is sensitive to the tensor-
type CP-odd e-N interaction. Current limit of 199Hg EDM can
exclude the mass of the leptoquark to the PeV level, assuming
O(0.1) couplings with O(1) CP phase.

We also discuss below the case of vector like fermions with-
out direct interaction with the SM fermions. In this case the
leading process is the Weinberg operator, which generates the
quark EDM and chromo-EDM with similar orders of magni-
tude through the renormalization group evolution from the
TeV scale to the hadronic scale. We therefore have to ac-
curately determine its contribution to the nucleon EDM as
well as those from the quark EDM and the chromo-EDM. Un-
fortunately, the accuracy is currently not high. The isoscalar
chromo-EDM generated by theWeinberg operator at the hadronic
scale can be probed using the 225Ra through the CP-odd nu-
clear force. We have to note that the Weinberg operator is also
expected to contribute to the short range contact interaction
of the CP-odd nuclear force. This contribution is also currently
unknown, and has to be determined to unveil the CP violation
of vectorlike fermions.

Finally, we consider the SM contributions generated by the
CP phase of the CKMmatrix. Here we have to compare the CP
violation due to the CP-odd e-N interaction and that from the
NSM. The CP-odd e-N interaction contribution is estimated
as CSP

N ∼ O(10−17) (see Sec. 3.2). Combing with the atomic
level coefficients that are determined using the analytical rela-
tions, we obtain atomic EDMs less than 10−38e cm. The NSM
contribution was estimated in Ref. [258] as

dXe ∼ 10−36e cm, (271)

dHg ∼ 10−35e cm, (272)

dRa ∼ 10−32e cm. (273)

In the SM, the NSM is giving the largest contribution. It is
of course well below the current experimental sensitivity. Here

we note that we are using the same CP-odd π-N-N coupling to
estimate the CP-odd e-N interaction (see Fig. 6) and the nu-
clear Schiff moment. The hierarchy between them has therefore
a smaller error bar than the values themselves.

8 Summary and Outlook

The EDMs of diamagnetic atoms depend on the hadronic CP
violation, CP-odd e-N interaction and the electron EDM. In
particular they are sensitive to the isoscalar and isovector CP-
odd π-N-N interactions. The neutron EDM, which is sensitive
to the hadronic CP violation, is also rather sensitive to isoscalar
interactions. Diamagnetic atoms are, on the contrary, sensitive
to the isovector CP-odd π-N-N interaction. Another remark-
able point is that the EDMs of these atoms can probe the
tensor-type CP-odd e-N interaction, which is singularly sensi-
tive to the leptoquark model. For each microscopic CP violat-
ing process, there are other competitive or even more sensitive
experimental probes, such as the EDMs of paramagnetic atoms
or dn. However, as we have mentioned in the introduction, the
BSMs which can generate CP violation in several sectors at
the same time cannot be constrained with only those singu-
larly sensitive experimental observables.

The sensitivity of the EDM of diamagnetic atoms on ele-
mentary level CP violation is orthogonal with those of other
observables due to its dependence on a number of quantities,
so it is very useful in constraining models that encompass a
large parameter space. An excellent example is the analysis of
SUSY models, which have a very large degree of freedom. Pre-
vious analyses often assumed that only a restricted number of
parameters are active (the so-called “single source dominance”
assertion) and the constraints on CP phases were given by the
most sensitive experimental data on them. There may be can-
cellations if we consider several couplings and CP phases at the
same time. In such a scenario, the EDM of diamagnetic atoms
can constrain the CP violation which spreads over several sec-
tors, or disentangle the CP violating sources if a nonvanishing
CP violation is found in some other experiments.

Among the several diamagnetic atoms that have so far been
the subject of experimental EDM studies, 199Hg has yielded the
best result; the current upper limit of its EDM being 7.4×10−30

e cm at the 95 % confidence level [27]. This is a remarkably
stringent limit, not only because it is nominally the lowest
among the upper limits ever placed on the EDM of an elemen-
tary particle or a composite system, but also because it holds
promising possibilities for EDMs of other diamagnetic atoms,
suggesting that they can be measured with similar or even
better accuracy. In fact, the detection sensitivity of the ongo-
ing search for EDM in 225Ra is rapidly improving [26,424]. By
virtue of the large enhancement expected for the Schiff mo-
ment in this quadrupole- and octupole-deformed nucleus, its
sensitivity to the CP-violating sources will reach comparable
or even superior levels to that of mercury. 223Rn would also
be another promising candidate in the search for EDMs in
diamagnetic atomic systems [41,42]. We note here also that
important developments are taking place in the search for the
EDM of 129Xe atom, which have been undertaken by several
groups taking advantage of the exceptionally long spin coher-
ence times realizable for this species [40,43,44].

