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Abstract

The solar magnetic field governs all the solar activities occurring at the outer

atmosphere of Sun. The magnetic field lines in the solar atmosphere are stressed

or deformed by the convective motion at the photosphere. These stressed magnetic

field configuration is believed to be responsible for activity phenomena like flares,

filament eruptions, coronal mass ejections (CMEs) etc. Majority of the eruptive

events occur in the regions of strong and complex magnetic fields called as ac-

tive regions. These eruptive phenomena directly affect near-Earth space weather

by the accompanying high-energy radiation and charged particles. In order to

predict these events a detailed investigation of solar magnetic structures is re-

quired. Thus, measurement of solar magnetic fields is of utmost importance in

solar physics. However, measurement of solar magnetic field is done remotely by

measuring the polarization of solar spectral lines induced by Zeeman effect. Po-

larization measurement is quite a challenging task because the polarization state

of incoming light can be modified due to several factors/components (Earth atmo-

sphere, Telescope, other optical components) coming in the path of light beam.

Multi-Application Solar Telescope (MAST), a 50 cm off-axis Gregorian tele-

scope, was installed at Udaipur Solar Observatory (USO), India, which has been

made operational recently. For understanding the evolution and dynamics of so-

lar magnetic and velocity fields, an imaging spectropolarimeter has been developed

at USO as one of the back-end instruments of MAST. This system consists of a

narrow-band imager and a polarimeter. This instrument is intended for the si-

multaneous observations in the spectral lines at 6173 Å and 8542 Å, which are

formed in the photosphere and chromosphere, respectively. The focus of this the-

sis is on the development of a polarimeter for measuring the polarization signal

induced in the photosphere and chromosphere. The polarimeter includes a linear

polarizer and two sets of Liquid Crystal Variable Retarders (LCVRs). It is known

that the retardance of LCVR depends on the voltage and temperature. Voltage at



iv

a constant temperature is used for fast modulation.

However, fluctuations in the temperature and voltage reduces the accuracy

in the polarimetric measurements. Thus we have characterized LCVRs of the

polarimeter for various combinations of voltages and temperatures. Further, to

achieve a sufficient polarimetric accuracy of 10−3 , it is necessary to calibrate the

polarimeter and remove the cross-talk arising from the polarimeter itself. The

calibration of the polarimeter is performed by introducing a calibration unit (CU)

consisting of a linear polarizer and a zero order quarter wave plate (QWP). Both

elements are placed in computer controlled rotating mounts. The calibration unit

is placed just after the folding mirror (M6) of MAST. Thus, during operations with

MAST, calibration unit is used to generate known polarization by rotating QWP.

The polarimeter response function or X-matrix is determined from a comparison

between created input and measured output. The application of the inverse matrix

X−1 on the measured Stokes vector removes the cross-talk arised due to properties

of the polarimeter components.

In the thesis, spectropolarimetric observations of various active regions ob-

tained with the imaging spectropolarimeter for MAST are also presented. For

verification, we have made comparison of line-of-sight observations of a selected

active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the

Solar Dynamics Observatory (SDO) with that obtained from observations in the

spectral line 6173 Å from MAST telescope. We found good agreement between

both the line-of-sight observations, considering the fact that MAST observations

are limited by atmospheric seeing.

It is important to note that MAST is a nine mirror system with two off-

axis parabolic and seven plane oblique mirrors, the oblique reflections of these

mirrors complicate the measurement as the instrumental polarization corrupts

the incoming radiation. The polarization induced due to mirrors of telescope is

linear. In order to get the vector magnetic field Stokes Q, and U profiles need to

corrected using telescope matrix. We have planned to obtain the telescope matrix
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both theoretically and experimentally. The thesis is concluded with a discussion

on the ongoing experiment for the determination of telescope matrix using sheet

polarizer.
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2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence Series, Vol. 7735 of Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, p. 6

Durrant, C. J.: 1988, The atmosphere of the sun

Foukal, P. V.: 2004, Solar Astrophysics, 2nd, Revised Edition

Golub, L. and Pasachoff, J. M.: 2009, The Solar Corona

Haller, I.: 1975, Progress in Solid State Chemistry 10, 103

Hanle, W.: 1924, Zeitschrift fur Physik 30, 93

Hecht, E.: 2001, Optics 4th edition

Heredero, R. L., Uribe-Patarroyo, N., Belenguer, T., Ramos, G., Sánchez, A.,
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