LSF Knowledge Sharing

= LSF

» Cluster

= Platform LSF

= LSF Basic Structure
= LSF Daemons (Processes)
= LSF Jobs

= LSF Job submission
= LSF User Commands
= LSF Queues

» LSF Hosts

= LSF Resources

* LSF Users

» LSF Scheduling

= LSF Exit Values

Load Share Facility (LSF)

* LSF was based on the Utopia research project at the University of Toronto. In 2007, Platform

release Platform LAVA , which is a simplified version of LSF based on an old version of LSF release,
licensed under GNU (General Public License). The project was discontinued in 2011, Succeeded by
Open LAVA. In January, 2012, Platform Computing was acquired by IBM. The product is called now

IBM Spectrum LSF .

Clusters

Clusters
A group of computers (hosts) running LSF that work together as

s g asingle unit, combining computing power and sharing workload
s % and resources. A cluster provides a single-system image for a
network of computing resources.
T
; ;
gzztsé rczgulla: gﬁgﬁd into clusters in a number of ways. A

I — '
e — All the hosts in a single administrative group
All the hosts on one file server or sub-network
Jomiisi T Hosts that perform similar functions
b7 T T—

Compuis Nodes
T T
HPC Cluster
dsmim U8 High-performance computing (HPC) is the use of parallel
dsmissi R processing for running advanced application programs
oMoy Nodes— efficiently, reliably and quickly.

Platform LSF

IBM Platform LSF software is a industry leading enterprise — class software that distributes work across existing heterogeneous IT
resources creating a shared, scalable, and fault-tolerant infrastructure, delivering faster, more reliable workload performance while
reducing cost. LSF balances load and allocates resources, while providing access to those resources.

LSF provides a resource management framework that takes your job requirements, finds the best resources to run the job, and
monitors its progress. Jobs always run according to host load and site policies.

Cluster

Job Submission <
53
‘ Resources / Compute Host
Jobs wait in

queue until the Master Host
available
resources are

Queues

LSF Basic Structure

Send Emal to dient Return Output, Error, Info
1 i » An LSF Cluster can be divided Into two groups of hosts:
‘ - Jfbp_Epf] -’ Management Hosts And a Compute Hosts . Management
. Subm aJoblbnly W Hosts Provide specialized services to the cluster; Compute
(, obmun J ‘ — 0 0, hosts run the user workload.
gf‘ Submission Host LSF Daemons
S ' + Mbatchd
Campute Host h + Mbschd
N + Shatchd
Master Host * Res
« Lim
« Master Lim
+ ELIM

mhschd, + Pim

LSF directories

= This diagram illustrates an example directory
structure after the LSF installation is complete

| LSF_TOP (7) |
g BN

9.

| <0S Type»

bin (1) |—<_LSF and EGO commands >

im, pim, mbatchd, sbatchd, pem, vemkd, >

Wbisf &, Wbisf so, llbvem.D

(1) LSF_BINDIR=EGO_BINDIR

(2) LSF_SERVERDIR=EGO_SERVERDIR
{(3) LSF_LIBDIR=EGO_LIBDIR

(4) LSF_ENVDIR, LSF_CONFDIR

{(5) LSF_LOGDIR=EGO_LOGDIR

(6) LSB_SHAREDIR

(7) EGO_TOP=LSF_TOP

(8) EGO_ESRVDIR

(9) EGO_WORKDIR

(10) EGO_CONFDIR

Install

e 5

)
8

vemkd]

data

= =
:
e
2
:
L

fim

il

Live_confdir

—Qf conf, Isf.shared lsf cluster,) esc H conl H somcos]
—{ ego H cluster_narne

esorvice(8)

esd f— conf |

—{ 1sbaten | ciuster_name |—{ configair

W ey

LSF Daemons

= Mbatchd

— Master Batch Daemon running on the master host.

— Started by sbatchd.

— Responsible for the overall state of jobs in the system.

— Receives job submission, and information query requests.

— Manages jobs that are held in queues. Dispatches jobs to hosts as determined by mbschd.
= Mbschd

— Master Batch Scheduler Daemon running on the master host.

— Works with mbatchd.

— Started by mbatchd.

— Makes scheduling decisions based on job requirements, and policies, and resource availability. Sends scheduling decisions
to mbatchd.

= Shatchd
— Slave Batch Daemon running on each server host.
— Receives the request to run the job from mbatchd and manages local execution of the job.
— Responsible for enforcing local policies and maintaining the state of jobs on the host.

— The sbatchd forks a child sbatchd for every job. The child sbatchd runs an instance of res to create the execution
environment in which the job runs. The child sbatchd exits when the job is complete.

LSF Daemons

* Res
— Remote Execution Server (res) running on each server host.
— Accepts remote execution requests to provide transparent and secure remote execution of jobs and tasks.
= Lim
— Load Information Manager (LIM) running on each server host.
— Collects host load and configuration information and forwards it to the master LIM running on the master host.
— Reports the information that is displayed by Isload and Ishosts.

— Static indices are reported when the LIM starts up or when the number of CPUs (ncpus) change. Static indices are:
o Number of CPUs (ncpus)

MNumber of disks (ndisks)

Total available memory (maxmem)

Total available swap (maxswp)

Total available temp (maxtmp)

Dynamic indices for host load collected at regular intervals are:

Hosts status (status)

15 second, 1 minute, and 15 minute run queue lengths (ri5s, rim, and ri5m)

CPU utilization (ut)

Paging rate (pg)

Number of login sessions (lIs)

Interactive idle time (it)

Available swap space (swp)

Available memory (mem)

Available temp space (tmp)

Disk IO rate (io)

c o o o o o o o o o oo o0 o0 o

LSF Daemons

= Master Lim
— The LIM running on the master host. Receives load information from the LIMs running on hosts in the cluster.

— Forwards load information to mbatchd, which forwards this information to mbschd to support scheduling decisions. If the
master LIM becomes unavailable, a LIM on another host automatically takes over.

= ELIM

— External LIM (ELIM) is a site-definable executable that collects and tracks custom dynamic load indices. An ELIM can be a
shell script or a compiled binary program, which returns the values of the dynamic resources you define. The ELIM
executable must be named elim and located in LSF_SERVERDIR.

* Pim
— Process Information Manager (PIM) running on each server host.
— Started by LIM, which periodically checks on pim and restarts it if it dies.
— Collects information about job processes running on the host such as CPU and memory that is used by the job, and reports
the information to sbatchd.

LSF Jobs Work Flow

Send Email to client Return Output, Error, Info 1. Submit a job. You submit a job from an LSF client or server with the bsub
E— command. If you do not specify a queue when you submit the job, the job
i " smpmip Tt is submitted to the default queue. Jobs are held in a queue and wait to be

= e = scheduled. These jobs are in the PEND state.

