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Abstract
A pedagogic introduction to the atomic clock physics, mainly from a theoretical
viewpoint, is presented, and the need for sophisticated relativistic many-body
methods for their studies is emphasized. Few general aspects on the working
principles of atomic clocks, their necessities in the daily life as well as for the
fundamental sciences, and their present status are outlined. Special attention
has been paid to keep the discussion at the graduate course level. Basic
physics related to major systematics in an atomic system exposed to external
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electromagnetic fields and theoretical approaches for their accurate estimations
for the atomic clock frequency measurements are highlighted. In this context, we
discuss the roles of many-body methods to evaluate Stark, Zeeman, quadrupole,
and multipolar blackbody radiation shifts and to search for magic wavelengths in
the atomic systems. A few examples are given to show usefulness of theoretical
perception for scrutinizing suitability of a candidate as an atomic clock a
priori to performing measurement. Since the modern atomic clocks offer most
precise measurements of the atomic transition frequencies, they are also used
as tools for probing both temporal and spatial variation of many fundamental
physical constants at the low-energy scale. The requirement of relativistic many-
body methods to yield information on the temporal variation of fine-structure
constant from the atomic clock studies is demonstrated. Several theoretical
methods, capable of calculating atomic properties very accurately, are prescribed
to facilitate better comprehension to the subject.

Keywords
Atomic clock • BBR shift (black-body radiation shift) • Configuration inter-
action (CI) • Coupled-cluster (CC) • Doppler effect • Fine structure con-
stant • Frequency standard • Instability • Linewidth • Magic wavelengths •
Micromotion • Microwave clock • Optical clock • Quadrupole shift • Qual-
ity factor • Random phase approximation (RPA) • Reproducibility • Secular
motion • Signal-to-noise ratio • Stark shift • Zeeman shift

Introduction

An atomic clock is a device that uses resonance frequency of an electromagnetic
transition between two energy levels in an atomic system as frequency standard
to count ticks between two consecutive seconds. More than 50 years ago, Essen
and Parry had proposed for the first time to use transition frequency between the
hyperfine sublevels of the ground state in Cs atom to define unit of time. Today,
this frequency is measured up to 9,192,631,770 oscillations per unit of time (known
as second) and is conceded as primary frequency standard. This sort of accuracy
is several orders higher than the accuracies of a typically used quartz clock in the
daily life activities. The guiding cause for accrediting atomic transition frequencies
as the time or frequency standards lies in their origin as they are the consequences
of the fundamental interactions between the elementary particles; their values must
remain the same irrespective of their locations or time of measurements. A selection
criterion for a particular transition to be considered for this purpose depends mainly
on three critical factors: a transition frequency that can be probed by a short-term
stable local oscillator, the availability of a suitable frequency-counting mechanism,
and a weak forbidden transition having intrinsic narrow natural linewidth. Broadly,
atomic clocks are classified into either active or passive depending on whether the
frequency standard is derived directly from the electromagnetic radiation or it is
probed by an electromagnetic radiation of an external oscillator.
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One of the quantities that signifies a better frequency standard is the quality
factor (Q), defined as Q D v

ıv
where � and ı� are the transition frequency and

linewidth of the transition, respectively. The ultimate objective would be to search
for an atomic clock with Q-factor as large as possible. The accuracy of an atomic
clock cannot be, in fact, defined uniquely. In practice, it quantifies either the offset of
a frequency standard from its normal operating frequency or how well the frequency
of the device can be related to the standard international (SI) unit of frequency. We
shall return back to the estimation of uncertainties in the determination of the offset
from its original value of the frequency in an atomic clock later. Another important
aspect that also needs to be looked into before accepting candidates for atomic
clocks is their instability and reproducibility limitations. Stability (as opposed to
instability) is a measure of variability of the frequency standard over a specified
period of time. Gauging this quantity requires a suitable reference standard having
either lower or equally compatible stability with the considered atomic clock. All
the three factors (reproducibility, accuracy, and instability) of an atomic frequency
standard depend on the sensitivity of the reference frequency to the environmental
perturbations and to the extent within which these perturbations can be controlled.
The stability of the frequency standard is generally characterized by either two-
sample or Allan variance given by [2]

�2y.�/ D

�
1

2
†k. Nyk � NykC1/

2

�
; (1)

where Nyk is the mean fractional deviation frequency measured at time tk with an
interval dtk from its nominal operating frequency �0 over the averaging period �
and reads

Nyk D
1

�

Z tkC�

tk

y.tk/dtk D
1

�

Z tkC�

tk

�.tk/ � �0

�0
dtk: (2)

For better statistical accuracy, the average value needs to be evaluated by integrating
over a large period of time � . The final deviation is determined as the square root of
the variance.

The present primary Cs clock is a microwave clock; however, most of the
modern clocks are preferred to operate in the optical frequencies. The optical clocks
operate at frequencies about five orders of magnitude higher than the Cs clock.
The local reference in an optical clock is generally a narrow linewidth laser that
is stabilized to a narrow optical atomic reference transition. Candidates chosen for
the optical clocks can be grouped into two major classes: neutral atoms trapped and
cooled using magnetic optical traps (MOT) and a single singly and multiply charged
ion trapped using the Paul-type trap. The real state of the art for considering optical
transitions as the frequency standards lies in their stabilities and to the precisions
at which the uncertainties associated with their measurements can be elucidated.
Instability in the fractional frequency shift due to the quantum fluctuations in an
atomic absorption signal can be estimated by
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�y.�/ D
n

Q .S=N/
�1=2; (3)

where S=N is the signal-to-noise ratio for a 1 Hz detection bandwidth and �
value depends on the shape of the atomic resonance line and the method used to
determine its central frequency. From the above expression, it can be understood
that stability is a measure of the precision within which a given quantity can be
measured and is usually stated as a function of averaging time. Owing to this
fact, very significant reduction in the instability is gained in the optical clocks.
The reduction factors depend exactly on the signal-to-noise ratio at which the
atomic absorption signal is observed and proportional to N1=2, where N is the
number of atoms detected in the measurement process. Thus, the atomic clocks
based on the optical lattices have relatively large stability compared with the
microwave clocks as well as from a single ionized optical clock. The other concern
in setting up an atomic clock is the uncertainties in the systematics, arising due
to the sensitivity of an experiment to the environmental perturbations, which can
shift the measured frequency from its unperturbed natural atomic frequency. It
is, indeed, indispensable to expect suppressed systematics for an ideal frequency
standard. Thus, it is imperative to understand all the physical processes happening
surrounding the experiments and enable to estimate their systematics rigorously. It is
also important that clock frequency can be reproducible irrespective of the location
and time of an experiment. Contemplating both reproducibility and sensitivity to
the environmental perturbations, there seems to be strong competition between the
optical clocks based on the cold neutral atoms trapped in the optical lattices and a
singly charged ion trapped using the Paul trap to replace the Cs microwave clock
to become the next-generation primary frequency standard. In this scenario it is
very much useful to have comprehensive understanding about the present status of
different atomic clocks that are under consideration in different laboratories around
the world and the roles of various environmental perturbations that are accountable
for limiting the accuracies of the atomic clocks.

Among other prominent applications, atomic clocks are the essential components
of the global positioning system (GPS). Each GPS satellite contains multiple atomic
clocks. GPS receivers decode detected signals by synchronizing each receiver to
the atomic clocks. In this process, it provides very precise time to an observed
GPS signal and helps in finding out position and time of an object. It provides us
the time to within 100 billionths of a second. Atomic clocks are also employed
for synchronizing various signals from different instruments to carry out high-
precision measurements. This is very important to differentiate tiny signatures that
are observed in the high-resolution instruments like the measurements that are
carried out using high-energy-based accelerators in the particle physics to probe
any possible subtle effects governed by the fundamental interactions. In addition,
these clocks are of immense use in the radio astronomy, telecommunications,
meteorology, military services, etc. Besides, there are of intense investigations
carried out for studying fundamental sciences directly using atomic clock signals. At
the end of this chapter, a special section is devoted describing principles of probing
variation in fundamental constants, especially the fine-structure constant ˛e , using
the atomic clock studies.
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The main objective in this chapter would be to demonstrate the requirement
of relativistic many-body methods in the context of studying physics related to
atomic clocks. One may wonder how theoretical calculations in the considered
atomic systems for the frequency standards could be useful at the standpoint where
everything seems to be very precise. Note that most of the clock candidates are
heavy atomic systems and performing ultrahigh precision calculations in these
systems is insurmountable. Although the systematics of atomic clocks themselves
are small but the physical quantities of atomic systems associated with these
systematics are essentially large enough to be calculated accurately. All the physical
quantities measured in the atomic clock experiments are undoubtedly very precise;
hence, these observed results can also act as benchmarks for testing the capability
of a (relativistic) many-body method to reproduce the experimentally measured
quantities. Indeed, it requires powerful many-body methods for theoretical studies
that are capable of taking care both the relativistic and electron correlation effects
adequately. It is also worth mentioning that appropriateness of a candidate for an
atomic clock can be prejudged from the knowledge of the calculated quantities a
priori to actual measurement. Thus, it would be vital to understand differences and
similarities among the theoretical methods used for the calculations to validate their
reported results. In this regard, an attempt is made to formulate various many-body
methods with the common starting point (reference state).

Classes of Clocks and Their Status

Operational Principles of Atomic Clocks

The advent of frequency comb is one of the major discoveries in the last century. It
helps in stabilizing mode-locked femtosecond lasers to a very high degree and acts
as a frequency divider connecting with frequencies of the entire range of the optical
spectra. In fact, this can compare two atomic clocks hand in hand even falling under
far apart range like optical to microwave frequencies. Frequency combs are used
as common references to provide better stabilities to the optical clocks, which also
helps to define accuracies of atomic clocks in an elegant manner. Confining atoms
or ions for optical clocks in small regions under ultrahigh vacuum makes them well
isolated from the environmental perturbations, and they produce narrow linewidths
for the transitions as per the obligation. Howbeit, thermal motions of atoms and
ions trapped using the electromagnetic fields in the optical clocks put tremendous
challenges to reduce systematics during the clock frequency measurements. Also,
operating the clocks at room temperature can give rise to a velocity distribution
for the atoms causing Doppler shifts. In the Paul traps, the residual thermal motion
and the micromotion of the ions can produce second-order Doppler shifts. Various
sub-Doppler techniques have been invented recently to resolve atomic resonances
much narrower than those of the Doppler distributions to eliminate Doppler effects.
The advanced cooling and trapping techniques that make use of an array of
lasers and external electric and/or magnetic fields are able to reduce these effects
acutely. Techniques like the use of ultralow expansion glasses to measure quantum
fluctuations on a fast time scale with a high S=N ratio have also been developed
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to minimize many systematics. Depending on the choices of the candidates, special
skills are being exploited to overcome these challenges. For example, it is argued
that by confining microwave hyperfine transitions in the ground states of Cs and
Rb atoms in an optical lattice generated by a circularly polarized laser field and
by applying an external magnetic field with appropriately chosen direction may
cancel out the dynamic Stark frequency shifts [3]. This may improve the accuracy
in the frequency of Cs clock as in this case the clock transition is insensitive to the
strengths of both the laser and external magnetic fields.

On the basis of ionic charges, general characteristics of optical clocks distinguish
from each other and few of their working principles are discussed below case-
wise by highlighting their advantages and drawbacks in constraining accuracies of
the clocks.

