

Bhuwan Joshi Science Lead and Co-Investigator (On behalf of HEL1OS team)

ASI Aditya L-1 workshop

Participating institutes

Space Astronomy Group ISRO Satellite Center

Udaipur Solar Observatory Physical Research Laboratory

ASI Aditya workshop, Jaipur

1

High Energy LI Orbiting X-ray Spectrometer (HELIOS)

□ Observations of hard X-ray (HXR) emission from the Sun in the energy range of 10 - 150 keV.

□ HEL1OS would provide integrated solar X-ray spectrum with high temporal and spectral resolutions.

□ HXRs are emitted from the Sun during solar flares.

 ✓ Provide direct information of electrons accelerated in flares HXR non-thermal emission typically > 10 keV

✓ Information about hot thermal plasma > 10 MK Thermal emission typically < 25 keV

HEL1OS payload mounting location on the spacecraft

Science objectives for HELIOS

Particle acceleration and explosive energy release: Hard X-ray bursts of energy > 20 keV are the most direct consequence of the basic flare energy release process.

Evolution of **cut-off energy** between thermal and non-thermal emissions as a function of flare evolution.

➤ Quasi-periodic pulsations in HXR during the impulsive phase of solar flares

□ **Pre-flare heating/ triggering of flares:** HXR observations of pre-flare and precursor emissions, pre-flare heating.

HXR Flare/CME associations: Understanding the association of CME parameters (e.g., initial acceleration) with properties of X-ray emission (onset, duration and spectral index).

Flare X-ray light curves and energy release in active region corona

SOL2012-08-18 M1.8 (Joshi et al. 2016, ApJ, 832, 130)

> A <u>solar flare</u> is a transient, explosive perturbations in the solar atmosphere. During a major flare energy in excess of 10^{32} erg is released within a few minutes.

06/03/2017

The standard flare scenario

See e.g., Joshi et al. 2012, ASSP series, Springer-Verlag (Chapter # 4)

Thermal Bremsstrahlung spectrum

$$F(\epsilon) \approx 8.1 \times 10^{-39} \int_{V} \frac{\exp\left(-\epsilon/k_{B}T\right)}{T^{1/2}} n^{2} dV \qquad (\text{keV s}^{-1} \text{ cm}^{-2} \text{ keV}^{-1})$$

$$\frac{\text{Thick-target Bremsstrahlung}}{I(\epsilon_{x}) = A \epsilon_{x}^{-\gamma} \qquad (\text{photons cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1}) ,$$

$$f_{e}(\varepsilon) = 2.68 \times 10^{33} b(\gamma) A \varepsilon^{-(\gamma+1)} \qquad (\text{electrons keV}^{-1} \text{ s}^{-1})$$

$$\frac{\text{Thin-target Bremsstrahlung}}{I(\epsilon_{x}) = 1.05 \times 10^{42} C(\gamma) A \frac{1}{n_{0}} \varepsilon^{-(\gamma-1/2)} \qquad (\text{electrons keV}^{-1})$$

06/03/2017

ASI Aditya workshop, Jaipur

"Loop-top" and "foot-point" HXR emission

SOL2004-08-18 (X1.8) (Joshi et al. 2013, ApJ; Cho et al. 2009, ApJ)

Non-thermal hard X-ray emission

• The bremsstrahlung free-free photon flux at the Earth $I(\epsilon)$ is related to the source electron distribution F(E) as:

- Assume non-thermal emission from a power-law of electrons accelerated out of Maxwellian, spectral index δ above $E_c \qquad F(E) \propto E^{-\delta}$
- Total Number of accelerated electrons s⁻¹ above E_c [keV] $N(E > E_C) = \int_{\Gamma}^{\infty} F(E) dE$
- Power in these electrons in erg s⁻¹ $P(E > E_{\rm C}) = \int_{E_{\rm C}}^{\infty} F(E)EdE = 1.6 \times 10^{-9} \frac{\delta 1}{\delta 2} NE_{\rm C}$
- Non-thermal Energy in erg $U_{\rm N}(E>E_{\rm C})=P(E>E_{\rm C})\Delta t$

Estimations of non-thermal energy from RHESSI data

SOL2004-07-14 M6.2 (Kushwaha, Joshi et al. 2015, ApJ, 807, 101)

Energy partition between thermal and non-thermal components.