Submit a Job (bsub) W 2. Schedule job. The master batch daemon (mbatchd) looks at jobs in the
Wp— w queue and sends the jobs for scheduling to the master batch scheduler

(mbschd) at a preset time interval. mbschd evaluates jobs and makes
schedulig decisions that are based on job priority, scheduling policies, and

Submission Host available resources. mbschd selects the best hosts where the job can run
and sends its decisions back to mbatchd. Resource information is collected
at preset time intervals by the master load information manager (LIM)
daemon from LIMs on server hosts. The master LIM communicates this
information to mbatchd, which in turn communicates it to mbschd to
support scheduling decisions.

Master Host 3. Dispatch the job. As soon as mbatchd receives scheduling decisions, it
immediately dispatches the jobs to hosts.
4. Run job. The slave batch daemon (sbatchd):
a. Receives the request from mbatchd
b. Creates a child sbatchd for the job
hschd c. Creates the execution environment
d. Starts the job by using a remote execution server (res).

5. Return output. When a job is completed, it is assigned the DONE status if
the job completed without any problems. The job is assigned the
EXIT status if errors prevented the job from completing. sbatchd

shatchd i communicates job information, induding errors and output to mbatchd.

6. Send email to client. mbatchd returns the job output, job error, and job
information to the submission host through email.

LSF Daemons process flow

Master Host

a— |

Job Run

Submission Host

LSF Startup

[root@master st ~]# Isfstartup
starting u? all LIms ...
Do you really want to start up LIM on all hosts ? [y/nly

start up LIM on <masterisf> done

Start up LIM on <slavelsf> done

Start up LIM on <nodel> done

Start up LIM on <node2> done

waiting for Mmaster LIM To start up ... Master LIM is ok
Starting q all RESes ...

Do you really want to start up RES on all hosts 7 [y/nl]y
STart up RES on <masterlisf> done

Start up RES on <slavelsf> done rsh: No such file or directory
Start up RES on <nodel> done

Start up RES on <node2> done

starting all slave daemons on LSBATCH hosts ...
Do you really want to start up slave batch daemon on all hosts 7 [y/n]

start up slave batch daemon on <masterisf> done
Start up slave batch daemon on <slavelsf> done
start up slave batch daemon on <nodel> done
start up slave batch daemon on <node2> done

Done starting up LSF daemons on the local LSF cluster

LSF Shutdown

[root@master |isf ~]# Isfshutdown

Shutting down all slave batch daemons ...

on
on
on
on
on

batch daemon
barch daemon
batch daemon
batch daemon
batch daemon

s lave
slave
s lave
s1ave
slave

down
cdown
down
down
down

shut
sShurt
shut
shurt
Shut

all RESes
want to shut down
on <master lisf>
on <slavelsf>
on <nodel>
on <node2>

shutting down
Do you really
Shut down RES
shut down RES
Shut down RES
shut down RES

S 2 IMS s
want to shut down
on <masterlsf>
on <slavelsf>

Shutting down
Do you really
Shut down LIM
shut down LIM
Shut down LIM on <nodel>
Shut down LIM on <node2>
[root@master |Isft ~]#

all the hosts? [y/n] y

ST ErISry> . ..v . done
SIS .sua00 s done
LERMIRENE ..« - one
<slavelsf> done

RES on all hosts? [y/n] vy
done

. . donel

done

done

LIMs on all hosts? [y/n] vy
done

LSF Job

= Job
A unit of work run in the LSF system. A job is a command submitted to LSF for execution. LSF schedules, controls, and tracks the job according to
configured policies.
Jobs can be complex problems, simulation scenarios, extensive calculations, anything that needs compute power.

= Job slot

A job slot is a bucket into which a single unit of work is assigned in the LSF system. Hosts are configured to have a number of job slots available
and queues dispatch jobs to fill job slots.

= Job states
LSF jobs have the following states:
— PEND — Waiting in a queue for scheduling and dispatch
— RUN — Dispatched to a host and running
— DONE — Finished normally with zero exit value
— EXIT — Finished with non-zero exit value
— PSUSP — Suspended while pending
—~ USUSP — Suspended by user
— SSUSP — Suspended by the LSF system
— POST_DONE — Post-processing completed without errors
— POST_ERR — Post-processing completed with errors
—~ WAIT — Members of a chunk job that are waiting to run

= Configuration
Define job slot limits in Isb.resources.

LSF Batch Job state

LSF batch jobs Continued

» Parallel Job process

When LSF starts running a job LSF assigns a node list to a variable LSB_HOSTS . The first node from
the list will be controlling the jobs running on all of the hosts.

* Parallel Job Submission
LSF can select more than one slot for the execution of the job. For parallel job more than one slot is
required for execution of job.

o Steps
* To submit a parallel job use bsub —n option where “n " is the number of threads you want to run.

bsub -n 16 -0 result.out -e result.err /opt/software/openmpil.6/bin/mpirun . /xhpl

LSF batch jobs Continued

= Specify a minimum and maximum number of processors
We can specify the minimum and maximum number of processor while submitting a job.

Syntax:
bsub =n min_proc , max proc
bsub -n 4,16 myjob

[testuserl@masterlsf ~]§ bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1459 testuse RUN long mastersf nodel *un ./xhpl Jan 20 11:26
nodel
nodel|
nodel
nodel
nodel
node2
node2
node2
node2
node2
node2

LSF batch jobs Continued

[testuserl@master st ~]$ bsub -n 2,4 -q long sleep 100
Job <1460> is submitted to queue <long>.
[testuserl@master|sf ~]§ bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOE_NAME SUBMIT_TIME
1459 testuse RUN long master Ist nodel *¥un . /xhpl Jan 20 11:26
nodel
nodel
nodel
nodel
nodel
node2
node2
node2
node2
node2
node2
1460 testuse RUN long master1sf nodel sleep 100 Jan 20 11:27
nodel
node2
node2

LSF batch jobs Continued

- Distribute Processor allocation across hosts
Sometimes you need to distribute the work across the hosts.