Optical Lattice Clocks
Optical lattice clocks employ neutral atoms trapped in a specially engineered
standing-wave laser fields, termed as magic trapping that uses magnetic optical
trap (MOT) to form a lattice kind of potential structure with regular spacing. Its
main advantage is that since the interactions between the neutral atoms are fairly
short ranged, millions of atoms can be trapped and interrogated simultaneously. It
extraordinarily improvises the stability of the clock owing to

p
N -factor offered by

N -number of ensemble atoms trapped in the system. In this case, individual energy
levels of a clock transition may be perturbed very strongly by the trapping fields;
however, at the magic conditions both the clock levels are shifted almost identically.
As a result, magic optical trapping potentials for clock transitions are defined for
specific tailored trapping fields in which differential shifts of the clock transitions
consequently vanish. The effects of optical laser trapping fields on energy levels are
quantified using the ac Stark shifts that can be expressed in terms of the dynamic
polarizabilities of the states and strengths of the applied electric fields. Even when
the electric field oscillates, as in lasers, the differential Stark shift of a transition
between two energy levels remains time independent. In this approach very narrow
hyperfine-induced transitions, such as the ns2 1S0 ! nsnp 3P0 transitions (n being
the principal quantum number of the ground state) in the fermionic stable isotopes
of alkaline earth elements (Be, Mg, Ca, Sr, Ba, and Ra atoms), can be exercised
to make felicitous frequency standards. The analogous transitions from the rare-
gas Zn, Cd, Hg, and Yb atoms can also fulfill the same errand. In fact, the atomic
ns2 1S0 ! nsnp 3P0 transitions of the corresponding bosonic stable isotopes are
strictly forbidden by the angular momentum and parity selection rules. Applying
small external magnetic fields, the excited nsnp 3P0 states of these transitions
can mix with their almost-degenerate fine-structure nsnp 3P1 states. Under this
condition nsnp 3P0 the states can gain finite lifetimes and can be used as the
interrogation time when the ns2 1S0 ! nsnp 3P0 transitions are considered for
frequency standards. These transitions thrive as perfect atomic clocks because of
their contrived linewidths which can be manipulated to yield optimum stability
by selecting the strengths of the applied magnetic fields. Thus far the most stable
clock frequency of the above hyperfine-induced transition in 87Sr has been measured
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Table 1 Comparative analysis of important clock properties among few leading optical clocks

System
Clock
transition

�

(in nm)

Natural
linewidth
(in Hz)

Observed
linewidth
(in Hz)

Fractional
uncertainty
(in �10�15)

Instability
(in
10�15��1=2)

Atoms
40Ca 1S0$

3 P1 657 375:0 250:0 4:2 1:8
87Sr 1S0$

3 P0 698 0:001 0:5 0:006 0:4
171Yb 1S0$

3 P0 578 0:01 1:0 0:36 1:5
174Yb 1S0$

3 P0 578 0:0 4:0 1:5 5:5
199Hg 1S0$

3 P0 266 0:1 11:0 5;000 5:4
201Hg 1S0$

3 P0 266 0:1 11:0 5;000 5:4

Ions
27AlC 1S0$

3 P0 267 0:008 2:7 0:0086 0:6
40CaC S1=2$ D5=2 729 0:2 30:0 2:4
88SrC S1=2$ D5=2 674 0:4 5:0 0:021 1:1
171YbC S1=2$ D3=2 436 3:1 10:0 0:45

S1=2$ F7=2 467 10�9 7:0 0:071
199HgC S1=2$ D5=2 282 1:7 6:7 0:019

within 3�10�17 fractional uncertainty and a stability of better than 0:4�10�15��1=2

[2, 4, 5].
A synchronous frequency comparison has been demonstrated of two optical

lattice clocks using 87Sr and 88Sr atoms with the Allan standard deviation 1� 10�17

in an averaging time of 1,600 s [2, 4, 5]. Similarly in 174Yb, magnetically induced
transition has been observed for a width of 5 Hz with the reported fractional
uncertainty 1:7 � 10�15 and a stability better than 5:5 � 10�16��1=2 [2, 4, 5].
Particularly, clock transitions from 199Hg and 201Hg exhibit small blackbody
radiation shifts (BBR shifts), and their clock frequencies are observed within the
fractional uncertainties to 5 � 10�12 [2, 4, 5]. In Table 1, we compare many pivotal
properties of few leading atomic clocks accumulating from the review articles
[2, 4, 5] to enliven about their adequacies and to explore about other better possible
ways to boost their further advancements.

Singly Charged Ions
Although it appears as if use of a single singly charged trapped ion is a drawback
in view of instability for an optical clock, but owing to developed competent
principles to keep the ions isolated from the environmental perturbations makes
them expedient contenders for the atomic clocks. Narrow transitions in several
ions have been identified which are potentially pertinent for the optical frequency
standards. Each of these ions has its own advantage and disadvantage in terms of
clock transition parameters and intrinsic sensitivity to the environmental pertur-
bations as well as in their technical complexities for running the corresponding
experiments. The typical working scheme of a singly charged ion, presumed to
be suitable for optical frequency standard, comprises a strong allowed transition
for the laser cooling and a weak forbidden transition as the frequency reference.
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The frequency is readily observed by detecting the resonance fluorescence from
the strong cooling transition; however, detecting absorption of individual photon
at the frequency of narrow reference transition is, in practice, not an easy affair.
This is achieved by an electron shelving technique, whereby quantum jump in
the cooling laser fluorescence signal is observed by driving the ion to the upper
state of the reference transition by the clock laser. This trick empowers the narrow
reference transition to be detected within incredible efficiency. The line profile of
a clock transition can be built up by measuring quantum jump probability as a
function of the probe laser frequency. The probe laser can be stabilized to the
reference transition by repeatedly stepping its frequency back and forth between
two estimated half-maximum intensity points of the resonance curve and monitoring
the quantum jump rate imbalance between these two points. This quantum jump
imbalance can provide a frequency discriminant from which a correcting steer
to the frequency of the probe laser can be derived. Some of the prominent and
routinely used ions are 27AlC, 40CaC, 43CaC, 87SrC, 88SrC, 115InC, 171YbC, 173YbC,
199HgC, and 201HgC in which a lot of developments are carried out toward frequency
standards. Few important key parameters of these standards are already compared
in Table 1. Clock transitions from the alkaline earth ions, YbC and HgC, involve
ground S-states and one of the metastable 2D3=2;5=2 states that lie below the 2P1=2;3=2
states. Therefore, these D-states decay to their ground S-states via the electric-
quadrupole transitions with natural linewidths in the range of 0.2–3 Hz, while the
P1=2 to S1=2 transitions are used for cooling the ions. The highest observed Q-
factor 1:6 � 1014 is achieved for 199HgC with linewidth of 6.7 Hz [2, 4, 5]. The
other important set of ions are 27AlC and 115InC having electronic configurations
similar to the alkaline earth elements; their ns2 1S0 ! nsnp 3 P0 transitions
are analogous to the previously discussed lattice clock transitions, which are also
considered for frequency standards. Mixing of the nsn 3 P0 states with the nsnp 3 P1
and nsnp 1 P1 states due to their hyperfine interactions allows to measure the
transition frequencies of the above transitions in sufficiently finite time. These
transitions are ideal for the frequency standards because of their longer stability and
for exhibiting low systematic frequency shifts. A direct comparison of measurement
between the 199HgC and 27AlC frequency standards has been carried out with a
relative uncertainty in their ratio as 5:2�10�17 for the total systematic uncertainties
1:9 � 10�17 and 2:3 � 10�17 in HgC and AlC, respectively, and for the frequency
stability 4 � 10�15��1=2 [4, 5]. Further clock frequency of the 1S0 $

3 P0 transition
in the same group AlC ion is measured independently trapping with the MgC and
BeC ions with the achievement of a relative statistical measurement uncertainty of
7:0�10�18 improved with the MgC ion for a relative stability of 2:8�10�15��1=2 and
a fractional frequency difference of 1:8�10�17 [2,4,5]. In other set of experiments, a
frequency instability of 9�10�15��1=2 with reproducibility at the 6�10�16 level for
the Œ4f 14�6s 1S0 ! Œ4f 14�5d 2D3=2 clock transition in 171YbC [2,4,5] and absolute
frequency difference between the 87Sr and 87SrC clocks up to 2:8 � 10�17 [4, 5]
have been accomplished. In a categorically different experiment with the octopole
transition Œ4f 14�6s 1S0 ! Œ4f 13�6S2 2F7=2 in 171YbC, which is insensitive to
the field-induced transitions and for possessing very long lifetime of its metastable
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excited state (about 6 years), a fractional uncertainty of 7:1 � 10�17 with quantum
projection noise �y.5;000 s/ D 6 � 10�17 has been reported [4, 5]. Among many
other proposed ions, theoretical analysis also projects that both the S $ D3=2;5=2

transitions in the BaC and RaC ions are also capable for realizing them as very high
accurate frequency standards [6–8].

Highly Charged Ions
There have been recent proposals [9] to consider single but a highly charged ion
as new atomic clock for bespeaking only minuscule systematics encountered by
such ions. This owes to their strikingly shrunk orbitals which get least affected
by the external perturbations. Since the radiative transition matrix elements are
proportional to power expression of the atomic radius, coupling of atomic states with
the external fields scales down for increasing charge of an ion. This is an obviously
favorable condition for becoming an atomic clock and is the key factor why it is
believed that the highly charged ions can be the unrivaled clocks. In principle,
highly charged ions can be loaded in the ion traps by employing sympathetic cooling
techniques along with another ion species, say BeC ions [9]. At sufficiently low
temperatures the rates of undesirable charge-exchange processes between two ionic
species become negligible. In this scheme, long-range elastic Coulomb collisions
with continually laser-cooled BeC ions can drive these highly charged ions with
temperature down to mK. It is possible to co-trap heavy highly charged ions with
relatively light ions of low ionic charge depending upon the ratio of ion charge
to its mass. In fact heavier cooling species like MgC can also be used instead
of BeC to improvise mass matching, hence the cooling efficiency. It is found
that the transitions among the fine-structure levels of the ground state in ions
having Œ4d10�f 12 electronic configuration, e.g., Œ4d10�f 12 3H6 ! Œ4d10�f 12 3F4
transition, are the most felicitous ions for constructing such kind of frequency
standards [9].

The feasibility of using magnetic-dipole (M1)-induced hyperfine transitions in
the highly charged ions has also been looked into for possible atomic clocks
with exceptional accuracy on the basis of anticipated negligibly small blackbody
radiation (BBR), quadratic Zeeman, ac Stark, and quadrupole shifts in these ions
[10]. The advantage of these clocks over other hyperfine clock transitions is that
wavelengths of the corresponding transitions fall within the optical domain, while
most of the other considered ground state-based hyperfine clock transitions lie in
the microwave spectral region.

Other Possible Candidates

In spite that there is a less scope to discuss elaborately and connect the need
of relativistic calculations at present, a brief discussion on proposed prospective
nuclear and molecular clocks is presented for the sake of completeness and to give
a broad outlook on this topic to the general readers.
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Nuclear Clock
Nuclear systems, where the most common three fundamental interactions strongly
interplay each other, are very interesting from the point of view of studying
many fundamental sciences; however, their spectroscopy was not yet explored for
metrology purposes owing to strenuous procedure to keep bare atomic nucleus
isolated. In 2003, Peik and Tamm came up with an idea [11] proposing to use
nuclear transition in the 229Th3C ion for the frequency standard. Radioactive 229Th
nucleus has an isomeric nuclear state at the unusually low excitation energy of
3:5˙1:0 eV above the ground state and its lifetime is about two to four times smaller
than the half-life of its nucleus. This energy is comparable with the excitation
energies of outer electrons in the atomic shell of 229Th3C. The corresponding
transition wavelength lies in the range of available tunable laser sources using
which its frequency can be measured very precisely. However, the measurement of
the corresponding frequency may encounter two important limitations. The under-
considered transition will experience a significant second-order differential Zeeman
shift (�70 kHz/mT 2), and their electric-quadrupole transitions could restrict the
clock linewidths to �1 Hz. It has been demonstrated that a pair of stretched
hyperfine states within the 5F5=2 electronic ground level of both the nuclear ground
and isomeric manifolds in 229Th3C could provide a clock linewidth of �100�Hz
and can offer unprecedented systematic shifts [12].