HXR solar spectra: Thin target and thick target

- We normally investigate the emission within 2 limits
 - 1. Thin target: energy losses not significant dU/dt≈0
 - Tenuous coronal emission => not observed
 - 2. Thick target: electrons stopped completely dU/dt=Coulomb rate
 - From dense chromosphere => bright footpoints emission
- If take simpler non-relativistic form of Q(ϵ ,E) find analytically $I(\epsilon) \propto \epsilon^{-\gamma}$
 - Kramers or Non-relativistic Bethe-Heitler (see Brown 1971, Holman 2009)

Precursor and Pre-flare phase studies with HELIOS

SOL2012-08-18 M1.8 (Joshi et al. 2016, ApJ, 832, 130)

Phase II

Phase

5-10 KeV

10-15 KeV

15-25 KeV

50-100 Ke

Phase

Phase IV

10⁻³

10-4

□ In X-rays, week emission is often observed prior to a major flare.

□ Pre-flare activity is especially important when it is associated with

 10^{6}

10[°]

(a)

Association between CMEs and solar flares (Harrison 1995).

✤ Relation between CME parameters with properties of soft X-ray emissions during solar flares (Zhang & Dere 2006; Vrsnak et al. 2007).

***** CME acceleration and HXR spectral parameters (Temmer et al. 2008, 2010).

VELC, HELIOS, SoLEX, SUIT in same platform... Aditya LI mission will have unique advantage to establish flare-CME associations.

Zhang & Dere 2006

HELIOS: Detectors specifications

(Sankarasubramanian et al., 2017, Current Sciences)

	Parameter	Specifications	
	Number of detectors	4	
	Detector type	CZT (2 modules) CdTe (2 modules)	
1. K	Detector dimensions	CZT: 40 mm x 40 mm x 5 mm per module 256 pixel per module 2.46 mm x 2.46 mm pixel pitch CdTe: 5 mm x 5 mm x 1 mm per module Non-pixelated detector	
	Geometric Area	CZT: 32 cm ² (both detectors) CdTe: 0.5 cm ² (both detectors)	
	Detection efficiency	CZT: >90 % for 20 keV to 90 keV CdTe: > 90% for 10 keV to 40 keV	
	Energy range	CZT: 20 keV to 150 keV CdTe: 10 keV to 40 keV	
	Energy resolution	CZT: ~10% @ 60 keV (10 °C) CdTE: ~3 % @ 22 keV (-25 °C)	
8/2017	Operating temperature	CZT: 5 °C to 20 °C CdTest-25t9Cvgork350%Clain-built TEC)	

Views of CZT detectors

Views of CdTe detectors

Mounting location of HELIOS payload on the top deck of spacecraft

Science	Desired Requirements	HELIOS Capabilities	Remarks
	HXR Emission > 10 keV with energy resolution < 1 keV between 10 to 40 keV.	Energy Range 10 to 150 keV. Energy Resolution < 1 keV @ 22 keV (10-40 keV) and 5 keV @ 60 keV (20 – 150 keV).	Evolution of thermal and non- thermal spectral components as a function of energy and time.
Particle Acceleration	Timing Accuracy of the order of 10s of seconds to study QPPs (typical pulse duration few minutes). Temporal resolution better than I second for HXR bursts.	Time tagged event data -32 milliseconds; based on flare class and statistics, binning of the light curves can be optimized.	QPPs and HXR bursts observed in HXR has implications on particle acceleration.
	Angular resolution of a few arc-seconds.	Not an imaging instrument.	Spectral and timing information will be complemented by ground based Ha imaging, radio observations, GOES SXI images and SUIT (on-board ADITYA- LI) full disk images.
Pre-heating and precursor phase studies	HXR observations between 5 and 25 keV with ~ I keV nergy resolution.	10 keV onwards with < 1 keV energy resolution @ 22 keV (10 – 40 keV band).	SoLEXS on-board ADITYA-LI will complement for energies <10 keV.
Relationship between Flare and early CME evolution. 06/03/2017	Energy range ~5 keV to 150 keV. ASI Aditya wo	10 keV to 150 keV.	Adequate to examine non- thermal parameters and early acceleration of CMEs. CME parameters will be estimated from VELC on-board ADITYA-LI.

Concluding remarks...

- □ HEL1OS has the capability in terms of spectral and temporal resolutions to address the problems of particle acceleration and explosive energy release in solar flares at 10-150 keV.
- HEL1OS and SoLEX will form an ideal combination to understand X-ray emission processes in solar flares over a broad range of X-ray energies.
- □ By combining HEL1OS measurements with VELC, we would be able to explore the relationship between CME acceleration and strength of magnetic reconnection.