Syntax
The span string supports the following syntax:
Span[hosts=1] [All the processors from same]
Span[ptile=8] [The job has requested 8 processors on available host]

Mode1 Noda?

bsub -n 16 -q long -R span[ptile=8] ./myjob

Mode1 Mode2

Job Submission Script

[testuserl@masterlsf ~]3 cat jobl
#!/bin/bash

#BSUB -0 outfile [Appends the standard output of file specify a outfile name]
#BSUB -e errorfile [specify a error file name]

#BSUB -q long [specify a queue name]

#BSUB -n B [specify a number of threads]

#BSUB -sp 3 [specify a Job Priority]

#BSUB -] testl [specify a Job name]

#BSUB -W 5 [Run Limit of a Job]

#BSUB -R "span[ptile=4]" [use 4 cpu’s on every node]
Jopt/software/openmpil.6/bin/mpirun . /xhpl

[testuserl@gmasterlsf ~]% bsub ¢ jobl

[testuserl@masterlsf ~]$% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1805 testuse RUN long masterlisf nodel testl Jan 22 13:02
nodel
nodel
nodel
node2
node2
node2
node2

Example: Matlab Job Submission

#!/bin/bash

#BSUB -] MySharedMatlab [Job Name]

#BSUB -q long [long]

#BSUB -R "rusage[mem=2GB]“ [Resource Memory |

#BSUB -B [Notify when execution begins]

#BSUB -N [Notify when execution ends]

#BSUB -u [specify your email address if it is not default |
#BSUB -o Output.txt [Out file name]

#BSUB -e Error.txt [Error file name]

#BSUB -cwd /home/user [Specify the current working directory for out file if required]
#BSUB -W 04:00 [Wall clock time for execution]

#BSUB -n 4 [Number of processors requested]

#BSUB -R “span[hosts=1]" [specify the processor distribution]

matlab -nodisplay -r my shared matlab -logfile MySharedMatlabOut

Example : WRF Submission script

#! /bin/bash

#B5UB -] wrftest # job name

#BSUB -W 81:88 # wall-clock time (hrs:mins)

#B5U8 -n 64 # number of tasks in job

#BSUB -R "span[ptile=16]" # run 16 MPI tasks per node

#BSUB -g normal # gqueue

#B5UB -e mpi.error.X] # error file name in which ¥J is replaced by the job ID

#B5U8 -o mpi.output.®] # output file name in which %] is replaced by the job ID

#B5U8 -x # Exclusive execution mode. The job is running exclusively on a host

rm - hostfile
cat $LSB_DJIDB_I-I35TFILE » hostfile

export SAVE_ALL_TASKS=no

export LD_LIBRARY_PATH=/gpfsl/home/Libs/INTEL/DAPL/dapl-2.1.16/1ib:$L0D_LIBRARY_PATH
ulimit -c unlimited

export I_MPI_HYDRA_BOOTSTRAP=ssh

export I_MPI_DEBUG=5

export I_MPI_DAPL_PROVIDER=ofa-vi-mlx4_@6-1u
export I_MPI_FABRICS=shm:dapl

export DAPL_UCM_REP_TIME=2668

export DAPL_UCM_RTU_TIME=2668

export DAPL_UCM_CQ_SIZE=2688

export DAPL_UCM_QP_SIZE=2666

export DAPL_UCM_RETRY=?

export DAPL_ACK_RETRY=?

export DAPL_ACK_TIMER=28

export I_MPI_DAPL_UD=enable

export I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD=2897152
export I_MPI_FALLBACK=8

export FORT_BUFFERED=yes

fusr/bin/time -p mpiexec.hydra -f ./hostfile -perhost 16 -np 64 -genvall $EXECUTABLE_NAME

LSF BSUB Exclusive Feature

#BSUB —x [Exclusively submits job on the node]

[testuserl@master st ~]% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

1824 testuse RUN long master1sf nodel Testl Jan 23 12:23
nodel
nodel
nodel
1827 testuse RUN long master st node2 testl Jan 232 12:26
node2
node2
node2
1828 Testuse PEND long master st Testl Jan 23 12:26
1829 Testuse PEND Tlong master st Testl Jan 23 12:26
[root@master|sf configdir]# bjobs -p 1828
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1828 testuse PEND long master|sf testl Jan 23 12:26

Job's requirement for exclusive execution not satisfied: 1 host;
Job slot limit reached: 1 host;

Not specified in job submission: 1 host,

Load information unavailable: 1 host;
Froat@master]sf configdir]#

LSF BSUB Options

#!/bin/bash

#BSUB -o outfile [Appends the standard output of file specify a outfile name]
#BSUB -e errorfile [specify a error file name]

#BSUB -q long [specify a queue name |

#BSUB -n 8 [specify a number of threads]

#BSUB -sp 3 [specify a Job Priority]

#BSUB -] testl [specify a Job name]

#BSUB -W 5 [Run Limit set to 5 Minutes]

#BSUB -R "span[ptile=4]" [use 4 cpu’s on every node]

#BSUB -R “ rusage [mem=28, license=1:duration=2]" [License resource requested for 2 minutes]

#BSUB -c 18 [CPU LIMIT Set to 10 mins]

#BSUB -D 1824 [Sets per-process (soft) data segment size]

#BSUB -F 1024 [Sets a per-process (soft) file size limit for each of the processes |

#BSUB -M 1024 [Memory Limit]

LSF BSUB Options Examples

[testuserl@masterlsf ~]$ bsub -c 1 sleep 70
Job <1955> 15 submitted to default queue =normal>.

CPULIMIT
1.0 min of nodel
wed Jan 23 18:40:14: started 1 Task(s) on Host(s) <nodels, Allocated 1 slot(s)

bsub -D 1024 sleep 70
DATALIMIT
1 G
wed Jan 23 18:46:15: Started 1 Task(s) on Host(s) <nodel>, Allocated 1 Slot(s)

bsub -F 1024 sleep 70

FILELIMIT
1024 K
wed Jan 23 1B:56:25: Started 1 Task(s) on Host(s) <nodel>, Allocated 1 Slot(s)

bsub -M 1024 sleep 70
MEMLIMIT
1 G
wed Jan 23 19:07:17: started 1 Task(s) on Host(s) <nodel>, Allocated 1 Slot(s)

LSF User Commands Examples

* |sid

[root@nodel ~]# l1sid

IeMm Platform LSF Express 9.1.3.0 for 18M Platform HPC, Jul 04 2014

Copyright IBM Corp. 1992, 2014. A1l rights reserved.

US Government users Restricted Rights - use, duplication or disclosure restricted by GSA ADP Schedule Contract with 18m Corp.

My cluster name is clusterl
My master name is masterlisf _ _

* bqueues
[testuserl@masterlsf ~]$ bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
owners 43 Open:Active - - - - 0 0 0 0
priority 43 Open:Active - - - - 0 0 0 0
night 40 Open:Active - - - - 0 0 0 0
chkpnt_rerun_qu 40 oOpen:Active - - - - 0 0 0 0
medium 40 Open:Active - - - - 0 0 0 0
short 35 oOpen:Active - - - - 0 0 0 0
Ticense 33 Open:Active - - - - 0 0 0 0
normal 30 oOpen:Active - - - - 16 0 16 0
interactive 30 Open:Active - - - - 0 0 0 0
small 30 oOpen:Active - - - - 0 0 0 0
0 0 0 0

idle 20 Open:Active - - - -
[testuserl@master1sf ~gﬂ

LSF User Commands Examples

* bhosts [Display Static and Dynamic resource Information]

[root@masterlst conftl]# bhosts

HOST_NAME STATUS JL/u MAX NIJIOBS RUN SSUSP USUSP RSV
master st ok - 8 o) (o} O o o
nodel ok - 8 0o O (o) 0 o]
node2 ok - 8 0O 0 0 0O O
§1avglsf) = 95" = W - 8 O o] o o] o]