Molecular Clock
It is also proposed fairly recently by Schiller et al. [13] after carrying out calculations
of external-field shift coefficients and analyzing at least 11 systematic effects in
the one-electron molecular HC2 and HDC ions that frequency measurements in
their ro-vibrational transitions may reach up to 2 � 10�17 uncertainty at the room
temperature. They also argued that by considering measurement of composite M
C 1 transitions (M being the number of systematic effects to be canceled) in
different wavelength ranges, one can reduce the external-field effects. Following
this proposal, Karr was quick to estimate light shifts induced by the probe laser
using his calculated values of transition amplitudes, differential dynamic polariz-
ability, hyperfine-structure constants, and clock interrogation times for the states
accessible by the two-photon and quadrupole transitions [14]. From the estimation
of quadrupole and Zeeman shifts, he showed that light shift is the main limiting
factor in the case of two-photon transitions for both the HC2 and HDC ions and gave
an estimated accuracy level close to 5�10�16 in the best possible case. However, he
suggested that quadrupole transitions could be better as promising clock transitions
with the estimated accuracies reaching beyond 1 � 10�16.

Typical Systematics

Systematics in the frequency standard measurements are categorically of two
types. One of them is due to the construction of the instruments (defined as
instrumental systematics), while the other one is subjected to expose the systems
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to the external or stray electromagnetic fields (defined as external systematics).
Generally, instrumental systematics depend on size, shape and construction of the
mechanical devices, while systematics caused by the external forces are guided
by the atomic state properties and the strengths of the applied fields. Thus, the
latter systematics can be controlled by suitably choosing clock transitions and by
optimizing strengths of the electromagnetic fields. In the theoretical calculation
prospects, atomic properties that are relevant to the external systematics are of
immense interest. A brief discussion on both types of systematics is outlined below.

Instrumental Effects

With atomic clocks operating in the optical lattices, millions of atoms are trapped
and interrogated simultaneously. The mechanism of trapping atoms with lasers
brings a seemingly insurmountable challenge, and most of their instrumental sys-
tematics depend on the configurations of the devices. One of the major systematics
is due to the Doppler’s shifts which are reduced by the Doppler cooling technique
given by Hänsch and Schawlow. In contrast, issues related with ion clocks are
technically different. It follows from Maxwell’s equations that it is not possible to
trap a charged particle using three-dimensional potential well; however, they can
be confined in the Penning and Paul traps. In Penning traps, three-dimensional
confinement is achieved by the combination of a strong static magnetic field and
a quadrupolar electrostatic field. Since trapped ions are strongly perturbed by the
applied fields in the Penning traps, such traps are incompatible for the optical
frequency standards, and hence, the Paul traps are commonly used for clocks. In
these traps the quadrupole potential seen by the ions is

�.r; z; t / D .Qdc CQac cos	t/.r2 � 2z2/; (4)

with the dc and ac components of the potential Qdc and Qac, respectively, for the
angular frequency 	 (known as micromotion frequency). Appropriately selecting
values of Qdc, Qac, and 	, motions of the ions can be stabilized in both the radial
and axial directions. Under these conditions the motions of the trapped ions can
be separated into two parts, a driven oscillatory motion at the trap drive frequency
(micromotion) and a slower motion associated with the time-averaged confining
potential (secular motion). The characteristic frequency of the secular motion is an
order of magnitude smaller than	. The typical depth of the Paul traps is of the order
of 10 eV, which is sufficient enough to capture ions created by the electron impact
ionization or photo-ionization of neutral atoms emitted from a hot oven. The ions are
laser cooled within the traps and confined to a region with dimensions less than the
wavelengths of the light used to probe the reference transitions of the optical clocks.
This is referred to as Lamb–Dicke regime, where the first-order Doppler effect is
completely eliminated. The micromotion of the ion leads to amplitude modulation
of the cooling laser fluorescence via the Doppler effect and allows to be monitored
using radio-frequency photon-correlation techniques. In this approach, micromotion
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is minimized by applying small dc voltages to additional compensation electrodes
and also the second-order Doppler shift is greatly reduced by confining the ion
tightly to the center of the trap. It is also necessary to operate the trap under ultrahigh
vacuum condition to reduce the collisional perturbations.

External Effects

In order to determine the overall uncertainty budgets for the optical frequency
standards with trapped atomic systems, it is a requisite to consider the effects
of environmental perturbations such as magnetic, trapping electric, and applied-
light fields on the trapped atoms or ions. External magnetic fields interact with
the magnetic moments of the atomic states leading to linear Zeeman shifts of the
atomic transition frequencies. In cases like clock transitions in the odd isotopes of
alkali-like ions, which have half-integral nuclear spin I, it is possible to select a
magnetic field-independent mF D 0$ mF D 0 component of the clock transition.
These transitions can still experience second-order Zeeman shifts; however, they
can be controlled at an acceptable precision level by operating the frequency
standard in a low magnetic field of around 1mT . In addition, the quadrupole shifts
due to the interaction between the electric-field gradient and the atomic electric-
quadrupole moments can also be eliminated by averaging out the shifts to the
transition frequency over three mutually orthogonal magnetic-field orientations.
Nonetheless, knowing the functional form of the perturbation due to the quadrupole
shift is still very useful for conducting the experiment facilely. Stark shifts of the
clock transition frequency in a trapped atom or ion can arise in a variety of ways.
Firstly, the micromotion and the thermal motion of the atom or ion within the trap
cause it to experience a nonzero root mean square value of the electric field. The
magnitude and stability of this field depend on the stray charges present within
the trap. With careful micromotion compensation, it should be possible to reduce
these effects to few parts in 1018 level. Secondly, there will be a blackbody Stark
shift due to the temperature of the apparatus surrounding the atom or ion. All the
cooling, repumper, and clearing-out laser beams can be switched off, while the clock
transition is being probed in order to minimize the surrounding effects, but the probe
laser light has to be on throughout the experimentation. Thus, the Stark shifts can
still be present, but they can be reduced by manipulating intensities required to drive
the clock transitions. However, for the kind of laser linewidths achieved these days
in the clock frequency measurements, high laser intensity is required to drive these
transitions at reasonable rates. Hence, the transition frequencies are measured as
functions of laser power and extrapolated to zero power to determine the actual
value. Few important systematics will be discussed here that require auxiliary
measurements to find out them or can be estimated by combining strengths of the
applied electromagnetic fields with high-accuracy calculations of relevant physical
properties of the transitions in the clock candidates. Of course, it is important to
consider a suitable many-body method for such theoretical calculations. Particularly,
at least four reasons can be cited to justify that it is enviable interest to carry



Relativistic Calculations of Atomic Clock 13

out theoretical studies of the above properties especially for the atomic clocks:
(i) as has been demonstrated before, it is feasible to select an atomic system to
check its viability for the frequency standard prospectus with accurate knowledge
of atomic spectroscopy; (ii) when the experimental results are either not available or
carrying out precise measurements is extremely strenuous, theoretical results can be
their substitutes; (iii) performing high- precision calculations at the level of present
interest can be much economical than setting up their auxiliary experiments; and (iv)
comparison between the measurements and calculations of spectroscopic properties
in a system obtained from the clock studies could serve as tool to assess the potential
of the employed many-body methods.

Quadratic Zeeman Shift
In the presence of static magnetic field, the spectral lines of an atomic system
can be split into several components as known from the Zeeman effect. In most
of the atomic clocks, linear Zeeman shifts are almost canceled out, while the
quadratic Zeeman shifts still contribute to the uncertainties. The interaction operator
to determine the quadratic Zeeman shift due to the hyperfine interaction subjected
to the external magnetic field EB D jBjOz is given by

HB D Ahf EI : EJ C gJ
B EJ : EB C gI
B EI : EB; (5)

where gJ is the gyromagnetic constant of the electronic state of angular momentum
J , gI is the gyromagnetic constant of the nuclear state with spin I , and 
B is
the Bohr magnetron. This shift can be estimated if the hyperfine constants and g-
factors for both the electronic and nuclear components of the system known. Ahf

values can be extracted by measuring hyperfine splitting; however, such procedure
is complicated in a fermionic system with I > 1=2 when the second- or higher-
order hyperfine interactions can be significantly contributing. Due to limited scope,
only few examples of comparison between the experimental and theoretical results
are provided later. Theoretically, Ahf of a state is calculated by

Ahf D

n

I

hJ
��Hmag

hf

��J ip
J .J C 1/.2J C 1/

; (6)

for the nuclear magnetic moment 
n D 
I
B where 
I is the nuclear moment
in units of 
B and hJ

��Hmag
hf

��J i is the reduced matrix element of the electronic
component of the magnetic-dipole hyperfine interaction Hamiltonian Hmag

hf .
Similarly, the gJ -factor can be measured precisely or can be evaluated using the

expression

gJ hJ i D �hJJ jmec
p
2irfEa˝ C .1/g.1/jJJ i (7)

with the Dirac matrix Ea and Racah operator C .
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Two other approaches are adopted to obtain more precise values of gJ -factors
of the bound electrons. The expression given in Eq. (7) is basically for determining
the Dirac gJ -factor of a bound electron analogous to gD D 2 for a free electron.
However, QED correction yields

gD D 2

�
1C

˛e

2�
� 0:328

˛2e
�2
C � � �

�
� 2 � .1:01160/: (8)

Accounting full QED effects for bound electrons in the atomic systems with more
than three electrons is kind of intractable. The QED corrections, however, can be
approximated roughly using the interaction Hamiltonian [15]

ıgJ D 0:001160 ˇ†
.1/
0 ; (9)

where ˇ and †.1/0 are the Dirac matrix and the z-component of the Dirac spinor †,
respectively.

It is also appropriate to estimate only the bound-state relativistic correction to gJ
as [16]

�gJ D h.ˇ � 1/2J � ˇLi; (10)

for the orbital angular momentum operator L. Then, the final gJ -value can be
determined by subtracting the above correction from the gD-value.

Using a classical vector coupling model, gJ can also be estimated reasonably as

gJ D 1C
J .J C 1/ � l.l C 1/C s.s C 1/

2j .j C 1/
; (11)

where l and s are the orbital and spin angular momentums, respectively. Similarly,
gI can be extracted from the knowledge of gJ - and g-factor of the hyperfine state
(gF ) using the relation

gF D gJ
F .F C 1/C J .J C 1/ � I .I C 1/

2F .F C 1/

C gI
F .F C 1/ � J .J C 1/C I .I C 1/

2F .F C 1/
(12)

for the I - and J -coupled hyperfine angular momentum F .

Quadratic Stark Shift
The change in the energy of an atomic state j‰ni with angular momentum and its
z-component of the state as jn and mj placed in an external weak electric field
EE D jEjOz is given by
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�En.jn;mj / ' �
1

2
˛E1n E2 (13)

where ˛E1n is the static electric dipole (E1) polarizability of the state. If the electric
field is of ac type with altering frequency !, it yields

˛E1n D �†k¤njh‰njDj‰kij
2 �

�
1

.En �Ek/C !
C

1

.En �Ek/ � !

