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Abstract

The advances in cooling and trapping of atoms present the unique op-

portunity to study exotic many body phases which were previously elusive

in conventional condensed matter systems. In these systems, the inter

atomic interaction can be tuned via Feshbach resonances and the popu-

lation of each atomic species can be controlled. In this thesis, we study

Cooper pairing in two component degenerate atomic Fermi gases. The su-

perfluid systems with matched Fermi surfaces are well described by cele-

brated Bardeen-Cooper-Schrieffer (BCS) theory. We discuss, in this frame-

work, the crossover from Bardeen-Cooper-Schrieffer (BCS) limit of weakly

bound Cooper pairs of fermionic atoms to the Bose-Einstein condensate

(BEC) of diatomic molecules as the strength of the interaction is varied. In

presence of mismatched Fermi surfaces, however, the system is proposed

to admit variety of exotic superfluid phases.

This mismatch can arise due to population imbalance or the mass dif-

ference between the two trapped components or both. We, in particular,

study the breached pairing phase which is potential candidate as a ground

state for such imbalanced systems. In this state, excess unpaired fermions

occupy the negative quasi-particle energies thereby minimizing the thermo-

dynamic potential. Moreover, it exhibits gapless modes and is also termed

as gapless superfluidity.

We consider a variational ground state for the system of nonrelativistic
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fermions with a four fermion point interaction to model the phase structure

of the ultracold atomic Fermi mixture with equal and unequal population

and the mass. We find that breached pairing phase with one Fermi surface

which admits only one gapless mode, is the stable phase. This rules out

the proposal that mass asymmetry between the pairing components can

lead to breached pairing with two Fermi surfaces also referred to as interior

gap state. We also present the temperature effects on these systems within

mean field approximation. The temperature effects are taken into account

by thermal Bogoliubov transformation. We then extend the formalism from

homogeneous system to trapped systems where present day experiments

are carried out.

We study equal mass population imbalanced two-component atomic Fermi

gas with unequal trap frequencies (ω↑ 6= ω↓) at zero temperature using

the local density approximation (LDA). We consider the strongly attracting

Bose-Einstein condensation (BEC) limit where polarized (gapless) super-

fluid, breached pairing phase with one Fermi surface (BP1), is stable. The

system exhibits shell structure: unpolarized superfluid → gapless superfluid

(BP1) → normal state. Compared to the trap symmetric case, when the ma-

jority component is tightly confined the gapless superfluid shell grows in size

leading to reduced threshold polarization to form a polarized (gapless) su-

perfluid core. In contrast, when the minority component is tightly confined,

we find that the superfluid phase is dominated by the unpolarized super-

fluid phase with the gapless phase forming a narrow shell. The shell radii

for various phases as a function of polarization at different values of trap

asymmetry are presented and the features are explained using the phase

diagram.
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