High Angular Resolution Studies of Late-type Stars by Lunar Occultations in the Near-Infrared

A Thesis submitted to Gujarat University

for The degree of **Doctor of Philosophy in Physics**

> by SOUMEN MONDAL

Physical Research Laboratory Ahmedabad-380 009 INDIA

March 2004

Contents

1	Inti	roduction	1
	1.1	Introduction	1
	1.2	High Angular Resolution Imaging	2
	1.3	High Angular Resolution beyond the Diffraction Limit	5
		1.3.1 Optical/Infrared Long Baseline Interferometry	5
		1.3.2 Historical Perspectives of Lunar Occultations of Stellar Sources	8
		1.3.3 Lunar Occultation Technique	9
		1.3.4 Scope of Lunar Occultations	11
	1.4	Stellar evolution and AGB stars	12
	1.5	Layout of the Thesis	18
2	Inst	trumentation, Technique and Data Analysis	19
	2.1	Two channel high speed infrared photometer	19
		2.1.1 Basic design of the instrument	20
		2.1.2 Instrument Performance	26
	2.2	Lunar occultation theory and Data Analysis	28
		2.2.1 Data Analysis: Nonlinear Least Square Technique	29
		2.2.2 Model Independent Approach (MIA)	36
	2.3	Effective Temperature and Errors	40
3	Dus	st shell structure around Wolf-Rayet star WR104	41
	3.1	Introduction	41
	3.2	WR104	42
		3.2.1 Circumstellar Dust Shell around WR104	42
		3.2.2 High Angular Resolution measurements of WR104	43
		3.2.3 Observations and Data Analysis	45
		3.2.4 Results and discussion	48
		3.2.5 Conclusion	54

4	Asy	mmetric spatial structure in the atmosphere of Mira variable U Ori	55
	4.1	Introduction	55
	4.2	Asymmetric spatial structures in Miras	56
	4.3	Polarization Correlation to Asymmetries	57
	4.4	Studies on U Orionis	58
		4.4.1 High Angular Resolution measurements of U Ori Optical to Radio regions	58
		4.4.2 Polarization in U Ori	59
		4.4.3 Observations and Data Analysis	59
		4.4.4 Results and Discussions	65
		4.4.5 Conclusion	67
5	Mir	as and Semi-Regular Variables	68
	5.1	Introduction	68
	5.2	Observed diversity in multi-wavelength angular size measurements	69
	5.3	Mode of Pulsation	72
	5.4	Observations	73
	5.5	Result and Discussions	75
		5.5.1 Angular diameter measurements	75
		5.5.2 Bolometric flux and effective temperatures	91
		5.5.3 Linear radii and mode of pulsation	95
	5.6	Conclusion	98
6	Ang	gular diameter of K - M Giants and Supergiants	99
	6.1	Introduction	99
	6.2	Observations & Results	100
		6.2.1 Bolometric Flux and Effective Temperature	103
		6.2.2 Individual Source details	105
	6.3	The Scale of Effective Temperature	125
7	Sur	nmary and Future Prospects	129
	7.1	Summary	129
	7.2	Future Prospects	131
Bi	iblio	graphy	134

For Fulltext Please Contact To

Author