�
; (14)

where D is the E1 operator and Ei is the energy of the j‰i i state. The sum over
k denotes contributions from all possible E1 transitions. Using the tensor product
formalism, it becomes

˛E1n D ˛
E1
n .0/C A cos k

mj

jn
˛E1n .1/

C

�
3 cos2 p � 1

2

� (
3m2

j � jn.jn C 1/

jn.2jn � 1/

)
aE1n .2/: (15)

Here A, k , and p are the degree of circular polarization angle, angle between the
wave vector of the electric field � and the Oz-axis, and angle between the direction
of polarization and Oz-axis, respectively. Here it should be noted that A D 0 for
the linearly polarized light and A D 1.�1/ for the right(left)-handed circularly
polarized light. In the absence of magnetic field, cos k D cos p D 1. In the
above expression ˛E1n .0/, ˛E1n .1/, and ˛E1n .2/ are known as scalar, vector, and tensor
polarizabilities, respectively, and are usually defined in terms of mj independent
factors (reduced matrix elements) to evaluate them conveniently and given by

˛E1n .0/ D
.†q 1/.†mj 1/

3.2jn C 1/
†jk¤jn jhJnkdkJkij

2

�

�
1

.En �Ek/C !
C

1

.En �Ek/ � !

�
; (16)

˛E1n .1/ D �
.†q 1/.†mj 1/

3.2jn C 1/

s
54 jn.2jn C 1/

.jn C 1/
†jk¤jn.�1/

jnCjkC1

�
jn 1 jn
1 jk 1

�

� jhJnkdkJkij
2 �

�
1

.En �Ek/C !
�

1

.En �Ek/ � !

�
; (17)

and
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˛E1n .2/ D� 2
.†q 1/.†mj 1/

3.2jn C 1/

s
15 jn.2jn C 1/.2jn � 1/

2.jn C 1/.2jn C 1/

†jk¤jn.�1/
jnCjkC1

�
jn 2 jn
1 jk 1

�

� jhJnkdkJkij
2 �

�
1

.En �Ek/C !
C

1

.En �Ek/ � !

�
: (18)

Here q corresponds to the z-component of rank of D. It is obvious that for the
static (dc) electric fields, contributions due to the vector polarizability vanishes and
also contributions from both ˛E1n .1/ and ˛E1n .2/ to the closed-shell configurations
nullify.

In the hyperfine jI jnFnmF i state the Stark shift is given, analogously, by

�En.Fn;mF / ' �
1

2
˛E1n;F E

2; (19)

where ˛E1n;F is the corresponding dipole polarizability and can also be expressed in
terms of scalar, vector, and tensor components as before. Since it is hindered to
work with the hyperfine states for practicality, the hyperfine state polarizabilities
are expressed in terms of the atomic polarizabilities by relating ˛E1n;F with ˛E1n in the
IJ-coupling approximation as

˛E1n;F .0/ D ˛
E1
n .0/; (20)

˛E1n;F .1/ D .�1/
jnCICF

s
4 Fn .2Fn C 1/.2jn C 1/.jn C 1/

9.Fn C 1/jn

�
Fn Jn I

jn Fn 1

�
˛E1n .1/

(21)

and

˛E1n;F .2/ D.�1/
jnCICF

s
Fn .2Fn � 1/.2Fn C 1/.2jn C 3/.2jn C 1/.jn C 1/

.2Fn C 3/.Fn C 1/jn.2jn � 1/�
Fn jn I

jn Fn 2

�
˛E1n .2/: (22)

So with accurate knowledge of the atomic polarizabilities and strengths of the
applied electric fields, Stark shifts for the frequency standards can be deduced.

Electric-Quadrupole Shift
Electric-quadrupole shifts occur due to interaction between the atomic electric-
quadrupole moments with the external electric-field gradients that are generated by
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the electrodes of the trapping systems. The Hamiltonian describing the interaction
of external electric-field gradient with the atomic quadrupole moment of an atomic
state is given by

HQ D ErE
.2/ � E‚.2/ D †2qD�2.�1/

qrE.2/
q ‚

.2/
�q; (23)

where ErE.2/ is the tensor describing the gradient of the external electric field at the
position of the atom and E‚.2/ is the electric-quadrupole operator. In the principal-
axis frame HQ reads out

HQ D �2 A ‚
.2/0

0 C

r
2

3
�A.‚

.2/0
2 C‚

.2/0
�2 /: (24)

The first-order correction due to HQ in the hyperfine state jIjnFnmF i is given by

�EQ D hIjnFnmF jHQjIjnFnmF i

D
�2Œ3M2

F � F .F C 1/�AhIjnFnk‚
.2/kIjnFn

Œ.2Fn C 3.2Fn C 2/.2Fn C 1/2Fn.2Fn � 1/�1=2

� Œ.3 cos2 ˇ � 1/ � � sin2 ˇ.cos2 ˛ � sin2 ˛/�; (25)

where ˛, ˇ, and � are the standard Euler angles that convert the actual principal-axis
frame to the working laboratory frame (taking � D 0), � is known as asymmetry
parameter and A is the strength of the field gradient of the applied direct current
(dc) voltage. The reduced matrix element in the above expression is given by

hIjnFnj‚
.2/jjIjnFni D .�1/

ICjnCFn.2Fn C 1/

�
jn 2 jn
Fn I Fn

� 	
jn 2 jn
�jn 0 jn


2
‚.jn/:

(26)

for the atomic quadrupole moment ‚.jn/. By knowing accurate ‚.jn/ values of
the atomic states involved in a clock transition, differential quadrupole shift of a
transition can be obtained. The quadrupole moment of an atomic level with angular
momentum jn is evaluated by

‚.jn/ D hjnjnj‚
.2/
0 jjnjni (27)

with ‚
.2/
0 D e

2
†.3z2 � r2/. In an experiment, ‚.jn/ is measured by altering

static dc voltage and is a challenge to extract precisely. Several calculations of this
quantity are also available with accuracies as par with the measurements and even in
some cases accuracies in the calculations have surpassed over their corresponding
measurements.
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Multipolar BBR Shifts
Shifts in the quantum energy levels owing to the atom residing in an environment
at finite temperature at which an atom can emit radiations with wavelengths
depending on the magnitude of temperature are known as BBR shift. Atomic
clocks are advised to operate at the room temperature for the general use and the
wavelengths emitted from the atoms at this temperature are typically in the infrared
region of the electromagnetic spectrum. Accurate estimates of BBR shifts for the
laboratory as well as those used in the spacecraft atomic clocks are inevitable
as even in the most remote place of intergalactic space, an isolated atom is still
subject to cosmic microwave background radiation (CMBR). Uncertainties in the
estimated BBR shifts can impose limits to achieve the best atomic clocks. These
shifts can be estimated using the multipole expansion of the electromagnetic field.
Usually contribution due to the E1 channel is taken into account for its dominant
contribution; however, contributions from other higher multipoles, especially from
the M1 and E2 channels, can also be significant when the accuracy of clocks reach
below 10�19 level. A general theory of BBR shift follows below.

The Hamiltonian describing interactions between the electrons in an atomic
system with the external propagating electromagnetic field in the Coulomb gauge
coupling is given by

V .r; !/ D �c Ę � EA.r; !/ D �c. Ę � E�/ei
Ek�Er ; (28)

where ! is the angular frequency of the field and Ek D jkj Ok and E� are its wave
vector and polarization direction, respectively. The expression for the BBR shift of
an atomic energy level j‰ni with energy En is given by

�EBBR D
1

2
†m;! jVnm.r; !/j

2

	
En �Em

.En �Em/2 � !2



; (29)

for Vnm.r; !/ being the transition matrix of V .r; !/ between the states j‰ni and
j‰mi.

Carrying out multipolar expansion of V .r; !/ in terms of general moments
Q�
LM.
Ek � Er/, it can give

. Ę � E�/ei
Ek�ErD�†LM

.KL/.iLC1C�/

.2LC1/ŠŠ
Œ EY �LM .

Ok/ � E�/�

r
4�.2LC 1/.LC 1/

L
Q�
LM .
Ek � Er/

D �†LM;l
.KL/.iLC1C�/

.2LC 1/ŠŠ
Y �LM .kl /

r
4�.2LC 1/.LC 1/

L
Q�
LM .rl /;

(30)

where kl is the component of Ek projecting toward the l th unit vector of E�, and � D 1
and � D 0 correspond to the electric and magnetic multipoles, respectively. Since
emission from BBR is isotropic, each component of the electric and magnetic fields
is related to the spectral energy density as
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u.!; T / D
3

8�
E2
l .!/ D

3

8�
B2
l .!/ D

1

�2c3
!3

e!=kBT � 1
: (31)

Hence, averaging over polarizations and propagation directions in Eq. (29), we get
[17, 18]

�E
�;L
BBR D �

˛kBT

2jn C 1
†m¤n
L;M

ˇ̌
h‰nkQ

�
LMk‰mi

ˇ̌2
� FL

	
En �Em

kBT



; (32)

where the universal function is defined as FL.y/ D
1
�

LC1
L.2LC1/ŠŠ.2L�1/ŠŠ

�R1
0
dx
�

1
yCx
C 1

y�x

�
x2LC1

ex�1
that is applicable to all atoms with argument y

depending on the range of the atomic parameters. With jyj � 1, corresponding to
the transition energy much larger than the kBT values as of our interest and for the
dominant term L D 1, we have

�E�
BBR D �

1

2c
Q�
L

n

	
8�3˛3e .kBT /

4

45.2jn C 1/



˛
Q�
L

n .0/; (33)

where ˛e is the fine-structure constant and ˛
Q�
L

n .0/ is the scalar polarizability defined
as

˛
Q�
L

n .0/ D C
Q�
L

n †m¤n

ˇ̌
h‰nkQ

�
LMk‰mi

ˇ̌2
En �Em

; (34)

with the appropriate angular coefficient C
Q�
L

n D 2

˛
2.��1/
e .2LC1/.2jnC1/

due to the

radiative moment Q�
L. Usually large contribution comes from E1, followed by M1,

then E2, and so on. On average over polarization, the BBR shifts from the first three
important channels are given by

�EE1
BBR D �

1

2

4�3˛3e
15

.kBT /
4˛E1n .0/ D �

1

2
hE2

E1.!/i˛
E1
n .0/; (35)

�EM1
BBR D �

1

2

4�3˛5e
15

.kBT /
4˛M1
n .0/ D �

1

2
˛2e hB

2
M1.!/i˛

M1
n .0/ (36)

and

�EE2
BBR D �

1

2

8.˛�/5

189
.kBT /

6˛E2n .0/ D �
1

2
hE2

E2.!/i˛
E2
n .0/; (37)

where ˛M1
n .0/ and ˛E2n .0/ are the scalar M1 and E2 polarizabilities, respec-

tively, and hE2
E1.!/i, B

2
M1, and hE2

E2.!/i are the averaged E1-induced electric,
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M1- induced magnetic, and E2-induced electric fields, respectively. Conventionally,
the above shifts are expressed as functions of temperature scaled with respect to the
room temperature (T D 300 ıK) as

�EE1
BBR.300

ıK/ D �
1

2

	
831:9

V

m


2 �
T .K/

300

�4
˛E1n .0/; (38)

�EM1
BBR.300

ıK/ D �
1

2
.2:77 � 10�6Tesla/2

�
T .K/

300

�4
˛M1
n .0/; (39)

and

�EE2
BBR.300

ıK/ D �
1

2

	
7:2 � 10�3

V

m


2 �
T .K/

300

�6
˛E2n .0/: (40)

Even for estimating the E1 BBR shift, the above formula does not take into account
frequency distribution properly. Including the appropriate dynamic correction, the
final expression for the BBR shift due to the E1 component yields

�EE1
BBR.300

ıK/ D �
1

2

	
831:9

V

m


2 �
T .K/

300

�4
˛E1n .0/Œ1C �.˛E1n ; T /�; (41)

where

�.˛E1n ;T /D


80
63

�
�2

˛E1n .0/T
†m¤n

jhjnkDkjmij
2T 3

.2jn C 1/.En �Em/3

	
1C

21�2T 2

5.En �Em/2
C

336�4T 4

11.En �Em/4



.