* Ishosts [Displays static resource information]
[testuserl@masterlsf ~]1% 1shosts
HOST_NAME type model cpuf nNncpus maxmem maxswp server RESOURCES
master|sf XB6_64 Intel_EM 60.0 8 15.9G 7.8G Yes mg%
slavelsfT X86_64 Intel_EM 60.0 8 15.9aG 7.9G vYes (mg)|
nodel X86_64 Intel_EM 60.0 8 15.9aG 7.9G ves ()
node?2 X86_64 Intel_EM 60.0 8 15.9aG 7.9G vyes ()

« Isload [Display load Information]
1sload
HOST_NAME status rlbs5s rim rlSm ut p8 1s it tTmp swp mem
masterlsf ok 0.0 0.0 0.0 0% 0. 1 0 17G 7. 8G 15G
slavelsfT ok 0.0 0.0 0.0 0% 0.0 0O 1338 511G 7.9G 15.2G
nodel ok 3.9 > IR 1.3 28% 0.0 0 1183 39G 7.9G 14.7G
node2 ok 4.3 2.2 0.7 25% 0.0 0 19 50G 7.9G 14.7G

[testuserl@masterisf ~]%

LSF User Commands Examples

« bparams [Display the cluster parameters]

[Cestuserl@amaster IsT —] fSbhbparams

Default Queuses = dispatc

Default Host Specificatctcion: master |1+

MED _SLEEFP_TIME wus=d Tor —alcwulatiornns : 20 =ecords
Jobh Checkimng InCerwal : 15 second=s

Job accepTing Incerwal : O sSseconds
l[tue:rtlJEJarflﬁinﬁaErtlarflEd: —] %

» bhosts [Display Host Information]

[root@master1sf configdir]l# bhosts

HOST_MNAME STATUS JL/u MAX MNIOBES RUN S5USPF USUSP RSW
masterlst ok - 23 8] (8] O o O
nodel closed - 8 (0] 0 0 0 0
node2 ok - E O O O o O
slavelsf ok - B 0 0 0 0 0
[root@master st configdir]#
» bhosts -l [Display the long information]
[root@master Isf configdirl# bhosts -1 nodel
HOST nodel
STATUS CPUF JL/SuU MAX MNIOBS RUN SSUSP USUSP RSV DISPATCH_WIMNDOW
closed_rull &0 . 00 - E B B O O O -
CURRENT LOAD USED FOR SCHEDULING:
rlss rilm rl15m ut pg io 1= it Tmp Swp mem slots
Total 0.9 0.1 0.0 602 - 62 O 1160 390G 7.9G 14. 3G O
rReserwved 0.0 .0 .0 0325 0.0 O O O oM oM O -
LOAD THRESHOLD USED FOR SCHEDULIMG:
riss rim rl5m ut pag io 1s it Tmp sSwp mem
loadsched - - - - — - - - - - -
Toadstop - - - - - - - - - - -

[root@masterlsfT configdir]#

LSF User Commands Examples

bjobs -uall [show jobs for all users]

[testuserl@master1sf ~]1% bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXELC_HOST JOEBE_MAME SUBMIT_TIME

374 Testuse RUM small masterlsft nodel sleep 50 Jan 18 17:45

375 testuse RUM 5ma11 masterlsﬁ nuﬂel sleep 50 Jan 18 17:46
« bjobs —p [show job pending reasons]

[testuserl@émasterisf ~]1% bjobs —-p

JOBEID USER STAT QUEUE FROM_HOST EXEC_ HOST JOB_MAME SUBMIT_TIME

1483 testuse PEND long master Isf "un ./xhpl Jan 20 11:56

NoT enough hosts To meet the job's spanning requirement;
[testuserl@master Ist ~]1%

» bjobs —u all -m nodel [Checkif "nodel” isa partofany job]

[root@masterlsf confl# bjobs —u all -m nodel

JOEBETID USER SETAT QUEUE FROM_HOST EXEC_ _HOST JAOE__MAME SUBMIT_TIME
1899 testuse RUM Tong master 1sf nodel L Jan 22 08:16
nodel
« bjobs -1 1816 [Job information in long format]

[testuserl@masterlist ~]1% bjobs =1

Job <1816>, Job Name <testl>, User <testuserl>, Project <default>, Status <RUN>
. Queue <long>=, Job Priority =<5=, Command {#!Ib1nfha5h : #
ESUE =0 outfile; #BSUEBE -2 Errcrf119'#EEUE =q Tong ; #FBSUBE =N
16 ; #FBSUE -1 te5t1 #FEBESUE —-wW 5 #ESUE -RB span[pt11e—3]"‘
fuptfsuftwarefﬂpenmp11 th1ﬂfmp1run . Sxhpl=, Share group c
harged < /stestuserl>-

LSF User Commands Examples

bbot

stuserl@éamaster | s

15=5

1536

Iy

I
W
oo

i
L
L

USER
TaesTusa

TeSTuSe

TesTusSe

TesTuse

TaesTtTusa
TesTuse

ETAT
FE LI

(= o o |]
FEMRC

—1 % bgnbs
LI E L
a =T gl

T ok wey
1 orvg
T orvg

a =T gl
1orng

[testuserl@master isft ~]% bjobs

JOBID
1524

1535

1536

Ll d aladad
LA LN LA
W B
WO

USER
TestTuse

Testuse

TestTusea

TEeEsSTuse

Testuse
Testuse
TesTuseae
Testuse
Testuse
TesTuse

STAT
RN

LM

Furd

PERD
FERLD
FEMMD
PERD
FERD

PEND

SUEUE
T omng

Tong

1orng

T1omng

1 ormng
long
1omg
T1orng
Jlong
long

F RO _ - ST
mas=tar 1=

masTer 1 =T

mastTter |1s1T

mastTtear 1 s+

mas=tar 1=+
master | s1T

TesTuser-léamastcer Ils¥ —1% bbot 1532E

Job =1L528>= has been moved Tto position 1 from

FROM_HOST
master 1sT

master 1st

mastar 1s¥F

master 1sT

master 1T
masterl1s¥f
master 1sT
mas=tTer 1T
master1s+f
masteaer 1 sF

EXMECT HOST

rocda 2
nocdez
v cdad
model
mocdaez
mode 2
rocdael
mocdedl
mocdaez
rvocle 2
mocdel
rclaed
mnode2
nocdaez
el
rocdael

botitom.

