STABLE ISOTOPE SYSTEMATICS IN CAVE CALCITES: IMPLICATIONS TO PAST CLIMATIC CHANGES IN TROPICAL INDIA

A Thesis submitted to

DEVI AHILYA VISHWAVIDYALAYA, INDORE

for

THE DEGREE OF DOCTOR OF PHILOSOPHY

in PHYSICS

by

Madhusudan G. Yadava

PHYSICAL RESEARCH LABORATORY

NAVRANGPURA

Ahmedabad 380 009

India

March 2002

Contents		Page
1	Introduction	
	1.1 Speleothems	10
	1.2 Basis of isotopic exchange	11
	1.3 Purpose of the study	16
	1.4 Sample locations	17
2	Past climate and its reconstruction from speleothems	
	2.1 Past climate from other proxies	30
	2.1.1 Present Global Scenario	30
	2.1.2 Holocene climate in India	31
	2.2 Climate reconstruction from speleothems	33
3	Experimental techniques	
	3.1 Sampling	37
	3.2 δ^{18} O and δ^{13} C measurements of carbonate samples	37
	3.3 δ^{18} O measurements of water samples	52
	3.4 δD measurements of water samples	56
	3.5 Radiocarbon dating of speleothems	58
	3.6 Measurement of trace element concentrations	63
	3.7 Mineralogical studies	66
	3.8 Measurement of thickness and gray levels	67
	3.9 δ^{13} C of seepage water	67
4	Results and discussions	
	4.1 Speleothem Chronology	69
	4.1.1 Fractionation correction	69
	4.1.2 Dilution of ¹⁴ C activity	71
	4.1.3 Radiocarbon ages	73

4.2	Speleothems from Gupteswar and Dandak caves	79
	4.2.1 Rainfall reconstruction	88
	4.2.2 Comparison with other palaeoclimatic results	91
4.3	Caves in the Uttar Kannada District	92
	4.3.1 Stalagmite from Akalagavi cave	93
	4.3.2 Thickness measurements	94
	4.3.3 δ^{18} O and δ^{18} C variations in AKG	97
	4.3.4 Rainfall reconstruction from AKG	99
	4.3.5 Gray level measurements from AKG	103
4.4	Stalactite from Sota cave	108
	4.4.1 δ^{18} O and δ^{18} C variations in SOT	109
	4.4.2 Rainfall reconstruction from SOT	111
	4.4.3 δ^{18} O and δ^{18} C variations in straws from Sota cave	112
4.5	Comparison of speleothem δ^{13} C and δ^{18} O	113
	4.5.1 Dependence of the mean δ^{13} C values	113
	4.5.2 δ^{13} C vs. δ^{18} O in speleothems	119
	4.5.3 Bedrock δ^{13} C values and their significance	121
	4.5.4 δ^{13} C value of the seepage water from DAN	122
	4.5.5 Growth rate dependence	123
	4.5.6 Comparative study of speleothem $\delta^{18}O$	125
	4.5.7 Continental effect in speleothems	128
4.6	δ^{18} O and δ D of water samples	129
	4.6.1 Cave drip waters	129
	4.6.2 Water from surface, ground and cyclone system	136
	4.6.3 Amount effect observed in the south-west monsoon precipitation	139
	4.6.4 General rainfall equation based on amount effect	142
	4.6.5 δD of water samples	144
4.7	Comparison with the other records	151
	4.7.1 Comparison with the tree/varve data	151
	4.7.2 Comparison with the meteorological data	155

4.7.3 Comparison with the historical famine years	161
4.8 Mineralogy of speleothems	162
4.8.1 Stable isotopes and aragonite percentage	163
4.9 Trace elements in speleothems	170
4.9.1 Causes of variations	172
4.9.2 Application of trace elements in speleothems	173
4.9.3 Mg, Sr and Ba concentration variation in DAN	175
4.9.4 Temperature reconstruction	179
4.9.5 Effect of environmental changes	182
4.9.6 Rainfall reconstruction	184
5 Summary, conclusions and suggestions for future research	
5.1 Summary	186
5.2 Conclusions	190
5.3 Scope for the future work	191
List of References	193

For Fulltext Please Contact

То

Author