Relativistic Many-Body Methods

As mentioned at several occasions, it is possible to estimate many important sys-
tematics for the atomic clocks and propose new clock candidates by the theoretical
studies. This warrants for development of suitable many-body methods that are
capable of considering the electron correlation effects more effectively. It is also evi-
dent from most of the undertaken examples that consideration of a suitable atomic
transition with one of the atomic states having almost-degenerate fine-structure
partner has many merits, e.g., achieving high stability and accuracy, for the optical
frequency standards. This urges for using relativistic mechanics in the theoretical
studies. Moreover, almost all the candidates considered for frequency standards are
relatively heavy atomic systems for which accurate calculations of their properties
necessitates employing valid relativistic many-body methods. Consideration of a
fully relativistic theory in its covariant form is impractical in the many-electron
bound systems. Working with Dirac Hamiltonian for electrons along with nuclear
potential and Coulomb repulsion between the electrons can suffice the present goal
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to accomplish calculations within the required accuracy. Nevertheless, corrections
from higher relativistic effects at the leading orders, e.g., Breit interaction due
to exchange of transverse photons and quantum electrodynamics (QED), can be
incorporated to augment the calculated results.

General Approach

The Dirac–Coulomb (DC) Hamiltonian for an atomic system is given by

HDC D †i Œc Eai � Epi C ˇi c
2 C Vn.ri /�C† i;j

i�j

1

rij
(42)

(in atomic unit (au)), where Ę and ˇ are the Dirac matrices and Vn.r/ is the nuclear
potential. This is a good approximation to describe the positive energy states of the
Dirac theory. Weak coupling with the positron wave functions are usually neglected
and also the rest mass energy of the electrons can be subtracted for the convenience.
Thus, the working DC Hamiltonian reads out

HDC D †i Œc Eai � Epi C .ˇi � 1/ c
2 C Vn.ri /�C† i;j

i�j

1

rij
: (43)

Again, it may not be appropriate to assume atomic nucleus as a point- like object for
accurate calculations. On the other hand, there are not proper valid models available
to describe the nuclear structure exactly. Among many, Fermi charge distribution
model is more popular in which density of an electron within the atomic nucleus is
described by

�n.r/ D
�0

1C e.r�b/=a
; (44)

where �0 is the normalization factor, b is known as half-charge radius and
a D 2:3=.4 ln 3/ is related to the skin thickness of the nucleus. Considering this
distribution, the nuclear potential can be obtained as

Vn.r/ D
Z

@r

8<
:

1
b

�
3
2
C a2�2

2b2
� r2

2b2
C 3a2

b2
P2 C

6a3

b2r
.S3 � P

C
3 /
�

for a 	 b

1
r

�
1C a62�2

b2
� 3a2r

b3
P�2 C

6a3

63b
.S3 � P

�
3 /
�

for r 	 b;
(45)

for the factors @ D 1 C a2�2

b2
C 6a3

b3
S3 with Sk D †1mD1

.�1/m�1

mk
e�b=a and

P˙k D †1mD1
.�1/m�1

mk
e˙m.r�b/=a. The b-parameter can be determined from b Dq

5
3
r2rms �

7
3
a2�2 with the root mean square radius rrms, which can be estimated

using the empirical formula rrms D 0:836A
1=3 C 0:57 in fermi (fm) or can be taken

from a standard nuclear data table.
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We now turn to outline procedures to estimate corrections due to higher-order
relativistic effects. Since the nuclear potential is the dominating contributing term
in the above DC Hamiltonian, the QED effects are estimated by treating the nuclear
potential as the strong external electromagnetic field seen by the bound electrons
in an atomic system. Thus, an effective potential is defined accounting lower-order
vacuum polarization (VP) and self-energy (SE) QED effects [19] in place of Vn.r/
in the atomic Hamiltonian and reads

Veff.r/ D Œ1C VU .r/C VWC.r/C Vmg.r/C Vel.r/�Vn.r/; (46)

where VU .r/ D
2˛e
3�

R1
1

dt
p
t2�1
t2


1C 1

2t2

�
e�2ctr and VWC.r/ D �

4˛e
9�

0:092 Z2˛2e
1C.1:62cr/4

are the Uehling and Wichmann–Kroll corrections, respectively, representing the
lower-order VP effect and the SE effect is taken through the magnetic form-factor

Vmg.r/ D
˛e
4�c
i� ��

h
Vn.r/

�R1
1

dt 1

t
p
t2�1

e�2ctr � 1
�i

and the electric form-factor

Vel.r/ D �
˛e
�

R1
1

dt 1

t
p
t2�1

h
1 � 1

2t2

� h
ln.t2 � 1/C ln

�
4c2

�2

�i
� 3

2
C 1

t2

i
e�2ctr for

the cutoff parameter chosen cautiously as � � .Z˛2e /c.
The potential due to the Breit interaction between the electrons located at the i th

and j th positions is given by

VB.rij / D �
1

2rij
f˛i � ˛j C .˛i � Orij /.˛j � Orij /g: (47)

Owing to the two-body nature of the Coulomb and Breit interactions, solving
eigenvalue equation for the atomic Hamiltonian Hat (with only Coulomb or both
Coulomb and Breit interactions), given by

Hat

ˇ̌
‰.0/
n i D En

ˇ̌
‰.0/
n i; (48)

with more than three electrons in an atomic system is infeasible. Instead, it is a usual
practice to get the approximated solution to the above equation and then append
corrections from the residual contributions gradually. This approximated solution is
treated as a model space in the working Hilbert or Fock space accounting majority
of the contributions from the Coulomb (and Breit) interaction(s) in the calculation of
the atomic wave functions. One of the most conducive and appropriate approaches
to determine the approximated wave functions is to use the Hartree–Fock (Dirac–
Fock (DF) in the relativistic framework) Hamiltonian (H0). The residual interaction
(Vres D Hat�H0) can further improve the results by annexing contributions from the
rest of the Hilbert or Fock space, referred to as orthogonal space, through a decent
many-body method. Below we demonstrate few methods and try to inculcate one-
to-one connections among these methods. For this purpose, we try to build up each
many-body approach by commencing from the same DF wave function. To proceed
further, we adopt the procedure of the generalized Bloch equation to explain the
many-body methods systematically in a comprehensible and logical manner. In the
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many-body perturbation theory (MBPT), the exact wave function of an atomic state
can be expressed as

j‰.0/
n i D 	

.0/
n jˆni; (49)

where jˆni is the model space (here DF wave function) and 	.0/
n is the wave

operator which is responsible for incorporating contributions from the orthogonal
space due to Vres. Orthogonal space contributions can either be expressed in terms
of the order of perturbation or in the form of excited configurations with respect to
jˆni. For the simple reason, we can go on with the perturbation series expansion
approach first and then we can manifest the same in terms of the excited state
configurations.

Two projection operators P and Q satisfying jˆni D P j‰
.0/
n i and Q D I � P

for the identity operator I are defined for easy description, which follows P D
jˆnihˆnj. In the perturbative approach, it yields

	.0/
n D 	

.0;0/
n C	.1;0/

n C	.2;0/
n C � � � D †k	

.k;0/
n : (50)

Notice that we use two superscripts, for the later use, among which the first one
represents the number of Vres present in the calculations, while the second one with
zero means there is no external source of perturbation taken into account. The
amplitudes of the above wave operators are solved one by one in the sequence
of order of perturbations involved with the wave operators using the following
recursive relation:

�
	.k;0/
n ;H0

�
P D QVres	

.k�1;0/
n P �†k�1mD1	

.k�m;0/
n PVres	

.m�1;0/
n P: (51)

The energy of the state .En/ can be evaluated using an effective HamiltonianH eff
n D

PH	
.0/
n P at different orders of perturbation with the expansion form of 	.0/

n . That
is, En D hˆnjH eff

n jˆni.
There are, specifically, two approaches adopted to evaluate dipole polarizability

of an atomic state. In a conventional approach, the energy of the j‰ni state of an
atom placed in an isotropic electric field of strength " changes as [20, 21]

En."/ D En.0/ �
˛E1n
2
"2 � � � � ; (52)

whereEn.0/ andEn."/ are the total energies of the state in the absence and presence
of the electric field, respectively. This approach requires mixed parity orbitals to
calculate the atomic energy in the presence of the electric field, which are practically
cumbersome using the spherical coordinate systems but are manifested using the
molecular methods (in the Cartesian coordinate system).

Alternatively, the modified wave function .j‰ni/ of the atomic system in the
presence of an external weak perturbative source (Vprt) can be approximated to first-
order approximation as
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j‰ni D
ˇ̌
‰.0/
n i C �

ˇ̌
‰.1/
n i; (53)

where � is an arbitrary parameter (corresponds to " in the evaluation of ˛E1n )
representing the strength of the perturbation source. In this way, ˛E1n can be obtained
by expressing [22–26]

˛E1n D
h‰njDj‰ni

‰nj‰n
'
h‰

.0/
n jDj‰

.1/
n i

‰
.0/
n j‰

.0/
n

; (54)

by considering Vprt 
 "DOz for small values of ".

It is commanding to obtain solution for j‰.1/
n i by solving an inhomogeneous

equation of the type

ˇ̌
.H eff

n �En/
ˇ̌
‰.1/
n i D .E

1
n � Vprt/j‰

.0/
n i; (55)

analogous to the approach proposed and implemented by Dalgarno [27]. In Bloch
equation methodology, we can express j‰.1/

n i D 	
.1/
n jˆni such as 	.1/

n D †k	
.k;1/
n

encompassing kth order of Vres and one order external perturbation Vprt. The

amplitudes of 	.1/
n are obtained from the following equation [26]:

�
	.k;1/
n ;H0

�
P D QŒVprt	

.k;0/
n C Vres	

.k�1;1/
n �P�

†k�1mD1


	.k�m;0/
n PVprt	

.m;0/
n P �	.k�m;1/

n PVres	
.m;0/
n

�
P:

(56)

For the choice of reference state jˆni as the DF wave function and external
perturbation operator Vprt being a one-body operator, the zeroth-order expressions

for the wave operators can yield 	.0;0/
n D 1, 	.1;0/

n D 0, and 	.0;1/
n D †p;a

hpjVprtjai

�p��a

for the occupied a and unoccupied p-orbitals with energies �a and �p , respectively.
In the double perturbative sources, up to k D 0; 1; 2 � � � approximations in the
wave operators are referred to MBPT(1) or DF, MBPT(2), MBPT(3), etc. methods,
respectively.

Having said and done with the basic formalism of determining atomic wave
functions in the many-body perturbative analysis, extending them to build up
these wave functions containing all orders in Vres for both the cases, the absence
and presence of external source, would be now much straightforward. This can
be achieved by generalizing the above perturbative approaches after carefully
formulating the wave operator 	n in a slight different form or assembling the
coefficients from each order of perturbation expansion to compose various degrees
of excitations. We discuss few important all-order many-body methods that are
widely used in the studies of atomic clock pertinent physics; specifically, two
all- order perturbative approaches known as configuration interaction (CI) and
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coupled-cluster (CC) methods in the absence of external field and their extensions
to deal with weak external interaction up to the first-order perturbation.