EXELC_HOST
nocde2
g T L
(g l=l=="u}
nocdel
roec] e
rmodaz
Nnodel
mnoded
rmodaz
nNnodez
nodaeld
nodal
nNnodez2
nodae2
mnodal
nodel

IOE_ MAaME

urn - Sl Jamn 20 1Le22
T - Swxwbypl oan 20 185223
UM .- S=bhpl Soan 20 1623
=ary - Sl Jamn 20 1LGa 23
urn - Sxhepdl Jan 20 1LE22
un ./xhpl Jan ZO 16:23
JOE_MNAME SUEMIT_TIME
"un . xhpl Jan 20 1L&:23F
*un ./xhpl Jan 20 16:23
Turn . =hpl Jan 20 16223
=un .JSxhpl Jan 20 1623
"un . Sxhpl Jan 20 1L&:23
"un - xhpl Jan 20 1623
=urn . JSxhpl J2amn 20 1623
"urn . Sxhpl Jan 20 1L&6:232
"un .- xhpl Jan 20 1623
*urn ./ Sxhpl Jan 20 16:23

LSF User Commands Examples

* btop

[testuseri@master1sf ~]§ btop 1538
Job <1538> has been moved to position 1 from top.

[testuserl@masterlsf ~]$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOE_NAME SUBMIT_TIME
1534 testuse RUN Tong masterlsf node2 *un ./xhpl Jan 20 16:23
node2
nodel
nodel
1535 testuse RUN long master1sf node2 *un ./xhpl Jan 20 16:23
node2
nodel
nodel
1536 testuse RUN Tlong master Isf node2 *un ./xhpl Jan 20 16:23
node2
nodel
nodel
1537 testuse RUN Tlong masterlsf node2 *un ./xhpl Jan 20 16:23
node2
nodel
nodel
1538 testuse PEND long master 1sf *un ./xhpl Jan 20 16:23
1539 testuse PEND long master 1sf *un ./xhpl Jan 20 16:23

LSF User Commands Examples

» breque

[cestuserli@amasterlsf ~]% bjobs

IJQEID UsER STAT QUEWUE FROM_HOST ExXEC_HOST JIOE_MNAME
1544 TEesSTUsSe BRUM 1oy master 1st rvoc]e2 "urn . Sxbhpl
nodeae
roclel
rodal
1545 Testuse RUM T1omng master1sf rmoc]e2 “ury . xbhpl
(g lata Fbed
nodel
nodel
1546 Testusa RUM T1org mastaer 1s¥ noda Turn . Sxbhpl
node2
nodad
nodel
1547 TEsSTUsSe RUM 1 ong master 1sf nodez run . Sxhpl
node 2
rvoclel
nodel
1548 Testuse PEMD Tomng master st " . Sxbhpl
1549 TesTuse PEND 1ong master 1sf rurn - S xibp
L5550 Ttestuse PEMD Tong master st ury .S xhpl
1551 TEesSTuse PEND 1omng master 1sT "un . Sxhpl
1552 testuse PEND Tong master1sf Turn . Sxhol
[testuserl@masterlsf ~]% brequeue 1544

Job <1544> 4is being requeued

[cestuserlamaster 1sT

ISBID
1245

1saa

1547

USER
TEeESTusSe

testu=ma

TesTuse

TesTusea

TestTuséa
TestTtTus &
te=tuse
testuse
tTestusea

STAT
RLUM

AN

~1% bjobs
QUEUE
1 o

1omng

T org

T org

1 org
1ong
1orng
1ong
1ong

FROM__HOST
master 1s1T

mastoer 1=+

mastTter 1sT

master 11T

masrter 1s1T
mEs T e] =F
mas=tor 1=
mastoer 1=
master 1sT

EMEC_HOST
rodez
riccl e
(gi=T=[— i
moded
node 2
rodd a2
moddel
rocdel
nodeZ
nocdeZ
oclael
ociael
rociael
rocael
rocleZ
rodez

OB _MNMAME

bl ¥l |

LI

LAY

bl ¥l g

b Wl g
L
L
e
L

. A b

- Axbhp

- Sl

- Sl

- Axbpl
- Axbp
- Axbp
- Axbhp
- Axbhp

SUBMIT _TIME
Jamn 20 1&6:26

Jan

= gl

Jamn
J A
Jan
Jar
Jdar

20

20

20

126

1&s:26

1a:=26

1s5: 26
1&5=26
1626
16226
1&E:26

SUBMIT_TIME
Jamn 20 16:2§]

Jamry

Jarn

J A

J&ar
Jary
Jar
Jar
Jdar

20

20

20

1L&-26

1s5: 26

16: 286

1626
1626
1626
1L&:-26
LG:-26

LSF User Commands Examples

Testuserl@mastcer s ' 2 JOPRS
- d JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
an) 1545 testuse RUN Tong masterisf nogeg *un ./xhpl Jan 20 16:26
node
nodel
nodel
1546 Testuse RUN Tong masterisft node2 un ./xXhpl Jan 20 16:26
node2
nodel
nodel
1547 Testuse RUN Tong mascerlisft node2 *un ./xhpl J2an 20 16:26
node2
nodel
nodel
1548 testuse RUN long master Isf nodel *un ./xhpl Jan 20 16:26
nodel
node2
node2
1549 tTestuse PEND Tlong master st *un ./xhpl Jan 20 16:26
1550 testuse PEND long masterlisf un ./xhpl Jan 20 16:26
1551 testuse PEND long master Isf *un ./xhpl J3an 20 16:26
1552 rTestuse PEND long mascterisf *un ./xhpl 3an 20 16:26
1544 Testuse PEND Tong masterlsft =un ./xhpl1 Jan 20 16:26
[testuserl@masterlisft —]13% bmod —g medium 1552
Parameters of job <=1552>= are being changed
[Ttestuserla@amaster Ist ~1% bjobs
JOBID USER STAT QUEUE FROM_MHOST EXEC_MOST JOB_NAME SUBMIT_TIME
1548 Testuse RUN Tong mascer isTtT nogei *un . /xhpl Jan 20 16:26
Mmnode
nodae2
node2
1549 testuse RUN JTong master isft noge% “urn ./ xhpl Jan 20 16:26
node
node2
node2
1550 Testuse RUN Tong mascter isft nogei *un ./s,xhpl Jan 20 16:26
node
nodea2|
node2
AS55L testuse RUN Tong master isft nogei “un ./xhpl Jan 20 16:26
node
node2
node2
1544 Testuse PEND Ton mascter st un ./,xhpl Jan 20 16:26
1552 Tcestuse PEND medium mascer st *un . /xhpl1 Jan 20 16:26

[te=tuseril@ma=teri=sf ~J]%

LSF User Commands Examples

* bmod -cwd /opt/software 1949 [Change of Working Directory]

[testuserl@masterlsf ~]% bjobs -1 1949

Job =1949>=, Job Name <testl>, User <testuserl>, Project <default>, Status <PEND
>, Queue <long>, Job Priority <2>, Command <#!/bin/bash ;
#BSUB -0 outfilel;#BSUB -e errorfilel;#BSUB -g long ;#BSUB

