Some Studies in Violation of Symmetry Principles in Particle Physics

A THESIS

submitted for the Award of Ph.D degree of

Mohan Lal Sukhadia University

in the

Faculty of Science

by

Rishikesh D. Vaidya

Under the Supervision of

Dr. Subhendra Mohanty
Physical Research Laboratory

Theoretical Physics Division
Physical Research Laboratory, Ahmedabad.

MOHAN LAL SUKHADIA UNIVERSITY, UDAIPUR.

Year of submission: 2002

Certificate

CERTIFIED that the work incorporated in the thesis

Some Studies in Violation of Symmetry Principles in Particle Physics

submitted by Mr. Rishikesh D. Vaidya, was carried out by the candidate under my guidance at the Physical Research Laboratory, Ahmedabad. The work presented in this thesis is original and has not formed basis for the award of any degree or diploma by any university or institution.

Dr. Subhendra Mohanty
(Supervisor)

...those authors, whose pedagogic books and reviews have immensely influenced my understanding of Physics. The view from the window they provided, was just too beautiful.

Acknowledgments

The work presented in this thesis has been done in collaboration with Prof. Anjan Joshipura. I express my most sincere gratitude for his timely help in the difficult periods of my thesis. His kind nature and patience always encouraged me to explore the subject. I have learnt a lot from his vast expertise and insight in the subject. I thank my supervisor Dr. Subhendra Mohanty for many useful discussions. Physics or beyond Physics, it was fun talking to him.

I also thank Prof. Utpal Sarkar for guiding me through initial phase of my work. Thanks are due to Prof. Jitendra Parikh for helpful discussions and kind gestures of help during the period of my thesis. It was always a pleasure to discuss with Prof. Saurabh Rindani. I also thank Prof. D. P. Dewangan, Dr. Arul Lakshminarayan and Dr. Sai Iyer for giving pedagogic lectures in the course work.

My association with Dr. Raghavan Rangarajan and Dr. Jitesh Bhatt, deserves a special mention. I have enjoyed every moment of discussion with Dr. Rangarajan. Discussions on basic Physics with Dr. Bhatt have been a learning experience. His critical scrutiny has taught me lessons in precision.

This acknowledgment would be incomplete without the mention of the names of Gautam, Sudhir and Shajesh with whom I have enjoyed countless hours of discussions on basic physics. It was fun to listen to Gautam's brilliant solutions to problems in basic physics. Having a friend and collaborator in Sudhir was a major relief when I felt lost in the problem. It was such a relief to be able to run to him anytime. Shajesh's insistence on working out things was a major inspiration. To acknowledge him would be to undermine the stature of an enduring friendship. I would also like to thank my friend Sankar who patiently solved my queries regarding computers. I thank all other colleagues at PRL for making my stay memorable. I thank PRL library, Computer Center, Administration and Engineering section, for their kind services.

Thanks are due to Raokaka who instilled in me the spirit of scientific inquiry. It was a pleasure learning my first lessons in Physics from him.

Thanks to Mummy, Papa, Shilpa, Shraddha and Mama for whole heartedly encouraging me in this pursuit. All that they have done for me is beyond acknowledgment.

Last but not the least, thanks Kaushar for being there when it mattered.

Rishikesh Vaidya PRL, Ahmedabad.

Contents

1	Intr	roduction	1											
	1.1	1.1 Particle Physics: A Paradigm in Reductionist Approach												
1.2 The Standard Model: A Dictation of Symmetries and Violations														
		1.2.1 Space-time Symmetries: Building the Blocks	3											
		1.2.2 Internal Symmetries: Gluing the Blocks	3											
		1.2.3 The Standard Model Lagrangian	1											
	1.3	SM: Vices and Virtues	8											
		1.3.1 Naturalness: An Excuse for Supersymmetry?	. 1											
	1.4 Supersymmetry													
		1.4.1 Minimal Supersymmetric Standard Model (MSSM)	. :											
	1.5	Motivation and Outline of Thesis	.7											
2	Rer	nomalization Group Equation 2	2											
	2.1	1 The basic idea												
	2.2	2 RG Flow in MSSM												
	2.3	RG Scaling and R-parity Violation	30											
3	Neutrino Anomalies 34													
	3.1	Neutrino Mass: A Harbinger for New Physics	34											
	3.2	3.2 Theoretical Issues in Neutrino Masses and Mixing												
		3.2.1 General Dirac + Majorana Mass term	37											
		3.2.2 Seesaw Mechanism and Small Neutrino Mass	8											
		3.2.3 Radiative Mechanisms	39											
	3.3	Neutrino Oscillations in Vacuum and Matter	1											
	3.4	3.4 Experimental Indications												
		3.4.1 The Solar Neutrino Problem	13											
		3.4.2 Atmospheric Neutrino problem	16											
	3.5	Evidence for Massive Neutrinos	17											
		3.5.1 The SK Results for Atmospheric Neutrinos	17											

CONTENTS ii

		3.5.2	SK Results for Solar neutrinos	9
		3.5.3	The SNO results	0
		3.5.4	The Borexino Experiment	2
		3.5.5	Reactor and Accelarator Experiments	2
4	A E	Brief In	terlude on R-parity 5	9
	4.1	From .	R-symmetry to R -parity	9
	4.2	Disting	guishing leptons and Higgs: Breaking an $SU(4)$ 6	1
5	Bili	near R	Violation and Bimaximal Mixing 6	3
	5.1	Introd	uction	3
	5.2	Source	es of neutrino masses	6
		5.2.1	Neutrino masses and mixing	9
	5.3	Neutri	no mixing and departure from flavour universality	1
	5.4	Summ	ary	4
	5.5	Appen	dix A	5
	5.6	Appen	dix B	7
	5.7	Appen	dix C	7
6	Tril	inear <i>l</i>	R Violation and Neutrino Anomalies 8	5
	6.1	Introd	uction	5
	6.2	Forma	lism	8
		6.2.1	MMM and neutrino anomalies	1
	6.3	Mode	ds with λ_{ijk}	5
		6.3.1	Models with λ_{ijk} and Neutrino Anomalies	8
		6.3.2	Illustrative Model	0
	6.4	Discus	sion	2
	6.5	Appen	ndix A: Relevant RG Equations	3
	6.6	Appen	adix B: Comments on Numerical Evaluation of RG Equations 10	4
7	U(1)) Symr	metry and R Violation	1
	7.1	Introd	uction	1
		7.1.1	A brief detour on GS Mechanism	2
	7.2	U(1) S	Symmetry and R Violation	4
	7.3	U(1)	symmetry and ϵ problem	5
	7.4	Struct	ures of trilinear couplings	8
		7.4.1	$l_i + h_2 \gtrsim 24 \dots \dots \dots \dots \dots \dots 12$	1
		$7\ 4\ 2$	$l_i + h_2 < 0 \qquad 12$	1

8	Epil	ogue														134
	7.7	Appendix	 	 •			•				 					127
	7.6	Summary	 								 					126
	7.5	Models	 								 					 123
C	ONTE	ENTS														iii

For Full text Please Contact

To

rishi@theory.tifr.res.in