Configuration Interaction (CI) Method
As mentioned above, the exact wave function j‰.0/

n i can be expressed in terms of
excited configurations with respect to jˆni. Mathematically, this corresponds to

j‰.0/
n i D jˆni C†

NI
I C

I
n jˆ

I
ni C†

NII
II C

II
n jˆ

II
n i C†

NIII
III C

III
n jˆ

III
n i C � � �


 QCn

ˇ̌̌
 .0/
n i C†

NI
I
QCI

ˇ̌̌
 
.0/
I i C†

NII
II
QCII

ˇ̌̌
 
.0/
II i C†

NIII
III
QCIII

ˇ̌̌
 
.0/
III i C � � �

(57)

where jˆKn is are the determinants corresponding to DF wave functions for NK
number of possible kth excited states constructed from jˆni and C �n s are their
corresponding mixing coefficients. Obviously it is only possible to generateN -tuple
excitations for full expansion in a system having N -number of electrons. The above
expansion is a direct consequence of the fact that each order in the correction from
the perturbed wave functions can be expressed as linear combination of excited
states. This also directly follows; the excited state determinants are nothing but the
leading part of the excited atomic states. As a result, the calculated atomic state
function (ASF) j‰.0/

n i can be expressed as a linear combination of configuration
state functions (CSFs) representing the trial atomic state functions (denoted by the
notation j .0/

n i). This approach of constructing atomic wave functions is known as
CI method. In a special condition the above excited Slater determinants (jˆ�ni) can
also be chosen as CSFs in a CI method. By diagonalizing the atomic Hamiltonian
with respect to the CSFs, one can obtain the values of the C �k or QC �k coefficients.
Although conceptually CI method looks simpler, computationally it is much difficult
to account the higher-level excitations and often it has been truncated to only single
and double excitations (referred to as CISD method) in the practical applications.
It can be shown by considering only the double configurations that the corrections
from Vres to the wave function calculations in a truncated CI method are proportional
to 1=

p
N [20, 28]. This simply means for N ! 1, the correlation contributions

to the calculation diminish (famously known as size-consistency problem). Hence,
truncated CI method may not be judicious to employ for accurate calculations of
atomic properties in the heavy systems (large N ) conceptually and results from
the truncated CI can be questionable for their validation. Nevertheless, results
close to the experimental values can be achieved by taking only important CSFs
from the energy-level configurations in a truncated CI method. Indeed upon the
consideration of more Slater determinants in the construction of j .0/

n i, it is possible
to improve the quality of truncated CI results, and this approach is recognized as
multi-configurational Dirac–Fock (MCDF) method.

In a similar approach, the first-order correction to the wave function due to the
external field and matrix elements of an operator among different states can be
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obtained by mixing CSFs with appropriate parities and angular momentum as per
the selection rules.

Coupled-Cluster (CC) Method
In the CC method, linear combination of the Slater determinants are carried out in a
distinct manner so that atomic wave functions are contrived to form an exponential
function. Starting with the same basic principle as in the CI method, we can rewrite

j‰.0/
n i D jˆni C†

NI
I C

I
n jˆ

I
ni C†

NII
II C

II
n jˆ

II
n i C†

NIII
III C

III
n jˆ

III
n i C � � �


 jˆni C†
NI
I T

.0/
I jˆni C†

NII
II T

.0/
II jˆni C†

NIII
III T

.0/
III jˆni C � � �

D jˆni C T
.0/
1 jˆni C T

.0/
2 jˆni C T

.0/
3 jˆni C � � �

D eT
.0/
1 CT

.0/
2 CT

.0/
3 C���CT

.0/
N jˆni D e

T .0/ jˆni; (58)

where T .0/k D †
NK
K T

.0/
K for k D 1; 2; 3 � � � represents the CC excitation operator

with subscript k implying the kth level excitation carried out from jˆni. The
advantage of this method is of manyfold: (i) it is both conceptually and compu-
tationally simpler, (ii) truncated CC methods also satisfy both size-extensivity and
size-consistency properties, (iii) owing to exponential form of the expression for the
wave function, contributions from higher-level excitations to a certain extent also do
appear through the nonlinear terms in a truncated CC method, etc.

Although we mentioned above about computational simplicity in the use of CC
method, in actual practice it may not turn out to be factual. Because of the presence
of the nonlinear terms and requirement of a sufficiently large Hilbert or Fock space
to carry out accurate calculations of the atomic wave functions, intermediate com-
putational strategy may be required conforming available computational resources
and depending upon the size of the atomic system of our interest [20, 22, 26]. This
can be judiciously accomplished by devising a proper plan before implementing
the method. For example, a well-suited symmetry group and Kramers relations
[29] can be adopted to reduce the computational cost when molecular orbitals are
used. Since atomic orbitals are meticulously described in the spherical coordinate
system, the use of reduced matrix elements instead of actual matrix elements would
be more pertinent and can prevail extra computations for the azimuthal quantum
numbers. This can be the most well-versed approach for states having closed-sell
configurations, but states of open-shell configurations cannot be dealt with this way.
However, atomic states having one or two electrons in the valence orbitals and
one or two electron less from closed-shell configurations can be computed using
the reduced matrix elements by appending valence orbitals or removing electrons
from the appropriate closed-shell configurations in the Fock-space approach. We
discuss here a few such approaches but restricting to only one electron attachment
or removal from the closed-shell configurations.

In the Fock-space CC formalism, wave functions of one valence (� D n) atomic
states are expressed as
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j‰ni D e
T
.0/
0
˚
1C S.0/�

�
jˆ�i; (59)

where S� is a CC operator exciting the valence electron � along with the closed-
core jˆ�i. In a Fock-space approach, jˆ�i is constructed from the closed-core
jˆ0i by appending the respective valence orbital � as jˆ�i D aC� jˆ0i. Likewise,
wave functions for the states having less than one electron from the closed-shell
configurations can be expressed as

j‰ai D e
T
.0/
0
˚
1CR.0/a

�
jˆai; (60)

where Ra is the CC operator responsible for annihilating a core electron (a D n)
from the closed-core jˆni and exciting an electron from a reference state jˆai
constructed as jˆai D aajˆ0i. In both of the above approaches, CC T

.0/
0 operator

is responsible for accounting electron excitations from the closed-core jˆ0i. In
these expressions, superscript .0/ is used to highlight that wave functions are still
free from the external fields. It is called as CCSD method when only the single
and double excitations are taken in, while it is known as CCSDT, CCSDTQ,
etc. methods with the inclusion of triples, quadrupoles, and so on excitations,
respectively [20]. Since computational complexity increases with the addition of
higher-level excitations, CCSD approximation is the prevalent method in the atomic
and molecular spectroscopy studies. Contributions from important triples can be
included perturbatively through the CCSD method in the CCSD[T], CCSD(T),
CCSDpT, and CCSDvT framework [20,25,30] in the same amount of computational
requirements to uplift the results further. The matrix element of an operator O
between the j‰f i and j‰i i states (for the expectation value j‰f i D j‰i i) can
be determined by

hOif i D
h‰f jOj‰iq˝
‰f j‰f

˛
h‰i j‰i i

D
hˆf

ˇ̌
ˇn1C	Cf

o
�f1C	ig

ˇ̌
ˇˆir

hˆf

ˇ̌̌n
1C	Cf

o
NN f1C	ig

ˇ̌̌
ˆf ihˆi

ˇ̌˚
1C	Ci

�
NN f1C	ig

ˇ̌
ˆi i

;

(61)

where 	n is either Sn or Rn for the attachment or detachment of an electron case,

respectively, and NO D eT
.0/C
0 OeT

.0/
0 and NN D eT

.0/C
eT

.0/
are two non-truncated

series in the above expression. For the closed-shell atomic states (j‰i i D j‰f i D
j‰0i), it yields [20]

hOi D
h‰0jOj‰0ip
h‰0j‰0i

D hˆ0j NOjˆ0ic (62)
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where the subscript c in the expression represents to only the connected terms. In
many cases, only linear terms even in the CCSD method are considered (referred
here as LCCSD method) for carrying out the calculations. The above non-truncated
series can be computed at several steps [22–26], but it is advisable to use other CC
methods like normal CC method with biorthogonal condition, extended CC method,
etc. to fend off these non-truncated series [20].

Creating excited states from an atomic state of closed-shell configuration j‰0i in
a Fock-space approach is onerous, but an equation-of-motion CC (EOMCC) method
is apropos to determine Lth level excited states j‰L.J; �/i with total angular
momentum J and parity � from j‰0i. In this approach, it follows [20, 31]

j‰L.J; �/i D 	L.J; �/j‰0i D 	L.J; �/e
T
.0/
0 jˆ0i D e

T
.0/
0 	L.J; �/jˆ0i:

(63)

By construction both the T .0/ and 	L operators are similar in nature; hence, they
can commute each other, but they commission operationally different roles.

In the presence of an external source, the first-order corrected wave function in
the CC method can be expressed as [22–26]

j‰.1/
n i D e

T .0/ .T .1//jˆni (64)

Similar to T .0/ the perturbed CC operator T .1/ excites electrons from jˆni, but
parity of T .0/ is always even as it originates from the Coulomb (or Breit) operator,
while the parity of T .1/ can depend on the characteristic of V prt.

Random-Phase Approximation (RPA)

Though random-phase approximation is a subclass of CC method, technically it is
derived from the DF method in a completely different approach. Its main advantage
is that it can embody the core-polarization effects to all orders at the same time
being cost effective. Its expression can be obtained from Eq. (56) by continuing k
to infinite order for 	.k;1/ while suppressing 	.k;0/ in a self-consistent procedure.
The derivation of the final expression is a repercussion of expanding the DF wave
function jˆni to first order due to Vprt and generalizing it to infinite order. Thence,
it only picks up the singly excited configurations from j‰ni in case of polarizability
calculations owing to one-body form of the interaction operator Vprt 
 D. In the

RPA approach, the first-order corrected wave operator 	.1/
n 
 	

.RPA/
n is explicitly

given by
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	.RPA/
n D †1kD1†pq;ab

(
ŒhpbjVresjaqi � hpbjVresjqai�	

.k�1;1/
b!q

�p � �a

C
	
.k�1;1/C

b!q ŒhpqjVresjabi � hpqjVresjbai�

�p � �a

9=
; ; (65)

where a! p implies singly excitation operation by the wave operator replacing an
orbital a by p in jˆni.

Demonstration of Few Theoretical Results

The main aim here is to testify the role of relativistic many-body methods for
accurate calculations of the quantities that can be useful in various possible ways
for the atomic clock studies, especially in the precise estimate of systematics.
Proclaiming through only few examples, accurate calculations of Ahf constants, gJ -
factors, static polarizabilities, and quadrupole moments of atomic states in a number
of clock candidates will be demonstrated at different levels of approximations in the
employed many-body methods.

Ahf-Constants and gJ-Factors

Almost all heavy singly charged ions from the alkaline earth metal group in the
periodic table (from Ca to Ra) are either considered or proposed for the atomic
clocks because these ions have typically an S-state as the ground state and two
excited metastable D-states. In Table 2, a summary of the calculated results for
Ahf=.
I =I / of the above states in the alkaline earth ions, YbC and HgC, considering
the DF, RCC, and MCDF methods is reported from [6,8,32–34]. It has been shown
explicitly in these references that accurate calculations of these quantities in the
ground andD3=2 states require both pair-correlation and core-polarization effects to
be considered to all orders, while the core-polarization effects are solely important
for the correct evaluation of Ahf values in the D5=2 states [33]. In fact, these values
for the metastable 6D3=2 state in RaC was first predicted by theory using the CC
method and later it was verified by the experiment [35].