-n 4 ;#BSUBE -] Testl;#BSUE -s5p 2 ;##FBSUB -X ;#BSUE -wW 2 ;

#BSUB -R "span[ptile=2]"; /Jopt/|
Enftwarefugenmpil.Ejbﬁnfmpﬁrun - Axhpl>=

wed Jan 23 14:27:34: Submitted from host <master|sf>, CWD <$HOME>, Output File
<outfilel>, Error File <errorfilel>, Re-runnable, 4 Task(s
), Requested Resources <span[ptile=2]>, User Priority <=2>;

[testuserl@masterlsf ~]% bmod -cwd Jopt/software 1949
Parameters of job <1949> are being changed

[testuserl@masterlst ~]% bjobs -1 19449

Job <1949>, Job mName <testl>, User <testuserl>, Project <default>, Status <PEND
>, Queue <long>, Job Priority <2>, Command <#!/bin/bash ;
#BSUB -0 outfilel;#BSUB -e errorfilel;#BSUB -q long ;#BSUB

-n 4 ;#BSUB -] testl;#BSUB -sp 2 ;##BSUB -x ;#BSUB -W 2 ;

###BSUB -cwd /opt/software; #8SUB -R "span[ptile=21"; /Jopt/
suftwarefugenmp1l.Efb1nfmp1run . Sxhpl=

wed Jan 23 14:27:34: submitted from host <masterl1sf>, CwWwD <$HOME>, Specified Cw
D </opt/software>, Ooutput File <outfilel>, Error File <err
orfilel>, rRe-runnable, 4 Task(s), Requested Resources <spa
nlptile=2]>, User Priority <2=;

LSF User Commands Examples

= Job running in medium queue
[testuserl@master st ~]3% bswitch bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
751 testuse RUN medium master Isf nodel sleep 100 Jan 18 19:53
752 testuse RUN medium master|sf nodel sleep 100 Jan 18 19:53

= Job Switch from medium queue to small queue

[testuserlamaster st —]1% bswitch -g medium small o

Job =751> 1s switched To queuse =small=

Job =752> 1s switched To queue =small=

[testuserl@master st ~]% bswitch - medium small Ojobs —-u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOBE_NAME SUBMIT_TIME

751 Cestuse RBRUN small master |lsf Nnodeal sleecp 100 Jan 18 19:53
752 Testuse RBRUN small master |lsf Nnodeal sleecp 100 Jan 18 19:53
" Job Hist'ﬂrf [testuserl@masterlsf ~]% bhist -1 751

Job =751lx>, User <testuserls>, Project <defaults>, Ccommand =sleep 100>

FIri Jan 18 192:532:15: submitted from host -cmasterlsf=, To Queue <medium=-, CwD =%
HOME=, Re-runnable;

Fri Jan 18 19:533:16: pispatched 1 Task{s) on Host{s) =nodel>=, Allocated 1 sTot(
=3 on Host{s) =nodel>=, Effectiwve RES_REQ =select[type ==
ocall] ﬂFdEFErlSE:p 1 =:

Fri Jan 18 19:52:16: Starting Pid 5420?'

Fri Jan 18 19:532:16: rRunning with execution home «=/home/testuserl>, Execution c
wp </home/testuserl>, Execution Pid =<53420>=;

Firi Jan 18 19:52:40; EWItched To Queue =<small>= by user or adminisSTrator <=TesSTus
aerl=—;

Fri Jan 18 19:54:56: Done successfully. The CPU time wused is 0.2 seconds;

Fri Jan 18 19:54:56: Post job process done successTully;

MEMORY USAGE:
Max MEM: 1 mMmbyTes: aAve MEM: 1 mMbytTes

summary of Ttime in seconds spent AN various states by Fri Jan 18 19:54:56
PEND PSUSP RUN uUsusp SSUSP UNKWN TOTAL
1 O 1O O L] O 103

LSF Jobs Exit Values

= LSF Job Exit values
— Exit Value of the jobs can be checked using bhist command.
~ Exit value less than 128 (< 128) is related to Applications
— Exit value greater than 128 (> 128) means job terminated by system signals.
Example:-

Job has got exited due to SSH problem
140 The CPU time uses Exceeded
5 SIGTRAP
2 SIGINIT

7 SIGV

LSF Queues

LSF Queues

* Queue
A cluster wide bucket for jobs. All jobs wait in queues until they are scheduled and dispatched to hosts. Queues do not correspond
to individual hosts; each queue can use all server hosts in the cluster, or a configured subset of the server hosts.

When you submit a job to a queue, you do not need to specify an execution host. LSF dispatches the job to the best available
execution host in the cluster to run that job.

Queues implement different job scheduling and control policies.
* Queue Configuration

Define queues in Isb.queues

* Adding a Queue
Edit the Isb.queues file to add the new queue definition. Adding a queue does not affect pending or running jobs.

LSF Queues Continued

Example:- Default queues

[root@master Ist configdir]# bgqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
owners 43 Open:Active - - - - 0 0 0 0
priority 43 Open:Active - - - - 0 0 0 0
night 40 oOpen:Inact - - - - 0 0 0 0
chkpnt_rerun_qu 40 Open:Active - - - - 0 0 0 0
short 35 Open:Active - - - - 0 0 0 0
license 33 Open:Active - - - - 0 0 0 0
gnormal 30 Open:Active - - - - 0 0 0 0
interactive 30 Dpen:Act1ve - - - - 0 0 0 0
idle 20 Open:Active - - - - 0 0 0 0

[root@master1sf configdir]#

BEegin Queue

Queue_NAME = long
DESCRIPTION = For long jobs
RERUNNABLE = YES

PRIORITY = 40
NEW_JOB_SCHED_DELAY = 1

HOSTS = nodel node2
EXCLUSIVE = Y

End Queue

LSF Queues Continued

» Example: Job not switching from queue

[testuserl@master|sf ~]$ bsub -q medium sleep 200
Job <753> is submitted to queue <medium>.

[testuseri@master1sf ~]§ bjobs -u all
JOBID USER STAT QUELE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
753 testuse RUN medium masterlsf node2 sleep 200 Jan 18 19:57

[testuserl@masterlsf ~]3 bswitch -q medium small 753
small: Host or host group is not used by the queue

* The node node2 is not belongs to small queue.