It is evident from our discussion on the atomic calculations
of the ratio of the EDMs of diamagnetic to different CP violat-
ing coupling constants that significant progress has been made
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in this area during the past decade. This has been possible
due to advances in the RCC theory and the hybrid CI+MBPT
method. In particular, the ability of the former method to cap-
ture the strong electron effects in Ra is truly impressive. The
errors in the calculations which is of the order of two to five
percent for the diamagnetic atoms can be reduced further by
using the normal coupled-cluster and the extended coupled-
cluster methods [431].

The NSM provides a very important contribution to the
diamagnetic atomic EDM. In the beginning of its study, the
Schiff moment might be enhanced due to the collective mo-
tion in the nucleus in a similar way as quadrupole vibrations
enhance the quadrupole moments and transitions. It has been
found later that this is not the case. On the contrary the single-
particle estimate of the Schiff moment is even quenched due to
the many-body effects. The exception might be the octupole
deformation seen in actinide Ra regions, where the octupole de-
formation forms parity doublet states with spin 1/2 . It is the
same for the nuclear EDMs coming from the intrinsic nucleon
EDMs. Nuclear EDMs are also quenched due to the many-body
correlations. It is therefore important to incorporate the many-
body effects in the nuclear wave function. In this respect the
nuclear shell model is superior to the other mean field theories.

The theoretical uncertainty for the nuclear calculations is
fairly large. In addition to the sizeable error bar in the result
of the calculation of the NSM, several nuclear level quantities,
such as the nuclear spin matrix elements, are not known. The
nuclear spin matrix elements are useful in determining the CP-
odd e-N interaction contribution to the EDMs of atoms. Their
evaluation is expected to be much easier than the NSM, so
future work in this direction is very desirable. Another open
question is to relate the “bare” CP-odd nuclear force to the ef-
fective CP-odd nuclear force which is relevant in theories with
restricted model space. This procedure is required in bridg-
ing from hadron to nuclear physics. The uncertainty in the
evaluation of the hadron matrix elements is larger than those
of all the quantities that are needed for the determination of
the EDMs of diamagnetic atoms. It is very challenging to re-
duce it and it cannot be achieved without performing large
scale lattice QCD computations. Results for several quantities
that contribute to the atomic EDMs such as the nucleon scalar
densities and tensor changes have been obtained recently. The
most important quark level CP-odd quantity that needs to be
evaluated is probably the quark chromo-EDM [432]. It is cur-
rently being computed on lattices by several groups and new
results are expected soon. The chiral EFT approach is also
useful in controlling the theoretical uncertainties originating
in unknown hadronic effective interactions which are difficult
to obtain on a lattice.

Given that our understanding of the challenging exper-
imental and theoretical issues of the EDMs of diamagnetic
atoms is steadily improving, one can be optimistic about new
and improved results in this field in the foreseeable future. This
will not only deepen our knowledge of CP violation, but also
provide important insights into physics of BSM.
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Table 19. The coefficients relating to the EDMs of the diamagnetic atoms with the elementary level CP violating processes as
given by Eq. (260). The renormalization point of quark and gluon level operators is taken as µ = 1 GeV. The θ-term contribution
is estimated with the single source assumption.