Among others, 171YbCion is the most valuable ion for the atomic clock perspec-
tives as its three transitions, the largest among all the elements, are considered for
the frequency standards as it has three metastable states (5d -fine-structure levels
with lifetimes of the order of few seconds and the first excited 4f 13 2F7=2 state
with a lifetime about 6 years). The octopole transition 6s ! 4f7=2 of this ion
has the uttermost narrow linewidth which is advantageous for making prospective
primary frequency standard. Except the 4f7=2 state, the other three states (including
the ground state) of 171YbC have three valence orbitals, but they can be treated
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Table 2 Comparison between the calculated Ahf values divided by I=
I from the DF, CC, and
MCDF methods against their available experimental results in the alkaline earth ions, YbC and
HgC. The MCDF results are mostly taken from [32], while other results are compiled from the
electron attachment method of [6, 8, 33, 34] and from the references therein. Here n represents the
principal quantum number of the ground state of the corresponding ion

Method CaC SrC BaC RaC YbC HgC

ns state

DF 1;561:62 3;039:53 4;741:67 14;913:89 9;637:42 34;380:31

CC 2;142:01 4;123:06 6;517:57 19;689:37 13;166:69 41;592:88

MCDF

Experiment 2;142:02 4;120:04 6;429:83 18;772 12;807:14 40;035:74

.n� 1/d3=2 state

DF 88:74 128:30 205:38 293:53 286:67

CC 125:64 187:64 305:47 441:67 406:14

MCDF 125:56 308:83 405:55

Experiment 125:64 303:77 430:67 435:51

.n� 1/d5=2 state

DF 9:18 53:56 C82:58 107:60 109:47

CC 9:56 �8:83 �19:19 �138:36 �69:88

MCDF 12:86 C15:03 �12:75

Experiment 10:34 8:95 �19:25 �64:42

Table 3 Comparison between the calculated Ahf values divided by I=
I from the MCDF [32]
method and electron detachment theory with DF and CC methods [36] against their available
experimental values

YbC HgC

Œ4f 14�6s state 4f 136s2 2F7=2 state Œ5d10�6s state 5d96s2 2D5=2 state

DF 7;318:10 878:78 30;050:78 902:43

CC 12;871:96 1;016:87 41;608:82 1;080:29

MCDF 952:29

Experiment 12;807:14 916:60

as states with one valence configurations with the closed-core Œ4f 14�. Also, both
the ground and 4f7=2 states of YbC can be regarded as one electron less than
the closed-core Œ4f 14�6s2. Analogously both the states of the clock transition
Œ5d10�6s 2S1=2 ! 5d96s2 2D5=2 in HgC can be calculated in the similar approach.
Comparison between the Ahf values obtained using different many-body methods
and with the available experimental results can be found from Tables 2 and 3. It can
be seen from these tables that when Ahf of the ground state of YbC is calculated
using an electron detachment than attachment approach, the result becomes closer
with the experimental value. This is because in the former case the core orbitals see
effect due to the valence electron and in the latter approach they come only through
the CC operators [36]. It is indeed a quite remarkable observation, though not much
difference found in the calculations for HgC (Nandy DK, Private communication).
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Table 4 Preparatory calculations of gJ -factors and their ıgJ corrections (given within the
parentheses) in the states of interest for the clock transitions in CaC from DF and different CC
methods and comparison with the semiclassical and available experimental results

Method 4s 2S1=2 state 3d 2D3=2 state 3d 2D5=2 state

DF 1.99995307831 0.799922324299 1.19991738748

(C0.00284130797) (�0.000898052128) (C0.00112057581)

LCCSD 1.99347972816 0.796582101999 1.19726585871

(C0.00282940412) (�0.000898459207) (C0.00111787848)

CCSD 1.99783376440 0.802135504861 1.20140651205

(C0.00283303463) (�0.000893389416) (C0.00111891602)

CCSD(T) 1.99941009011 0.802210930664 1.20151553526

(C0.00283303788) (�0.000893393408) (C0.00111892083)

CCSDvT 1.99942182027 0.802214948013 1.20151548994

(C0.00283304004) (�0.000893394022) (C0.00111893179)

� Breit �0.00000546639 C0.00004031931 C0.00000746347

(�0.00000000443) (�0.00000000687) (C0.00000000212)

� QED �0.00000006897 C0.00000000808 C0.00000000002

(�0.00000000014) (C0.00000000004) (C0.00000000001)

Final 2.00224932 0.801361875 1.20264189

Semiclassical 2.0 0.8 1.2

Experiment [37] 2.00225664(9)

Lindroth and Ynnerman had critically evaluated �gJ values of the ground states
of Li, BeC, and BaC to quite a high accuracy using the CC method in comparison
with the experimental values [16]. In Table 4, preliminary calculations of gJ and
ıgJ values have been demonstrated of the ground and metastable states of CaC

using the CC method at different levels of approximations and considering the
higher-order relativistic corrections, while the semiclassical formula gives these
values as 2, 0.8, and 1.2 for the respective states. In the above table, the ground
state value is also compared with its experimental result [37] up to the 4th decimal
places. It, thus, clearly advocates in favor of the potential of the CC method to
produce results accurately.

Static Polarizabilities (In Au)

Two elegant methods have already been described to evaluate ˛E1n values in the
atomic systems. To demonstrate the first kind, these values for the 3s2 1S0 and
3s3p 3P0 states in AlC along with excitation energy between these two states are
given in Table 5 by taking two arbitrary values of the electric field as " D 0:001 au
and " D 0:002 au in an EOMCC method with various levels of approximations [21].
These values are also compared with another latest calculation using the CI+MBPT
method in a sum-over-states approach [38].
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Table 5 An example of amelioration of ˛E1n values for the states of clock transition in AlC

by estimating second- order energy difference with arbitrary electric fields in the finite gradient
method using an EOMCC approach [21]. The final results are also compared with a sum-over-
states approach in the CI+MBPT method framework [38]

Method Excitation energy 3s2 1S0 3s3p3P0 Differential

CCSD 37;186˙ 52 24:251˙ 0:044 24:656˙ 0:088 0:406˙ 0:042

CTriples 146˙ 33 �0:126˙ 0:011 �0:061˙ 0:015 0:065˙ 0:026

CQuadrupoles 2˙ 4 �0:002˙ 0:005 �0:001˙ 0:002 0:003˙ 0:007

CBreit �6˙ 6 0:015˙ 0:0015 0:018˙ 0:018 0:003˙ 0:003

Total 37;326˙ 95 24:137˙ 0:075 24:614˙ 0:123 0:477˙ 0:078

CI+MBPT 24.048 24.543 0.495

Table 6 Ground state ˛E1n values of few alkaline earth atoms, Yb and Hg, from different many-
body methods

Method Ca Sr Ba Yb Hg AlC InC

DF 122:90 156:83 218:88 122:21 40:95 19:514 25:734

MBPT(2) 151:70 188:98 34:98

MBPT(3) 132:80 163:13 22:98 21:752 18:374

RPA 44:98 26:289 29:570

LCCSD 33:91 26:118 25:360

CCSD 157:03 186:98 268:19 144:59 34:98 24:299 24:246

CCSD(T) 33:95

CCSDpT 34:07 24:26 24:11

C Breit 156:83 186:80 34:16

C QED �0.0 186:78 34:27

CI+MBPT [38] 20:048 24:01

Experiment 169(17) 186(15) 268(22) 142(36) 33.91(34)

There have also been ˛E1n values evaluated for the ground states of alkaline earth
atoms, AlC, InC, Yb, and Hg, and of the ground and excited states involved in the
clock transitions of alkaline earth ions by calculating the first-order perturbed wave
functions due to the E1 operator using the DF and CC methods. In Table 6, results
for the ground states of the above systems are listed from these calculations and
experiments [23, 26, 30, 39]. Similarly, results for the ions are given and compared
with the experimental values [22–25] in Table 7. Polarizabilities due to the E1, M1,
and E2 operators in these ions and only due to the E1 operator in few alkali atoms
are also determined precisely using the sum-over-states approaches by dividing
electron correlation effects into three classes [8, 18, 40–42] as contributions: due
to the valence correlation, due to correlations among the occupied electrons, and
due to the core-valence correlation which are denoted by ˛O;�n , ˛O;cn , and ˛O;c�n

for the corresponding operator O , respectively [18]. These values, with individual
contributions, are given in Table 8.
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Table 7 Evaluation of results in the clock transitions of alkaline earth ions using the DF and RCC
methods and comparison with the available measured values taken from [22–25]

CaC SrC BaC RaC

Method 4s1=2 3d3=2 3d5=2 5s1=2 4d3=2 4d5=2 6s1=2 5d3=2 5d5=2 7s1=2 6d3=2 6d5=2

DF 42.76 40:66 39:71 56.72 64:83 60:82 81.99 40:03 38:96 73:18 81:36 63:90

CCSD(T) 73.0 28:5 29:5 88.29 61:43 62:87 124.26 48:81 50:67 104:54 83:71 82:38

Experiment 70.89(15) 93.3(9) 123.88(5)

75.3(4)

72.5(19)

Using the above static polarizabilities, the BBR shift due to the E1 operator for
the clock transition 3s2 1S0 ! 3s3p 3P0 in AlC yields �v D �0:0041Hz, while
they are about 0.37, 0.22, 0.64, and 0.19 in Hz for the ns ! .n � 1/d5=2 clock
transitions in the CaC, SrC, BaC, and RaC ions, respectively, with n as the principal
quantum number of the ground states of the respective ion.

In a similar approach to above sum-over-states approach, dynamic ˛E1n polariz-
abilities for both the ground and first two excited states are evaluated using both
the linearly and circularly polarized lights in the alkali atoms [41, 42]. To illustrate
magic wavelengths obtained from these calculations, the dynamic polarizabilities of
the 5s, 5p1=2, and 5p3=2 states in the Rb atom are plotted against the wavelengths
of applied lights with both the linearly and left-handed circularly polarizations in
Fig. 1a–d. Magic wavelengths for the ns 2S1=2 ! np 2P1=2;3=2 transitions in the
Rb atom due to these lights are indicted by pointing arrows at the crossings of the
polarizability values of the above states.

Quadrupole Moments

Itano has reported quadrupole moments of many of the abovementioned ions and for
YbC by performing MCDF calculations [32]. These values are compared with the
CC and experimental results [6, 8, 36, 43] in Table 10. As was in the Ahf results,
the MCDF results for the ‚ values in the nd states of the Alkaline earth ions
are also off than their respective experimental values, whereas CC methods were
able to produce them more reliably. A detailed analysis to the passage of electron
correlation effects and role of higher relativistic corrections for precise estimate of
‚ values in the CaC metastable states is also demonstrated in Table 9. It can be
noticed that correlation effects improve the results from the DF values significantly
and occurrence of strong cancelations is found among the higher-order correlation
effects. Though it appears that relativistic corrections are small in the determination
of ‚ values, their contributions, especially from the Breit interaction, are useful
in order to reduce the uncertainty in the calculations. As can also be seen, some
of the calculations are as par with the available measurements, and in some cases
they are even better than their experimental values. For many states, experimental
results are not known but the calculated values can be reliably trusted because the
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Fig. 1 Dynamic polarizabilities of the 5s, 5p1=2, and 5p3=2 states in Rb atom corresponding to
the linearly and left-handed circularly polarized lights. Magic wavelengths for (a) the 5s! 5p1=2
transition with the linearly polarized light, (b) the 5s! 5p3=2 transition with the linearly polarized
light, (c) the 5s ! 5p1=2 transition with the circularly polarized light, and (d) the 5s ! 5p3=2
transition with the circularly polarized light, shown pointing by arrows at the crossing points
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Fig. 1 (continued)
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Table 9 Theoretical and experimental ‚ values of states involved in the clock transitions of
alkaline earth and Yb ions. A detailed analysis for the CaC results given at different levels of
approximations in the CC method and contributions from higher-order relativistic corrections is
tabulated explicitly