Begin Queue

Queue_NAME small

DESCRIPTION = For small jobs
RERUNNABLE = YES

PRIORITY = 30
NEW_JOB_SCHED_DELAY = 1

HOSTS = nodel
EXCLUSIVE = Y

End Queue

« Example: When Accidentally Deleted/Removed a queue

LSF Queues Continued

* Queue Example

Begin Queue

QUEUE_NAME = normal

PRIORITY = 38

INTERACTIVE = NO

#RUN_WINDOW = 5:19:0@-1:8:3@ 20:00-8:30

#rlm = @.7/2.8 # loadSched/loadStop

#rl5m = 1.8/2.5

#pg = 4.8/8

#ut = 8.2

#io = 587248

H#CPULIMIT = 188/hostA # 3 hours of host hostA

#FILELIMIT = 28888

#DATALIMIT = 28888 # jobs data segment limit

H#COORELIMIT = 2B0ad

#TASKLIMIT = 5 # job task limit

#USERS = all # users who can submit jobs to this queue
#HOSTS = all # hosts on which jobs in this gqueue can run

#PRE_EXEC = fusrflocalflsf/misc/testq pre »» ftmp/pre.out

#POST_EXEC = fusrflocal/lsf/misc/testq post |grep -v “Hey"

#REQUEUE_EXIT WALUES = 55 34 78

#APS_PRIORITY = WEIGHT[[RSRC, 18.8] [MEM, 28.8] [PROC, 2.5] [QPRIORITY, 2.8]] \
LIMIT[[RSRC, 3.5] [QPRIORITY, 5.5]] \

GRACE PERIOD[[QPRIORITY, 28@s] [MEM, 18m] [PROC, 2h]]

DESCRIFTION = For normal low priority jobs, running only if hosts are
lightly loaded.

End Queus

LSF Queues Continued

bqueues -l small [also displays the comment text:]

[root@master1sf softwarel# bqueues -1 small

QUEUE: small
-- For small jobs

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 0 Open:Inact_Adm - 1 1 0 0 0 0

Schedule delay for a new job is 1 seconds
Interval for a host to accept two jobs is 0 seconds

SCHEDULING PARAMETERS

ri5s rim ri5m ut pg io s it tmp sSwp mem
loadsched - - - - - - - - - Z =

Toadstop - - - - - - - - - - -
SCHEDULING POLICIES: EXCLUSIVE
USERS: all
HOSTS: nodel
RERUNNABLE @ Vyes

ADMIN ACTION COMMENT: "testing”
[root@master1sf software]#

LSF Hosts

Hosts

A host is an individual computer in the cluster. Each host may have more than 1 processor. Multiprocessor hosts are used to run
parallel jobs. A multiprocessor host with a single process queue is considered a single machine, while a box full of processors that
each have their own process queue is treated as a group of separate machines.

Submission host

The host where jobs are submitted to the cluster. Jobs are submitted using the bsub command or from an application that uses the
LSF API. Client hosts and server hosts can act as submission hosts.

Execution host
The host where a job runs. Can be the same as the submission host. All execution hosts are server hosts.

Server host

Hosts that are capable of submitting and executing jobs. A server host runs sbatchd to execute server requests and apply local
policies.

LSF Hosts Continued

= Client host / Login Node / Submission Node

Hosts that are only capable of submitting jobs to the cluster. Client hosts run LSF commands and act only as submission hosts. Client
hosts do not execute jobs or run LSF daemons

= Master host

Where the master LIM and mbatchd run. An LSF server host that acts as the overall coordinator for that cluster. Each cluster has

one master host to do all job scheduling and dispatch. If the master host goes down, another LSF server in the cluster becomes the
master host.

All LSF daemons run on the master host. The LIM on the master host is the master LIM.

LSF Hosts Continued

* Hosts are Opened and Closed by:
Close a host

[root@master |sf cnnfigdir]# badmin -C "disk problem” nodel
Close <nodel> one
[root@master Ist confiqdir]#

[root@master1sft configdir]# bhosts

HOST _MNMAME STATUS JL/u MLASE NI1OBS RUM 55UsP ususp RSYW
masrerlsft ok - B o 0 (] o 0
nodel closed - & 0 (8] 0 0 0
nodaz ok — B O (] (] o O
slavelsf ok - g8 O 0 O O O

[root@masterlsf configdirl#

Open a host

[root@master |st configdir]# badmin hopen nodel
Open <nodel> done

LSF Hosts Continued

* Use badmin hhist to display administrator comments for closing and opening hosts:

[testuserl@masterisf ~]$ bjobs -p
No pending job found
[testuserli@masterisf ~]$

I
[root@master1sf configdir]# badmin hhist

nodel
Fri Jan 18 18:53:49: Host <nodel> closed by administrator <root> memory problem.
Fri Jan 18 18:59:05: Host <nodel> oeened by administrator <root>.
sun Jan 20 11:54:36: Host <nodel> closed by administrator <root>.
sun Jan 20 11:54:43: Host <nodel> ogened by administrator <root>.
Sun Jan 20 11:55:02: Host <nodel> closed by administrator <root> disk problem.
sun Jan 20 11:59:17: Host_<nodel> opened by administrator <root>.
[root@master1sf configdir]#
* bhosts -I| node1 also displays the comment text
[root@masterlsf configdirl# bhosts -1 nodel
'HOST nodel
STATUS CPUF L /u MAX NJOBS RUN S5uUseP ususe RSV DISPATCH_WINDOW
closed_rFull 60.00 - 3 8 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:
riss rim rlSm ut Pg io 1s +E Tmp swp mem slots
Total 0.9 0.1 0.0 60%¥ 0.0 62 0O 1160 39G 7.9G 14.3G 0
Reserved 0.0 0.0 0.0 0% 0.0 0 O o) oM oM oM -
LOAD THRESHOLD USED FOR SCHEDULING:
riss rim rl1lS5Sm ut Pg io 1s it tmp swp mem
Toadsched - - - - - - - - - = 3

Toadstop - - - - -

[root@masterlist configdirl#

LSF Interactive Batch Job & Tasks

» Interactive batch job

A batch job that allows you to interact with the application and still take advantage of LSF scheduling policies and fault
tolerance. All input and output are through the terminal that you used to type the job submission command.

When you submit an interactive job, a message is displayed while the job is awaiting scheduling. A new job cannot be
submitted until the interactive job is completed or terminated.

The bsub command stops display of output from the shell until the job completes, and no mail is sent to you by default. Use
Ctrl-C at any time to terminate the job.

o Commands
o bsub -I — Submit an interactive job

[testuserl@masterisft ~]% bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOBE_MAME SUBMIT_TIME
1486 testuse RUN interactiv masterlsf node2 * 8§ ./xhpl Jan 20 12:03
[testuserl@masterlsft 1%

» Interactive task

A command that is not submitted to a batch queue and scheduled by LSF, but is dispatched immediately. LSF locates the
resources needed by the task and chooses the best host among the candidate hosts that has the required resources and is
lightly loaded. Each command can be a single process, or it can be a group of cooperating processes.

Tasks are run without using the batch processing features of LSF but still with the advantage of resource requirements and
selection of the best host to run the task based on load.

~ Commands
o lsrun — Submit an interactive task

LSF Interactive Batch Job & Tasks

[testuserl@master1sf ~J$ 1srun -m nodel fopt/software/openmpil. 6/bin/mpirun -n 8 . /xhpl

HPLinpack 2.1 -- High-rPerformance Linpack benchmark -- October 26, 2012
written bg A. Petitet and R. Clint whaley, Innovative Computing Laboratory, UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK

Modified by Julien Langou, uUniversity of Colorado Denver

An explanation of the input/output parameters fTollows:

T/V : wall time / encoded variant.