129Xe
KXe Central value Error bar Largest sources of error

KXe,θ 7× 10−22e cm O(50%) Hadronic level (θ-term contribution to the nucleon EDM)
KXe,de 10−3 O(100%) Atomic level (higher order contribution from hyperfine interaction)
KXe,du 2.2× 10−6 O(30%) Nuclear level (nucleon EDM contribution to Schiff moment)
KXe,dd −8.5× 10−6 O(30%) Nuclear level (nucleon EDM contribution to Schiff moment)
KXe,dcu

−6× 10−6e O(70%) Hadronic level (light quark chromo-EDM contribution to nucleon EDM)
KXe,dc

d
−2× 10−5e O(70%) Hadronic level (light quark chromo-EDM contribution to nucleon EDM)

KXe,dcs
10−6e O(100%) Hadronic level (strange quark chromo-EDM contribution to nucleon EDM)

KXe,w 10−21[eGeV2 cm] O(100%) Hadronic level (Weinberg operator contribution to dN )
KXe,CSP

eu
10−23[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KXe,CSP
ed

10−23[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KXe,CSP
es

10−25[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KXe,CT
eu

−2.2× 10−22[e cm] O(30%) Nuclear level (nuclear spin matrix element)

KXe,CT
ed

8.8× 10−22[e cm] O(30%) Nuclear level (nuclear spin matrix element)

KXe,CPS
eu

−5× 10−22[e cm] O(50%) Hadronic level (nucleon pseudoscalar density)

KXe,CPS
ed

4× 10−22[e cm] O(50%) Hadronic level (nucleon pseudoscalar density)

KXe,CPS
es

10−23[e cm] O(100%) Hadronic level (nucleon pseudoscalar density)

KXe,CLR 10−19[eGeV2 cm] O(100%) Hadronic level (CP-odd four-quark interaction contribution to ḡ
(1)
πNN )

199Hg
KHg Central value Error bar Largest sources of error

KHg,θ 10−20e cm O(100%) Nuclear level (dN and ḡ
(0)
πNN contribution to Schiff moment)

KHg,de 10−2 O(100%) Atomic level (higher order contribution from analytical expression)
KHg,du 10−5 O(100%) Nuclear level (nucleon EDM contribution to Schiff moment)
KHg,dd 10−4 O(100%) Nuclear level (nucleon EDM contribution to Schiff moment)
KHg,dcu

10−4e O(100%) Nuclear level (CP-odd nuclear force contribution to Schiff moment)
KHg,dc

d
10−3e O(100%) Nuclear level (CP-odd nuclear force contribution to Schiff moment)

KHg,dcs
10−4e O(100%) Hadronic level (strange quark chromo-EDM contribution to nucleon EDM)

KHg,w 10−19[eGeV2 cm] O(100%) Hadronic level (Weinberg operator contribution to dN )
KHg,CSP

eu
10−21[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KHg,CSP
ed

10−21[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KHg,CSP
es

10−23[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KHg,CT
eu

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KHg,CT
ed

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KHg,CPS
eu

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KHg,CPS
ed

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KHg,CPS
es

10−22[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KHg,CLR 10−18[eGeV2 cm] O(100%) Hadronic level (CP-odd four-quark interaction contribution to ḡ
(1)
πNN )

225Ra
KRa Central value Error bar Largest sources of error

KRa,θ −3× 10−17e cm O(60%) Nuclear level (ḡ
(0)
πNN contribution to Schiff moment)

KRa,de 10−2 O(100%) Atomic level (higher order contribution from analytical expression)
KRa,du 10−5 O(100%) Nuclear level (unknown nucleon EDM contribution to Schiff moment)
KRa,dd 10−4 O(100%) Nuclear level (unknown nucleon EDM contribution to Schiff moment)
KRa,dcu

−6e O(70%) Nuclear level (CP-odd nuclear force contribution to Schiff moment)
KRa,dc

d
6e O(70%) Nuclear level (CP-odd nuclear force contribution to Schiff moment)

KRa,dcs
10−4e O(100%) Hadronic level (strange quark chromo-EDM contribution to nucleon EDM)

KRa,w 10−19[eGeV2 cm] O(100%) Hadronic level (Weinberg operator contribution to dN )
KRa,CSP

eu
10−21[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KRa,CSP
ed

10−21[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KRa,CSP
es

10−23[e cm] O(100%) Atomic level (higher order contribution from analytical expression)

KRa,CT
eu

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KRa,CT
ed

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KRa,CPS
eu

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KRa,CPS
ed

10−21[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KRa,CPS
es

10−23[e cm] O(100%) Nuclear level (unknown nuclear spin matrix element)

KRa,CLR 10−14[eGeV2 cm] O(100%) Hadronic level (CP-odd four-quark interaction contribution to ḡ
(1)
πNN )