CaC SrC BaC RaC YbC

Method 3d3=2 3d5=2 4d3=2 4d5=2 5d3=2 5d5=2 6d3=2 6d5=2 5d3=2 5d5=2 4f7=2

DF 1:712 2:451 2:469 3:496 2:72 3:99 3:58 5:29 2:440 3:613 �0:259

MBPT(2) 1:288 1:848

LCCSD 1:234 1:770848

CCSD 1:309 1:877 2:068 3:116 �0:216

CCSD(T) 1:301 1:867 2:12 2:94 2:32 3:42 2:90 4:45

CCSDvT 1:291 1:846848

CTriples �0:005 �0:004848

CBreit �0:003 �0:002848

CQED 0:00002 0:00003848

MCDF [32, 44] 1:338 1:917 2:107 3:048 2:297 3:379 2:174 3:244 �0:22

Experiment 1.83(1) 2.6(3) 2.08(11) �0.041(5)

a b

Fig. 2 Comparison between the quadrupole shifts estimated using‚ values from the measurement
and calculations by the CC methods for (a) the Œ4f 146s� 2S1=2.F D 0/! Œ4f 136s2� 2S7=2.F D

3/ and (b) the Œ4f 146s� 2S1.F D 0/! Œ4f 145d � 2D3=2.F D 2/ clock transitions in YbC

employed methods have been proven to give rise this quantity in other systems very
accurately. In fact, it is interesting to note that calculations of ‚ in the 4f7=2 state
of YbC using the MCDF [44] and CC [36] methods report consistent values but its
corresponding experimental result is found to be quite small. This, essentially, calls
for further experimental and theoretical investigation to be sure about its correct
value and to scrutinize reasons for which such large discrepancies are resulting.
Nevertheless, both the experimental and theoretical results for the 5d3=2 state in
YbC agree with each other quite nicely and uncertainty in the theoretical value
is estimated to be smaller [36]. In Fig. 2, the estimated quadrupole shifts for the
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clock transitions in YbC using the calculated ‚ values and compared with their
corresponding experimental results are shown.

Clocks for Fundamental Physics

In the standard model (SM) of particle physics, there are several dimensionless
“fundamental constants” such as gauge couplings whose constancies are not really
predicted by the model itself, but they are accepted on some logical grounds without
having sufficient scientific proof. However, this fact needs to be verified and any
recognizable anomaly observed for all plausible circumstances with respect to
variation in space or time that should be adequately explained by a fundamental
theory. This persuades many to invent innovative notions of ideas to search for
such signatures. One of the important and popular concepts is to presume dynamic
behavior of some of the physical constants, which should be probed by any either
direct or indirect methods [45,46]. Since all the modern atomic clocks are capable of
measuring atomic transition frequencies to ultrahigh-precision level, any observed
discrepancies in that place of accuracy can be interrogated. It may be suggestive
not to take values of the constants directly from their single observational methods;
rather, they should be extracted from a series of theoretical and experimental studies
concurrently. Determination of a self-consistent set of values of the fundamental
constants giving best matching between theories and a defined set of experiments
can address how much constancy the physical constants are really immanent within
themselves. In fact, the test of variability of the physical constants does not require
knowledge of their actual values to sufficient high precision in anticipation. A
procedure for inferring any possible temporal variation of ˛e from the clock
frequency measurements has been elucidated here.

Let a physical quantity A be decomposed as A D k1F1 D k2F2 such as both
k1 and k2 are two dimensionless quantities, while F1 and F2 are two functions of
the physical constants among which F1 is a function of the base units only (say) to
some power. In this case the time variation of A (denoted by dA=dt ) can be given
by

d lnA

dt
D
d ln k1
dt

C
d lnF1
dt

D
d ln k2
dt

C
d lnF2
dt

; (66)

such that, let us say, time variation of either dk1=dt or dk2=dt can be measured
for which it is mandatory to have either dF1=dt D 0 or dF2=dt D 0. In this
condition by measuring either dk1=dt or dk2=dt , it is possible to infer dA=dt . This
is the basic underlying principle that can be adopted to probe d˛e=dt . The ancillary
attainment from the finding of d˛e=dt is that this information can be used for
extracting information on possible variation in quantum chromodynamics parameter
ƒQCD and electron (quark) mass me.q/ using the empirical relations [45, 46]
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ıƒQCD

ƒQCD
� 34

ı˛e

˛e
(67)

and

ıme.q/

me.q/

� 70
ı˛e

˛e
: (68)

Since mass of the proton (mp) is related with nuclear magnetic moment and is
almost approximated to mp � 3ƒQCD, so from d˛e=dt along with the above two
relations, variation in the ratio mp=me , strong to weak scale variation, can also be
determined. Any possible signature in observing variation in the above physical
quantities will be very useful to support physics describing by Grand Unified Theory
(GUT) and other sophisticated models of particle physics and may also imply
plausible violation of Einstein’s equivalence principle [45, 46].

The energy level in an atomic state of any multi-electron system is expressed as
[47]

En ' c
2.Z ˛e/

2

�
1

2n2
C
.Z˛e/

2

2n3

	
1

jknj
�
3

4n


�
; (69)

where kn D ˙

jn C

1
2

�
is the relativistic quantum number. Since the relativistic

effects in an energy level close to the nucleus is large due to the high angular velocity
of the electron and approximately given by

� D �
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�
1 �
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�!
(70)

where � is the effective principal quantum number and Za is the effective charge
experienced by the electron in that energy level after accounting the screening
effects due to the inner-core electrons. As the relativistic effects in the atomic energy
levels scale in the order of ˛2e , the transition frequencies among the atomic levels are
very sensitive to a small change in ˛e and get enhanced with large atomic numberZ
and for a small value of �. The advantage of considering atomic systems for probing
variability of the physical constants is owing to the reason as any change due to a
small variation in ˛e in the atomic transition frequencies can be probed using the
relativistic many-body methods by expressing a transition frequency (!) as

!.x/ � !0 C q x; (71)

where !0 is a referenced transition frequency with its corresponding fine-structure

constant ˛0 value, x D
�
˛e
˛0

�
� 1 is the Taylor coefficient of the first derivative of

!, and q D d!
dx

ˇ̌
xD0

is known as the sensitivity coefficient due to variation in the ˛e
value. For the numerical estimate of the q-factor, it can be evaluated at the level of
the first-order correction in ˛2e using the expression
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q �
!.Cx/ � !.�x/

2x
(72)

for an arbitrary small value of x. By combining ultrahigh- precision frequencies
measured in the optical frequency standards for a certain time interval with the
calculated q-factors, it is possible to get some information on variation in ˛e from a
given reference. In the heavy atomic systems, the sensitivity parameters can be quite
significant and can be of the order of one. Hence, it may be ideal to define another
quantity (L˛e ) in the logarithmic form, to address the same issue, as

L˛e D ˛e
@

@˛e
lnŒFrel.Z˛e/� (73)

where Frel.Z˛e/ is the relativistic scaling factor in an atomic energy level. For the
(optical) atomic transitions, it can be expressed as

L˛e D
2q

!ref
; (74)

for the reference frequency !ref.
All the microwave clocks and some of the optical clocks, by the way, involve

hyperfine transitions. The magnetic-dipole hyperfine structure constant Ahf of an
atomic state can be analytically expressed as

Ahf /

�
mee

4

¯2

�
Œ˛2eFrel.Z˛e/�

�

B

me

mp

�
; (75)

where for the S-wave electron Frel.Z˛e/ D
3p

1�.Z˛e/2.3�.2Z˛e/2/
and L˛e D

.Z˛e/
2 11�.Z˛e/

2

.1�.Z˛e/2/.3�.Z˛e/2/
. It can be shown that variation in ˛e is related to variation

in Frel.Z˛e/ as

ıFrel.Z˛e/

Frel.Z˛e/
D K

ı˛e

˛e
; (76)

for the factor K D .Z˛e/
2

.1�.Z˛e/2/.3�.2Z˛e/2/
. Using this formula one obtains K D 0:74

for Cs, K D 0:29 for Rb, K D 2:18 for HgC, etc.; however, after expressing

Ahf D

	
˛e

˛0



.Aref

hf C qx/ (77)

for the reference Aref
hf value, it is obtained as K D 0:83, K D 0:34, and K D 2:28

for Cs, Rb, and HgC, respectively [47].
The more straightforward relations that are convenient to use for inferring

information on d˛e=dt from the combination of a probed transition (denoted by
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Table 10 Preliminary results obtained by combining CC calculations with corresponding exper-
imental frequency measurements from three important atomic clocks (Nandy DK, Private
communication)

System Transition Krel
1
R

@R
@t

(in year�1)

YbC Œ4f 14�6s! 5d3=2 0:951 .0:5˙ 1:9/� 10�16

YbC Œ4f 14�6s! 4f 136s2 2F7=2 �4:692 .0:2˙ 4:1/� 10�16

HgC Œ5d10�6s! 5d96s2 2D5=2 �2:88 .3:7˙ 3:9/� 10�16

Fig. 3 Constraints on
temporal variations in ˛e and

n from the quadrupole (E2)
clock transitions from YbC

and HgC ions and octopole
(E3) clock transition of YbC

ion with reference to Cs clock
using the calculated
q-parameters by CC method
and available experimental
data

0

Yb+ (E2)

Hg+ (E2)

Yb+ (E3)

0

−10
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−1−2−3 1 2 3

(in
 1

0−1
6  
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−1

)
∂

In
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∂
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(in 10−16 yr−1)
∂ Inae

∂ t

index 1) and a reference transition (referred by index 2) in the consideration of
variety of transitions in an atomic system are given as [45, 46]
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@t

; (78)

@

@t
ln

�
f 1

atm

f 2
atm

�
�

@

@t
ln

	
@F 1

rel

@˛e
�
@F 2

rel

@˛e



@ ln˛e
@t

; (79)

and

@

@t
ln

�
f 1

hfs

f 2
atm

�
�

@

@t
ln

�

1I

1I
C .2C L1hfs � L

2
atm/ ln˛e

�
; (80)

where the abbreviations hfs and atm represent, particularly, the hyperfine and atomic
transitions, respectively. At least the following quantities

R D
fobs

fCs
and Krel D

1

Frel

@Frel

@˛e

for three are clock transitions listed in Table 10 from the calculations using CC
methods (Nandy DK, Private communication). Here Cs clock frequency standard is
taken as the reference to compare with the observed values. Using these quantities,
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possible variation in ˛e versus variation in nuclear magnetic moment 
n inferred
from the combinations of the above three clock transitions are demonstrated
pictorially in Fig. 3.

Summary

Many basic concepts on working principles, needs, and roles of theoretical studies
for atomic clocks are described for the general readers. It mainly highlights the
essential criterion, present status, and future prospective of atomic clocks and
mentions the candidates that are capable of replacing the present Cs primary
frequency standard. Optical clocks based on the neutral atoms and a single trapped
singly charged ions are discussed in great detail and their constraining factors to
achieve high accuracy are demonstrated by considering a few cases. Uncertainties
due to both the instrumental and external fields are also briefly given. In this context,
the role of relativistic many-body methods for accurate estimate of uncertainties
in some of the major systematics is discussed. Underlying differences between
various many-body methods that are usually employed to calculate these properties
are explained and few concrete examples are shown by giving results from these
methods. The importance of higher-order relativistic effects is shown by evaluating
their contributions explicitly in few cases. It is seen that in several cases, the
theoretical calculations are more precise than the experimental results and in
some situations both the experimental and theoretical results do not match. This,
obviously, calls for developing more sophisticated many-body methods to validate
these results more reliably. It is also emphasized how a priori theoretical studies
are acting as the guiding factors for selecting new clock candidates. Finally, the
need of studying atomic clocks, both theoretically and experimentally, for probing
fundamental sciences is illustrated.
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