Subluminal and Superluminal Propagation of Electromagnetic Fields

A THESIS

submitted for the Award of Ph.D. degree of Mohan Lal Sukhadia University

in the

Faculty of Science

BY

Tarak Nath Dey

Under the Supervision of

Prof. G.S. Agarwal

QUANTUM OPTICS & QUANTUM INFORMATION DIVISION PHYSICAL RESEARCH LABORATORY, AHMEDABAD

MOHANLAL SUKHADIA UNIVERSITY, UDAIPUR

Year of submission: 2004

Contents

A	Acknowledgement						
A	Abstract						
1	Intr	oduction	1				
	1.1	Basic Propagation Equation	2				
	1.2	Interaction of Radiation with Matter	7				
	1.3	Induced Atomic Coherences in Two Level Atomic Systems	10				
	1.4	Control of Susceptibility in Multilevel Systems	15				
	1.5	Group Velocity and its Kinematics	19				
	1.6	Subluminal Pulse Propagation	22				
	1.7	Storage and Retrieval of Light Pulses	25				
	1.8	Superluminal Pulse Propagation	27				
2	From Subluminal to Superluminal Propagation						
	2.1	Model System and Its Basic Equations	32				
	2.2	Numerical Results and Discussion	34				
	2.3	Distortion Free Superluminal Pulse Propagation	37				
	2.4	Doppler Effect on Group Index Calculation	39				
	2.5	Kinematics of Superluminal Light	41				
	2.6	Summary	43				
3	Storage and Retrieval of Light Pulses						
	3.1	Dynamics of Pulse Propagation	45				
	3.2	Numerical Simulations	47				
		3.2.1 Pulse Propagation: Effect of Nonlinearities	47				
		3.2.2 Storage and Retrieval of Electromagnetic Fields at Moderate Powers	48				

		3.2.3 Storage and Retrieval of Information on Modulating Signal	54
		3.2.4 Dynamical Evolution of the Control Field	55
		3.2.5 Nonadiabatic Results	55
	3.3	Adiabaton Theory and Its Relation to Light Storage	57
	3.4	Summary	59
4	Sub	oluminal and Superluminal Propagation of Intense Pulses at Room Temperature Solid	60
	4.1	Saturated Absorption	61
	4.2	Model Description and Dynamical Equations	61
	4.3	Numerical Results on Ultra-slow Pulse Propagation	64
	4.4	Comparison between Two and There Level Model for Ruby	66
	4.5	Reverse Saturated Absorption	68
	4.6	Superluminal Pulse Propagation in Alexandrite	69
	4.7	Summary	72
5	Satu	urated Absorption for Production of Slow Light in Doppler-Broadened Two Level Sys-	
	tem	s	73
	5.1	Basic Equation for Driven Two Level System	73
	5.2	Saturation Absorption Spectroscopy and Lamb Dip	77
	5.3	Susceptibilities $\chi(\omega)$ of the Doppler Broadened Medium $\ \ldots \ \ldots \ \ldots$	78
	5.4	Pulse Propagation and Verification	80
	5.5	Summary	83
6	Stop	ppage of Light in Hot Atomic Gases	84
	6.1	Group Velocity and Spatial Dispersive Hot Atomic Medium	85
	6.2	Model Configuration and Its Basic Equations	86
	6.3	Numerical Results on Stoppage of Light	89
	6.4	Summary	92
C	onclu	sions and Future Outlook	93
A	ppen	dix	96
R	eferei	nces	97
Li	st of	Publications 1	08

For Fulltext Please Contact To

Author