N : The order of the coefficient matrix A.

NB : The partitioning blocking factor.

P : The number of process rows.

Q : The number of process columns.

Time : Time in seconds to solve the linear system.

Gflops : Rate of execution for solving the linear system,

The following parameter values will be used:

N : 10000

NB : 4

FMAP : Ruw—magur process mapping
P :

Q : 2

PFACT : rRight

NEMIN = 4

NDIV : 2

RFACT - Right

BCAST : iring

DEPTH : 0

SWAP : Mmix (threshold = 64)
L1 : transposed form

u : Ttransposed form
EQUIL : vyes

ALIGN : B double precision words

LSF Host types and host models

* Host types
Hosts in LSF are characterized by host type and host model. Host type X86_64
The Combination of operating system version and host CPU architect | |

All computers that run the same operating system on the same computer | | |
architecture are of the same type in other words, binary-compatible with each = opefron240 Opetrong4 Intel_EMA4T Intel_TAG4

other.
Each host type usually requires a different set of LSF binary files. Hast models
Commands: Isinfo -t — View all host types

* Host model
The combination of host type and CPU speed (CPU factor) of the computer.
All hosts of the same relative speed are assigned the same host model.
The CPU factor is taken into consideration when jobs are being dispatched.
Commands:
Isinfo -m — View a list of currently running models

Isinfo -M — View all models

LSF Resources

LSF Resources

= Resources

LSF resources are objects in the LSF system resources that LSF uses track job requirements and schedule jobs according to their
availability on individual hosts.

* Resource usage

The LSF system uses built-in and configured resources to track resources availability and usage. Jobs are scheduled according to the
resources available on individual hosts.

LSF Collects information such as:

Total CPU time consumed by all processes in the job.

Total resident memory usage in KB of all currently running processes in a job

Total virtual memory usage in KB of all currently running processes in a job

Currently active process group ID in a job

Currently active processes in a job On UNIX, job-level resource usage is collected through PIM.
Commands:

Isinfo : View the resources available in your cluster

bjobs —I : View current resource usage of a job

o o o O 0O

LSF Resource

Load indices
Load indices measure the availability of dynamic, non-shared resources on hosts in the cluster. Load indices built into the LIM are

updated at fixed time intervals
Commands:

Isload | : View all load indices
bhosts —| View load levels on a host

External load indices
Defined and configured by the LSF administrator and collected by an External Load Information Manager (ELIM) program. The ELIM

also updates LIM when new values are received.

Commands:
Isinfo : View external load indices

Static resources
Built-in resources that represent host information that does not change over time, such as the maximum RAM available to user
processes or the number of processors in a machine. Most static resources are determined by the LIM at startup.

Load thresholds Two types of load thresholds can be configured by your LSF administrator to schedule jobs in queues. Each load
threshold specifies a load index value:

LSF Resource usage Continued

Commands
bhosts -l : View suspending conditions for hosts
bqueues - : View suspending conditions for queues

bjobs -l : View suspending conditions for a particular job and the scheduling thresholds that control when a job is resumed
= Runtime resource usage limits

Limit the use of resources while a job is running. Jobs that consume more than the specified amount of a resource are signaled or
have their priority lowered.

* Hard and soft limits
Resource limits specified at the queue level are hard limits while those specified with job submission are soft limits.
Resource allocation limits

Restrict the amount of given resource that must be available during job scheduling for different classes of jobs to start, and which
resource consumers the limits apply to. If all of the resource has been consumed, no more jobs can be started until some of the
resource is released.

= Resource requirements (bsub -R)

Restrict which hosts the job can run on. Hosts that match the resource requirements are the candidate hosts. When LSF schedules a
job, it collects the load index values of all the candidate hosts and compares them to the scheduling conditions. Jobs are only
dispatched to a host if all load values are within the scheduling thresholds.

Commands
bsub -R — Specify resource requirement string for a job

LSF Users

= LSF user
A user account that has permission to submit jobs to the LSF cluster.

LSF administrator

In general, you must be an LSF administrator to perform operations that will affect other LSF users. Each cluster has one primary LSF
administrator, specified during LSF installation. You can also configure additional administrators at the cluster level and at the queue

level,

Primary LSF administrator

The first cluster administrator specified during installation and first administrator listed in Isf.cluster.cluster_name . The primary LSF
administrator account owns the configuration and log files. The primary LSF administrator has permission to perform cluster wide
operations, change configuration files, reconfigure the cluster, and control jobs submitted by all users.

Queue administrator
An LSF administrator user account that has administrative permissions limited to a specified queue.

LSF Scheduling

IBM LSF Scheduling and dispatch

LSF allows mitiple schedulling policies in the same cluster. LSF has several queue scheduling policies such as, preemptive, fairshare, and
hierarchical fairshare.

o First-come, first-served(FCFS) scheduling

By default, jobs in a queue are dispatched in FCFS order. This means that jobs are dispatched according to their order in the
queue.

o Service level agreement(SLA) scheduling

An SLA in LSF is a “just-in-time" scheduling policy that schedules the services agreed to between LSF administrators and LSF
users. The SLA scheduling policy defines how many jobs should be run from each SLA to met the configured goals.

o Fairshare Scheduling

If you specify a fairshare scheduling policy for the queue or if host partitions have been configured, LSF dispatches jobs between
users based on assigned user shares, resources usage, or other factors.

o Preemption
You can specify desired behavior so that when two or more jobs compete for the same resources, one job preempts the other.

Preemption can apply to not only job slots, but also to advance reservation)reserving hosts for particular jobs) and
licenses(using IBM Platform License Scheduler).

o Backfill

Allows small jobs to run on job slots reserved for other jobs, provided the backfilling job completes before the reservation time
expires and resource usage is due.

IBM LSF Scheduling and dispatch continued

= Scheduling and dispatch

Jobs are scheduled in regular intervals(5 seconds by default). Once jobs are scheduled, they can be immediately dispatched to
hosts.

To prevent overloading any host, by default LSF waits a short time between dispatching jobs to the same host.
= Dispatch Order
Job are not necessarily dispatched in order of submission.

Each queue has a priority number set by the LSF Administrator when the queue is defined. LSF tries to start jobs from the highest
priority queue first.

LSF considers jobs for dispatch in the following order:

o For each queue, from highest to lowest priority. If multiple queues have the same priority, LSF schedules all the jobs from
these queues in first-come, first-serverd order.

o For each job in the queue, according to FCFS order.

o If any host is eligible to run this job, start the job on the best eligible host, and mark that host ineligible to start any other
job until JOB_ACCEPT_INTERVAL has passed.

Thank You

