ISOTOPE GEOCHEMISTRY OF SIWALIK SEDIMENTS AND SIGNATURE OF PAST CLIMATE CHANGE

PRASANTA SANYAL

Ph.D. Thesis December, 2004

Physical Research Laboratory Ahmedabad-380 009, India

ISOTOPE GEOCHEMISTRY OF SIWALIK SEDIMENTS AND SIGNATURE OF PAST CLIMATE CHANGE

Submitted to

The Maharaja Sayajirao University of Baroda
Vadodara, India

By

Prasanta Sanyal

For the degree of

Doctor of Philosophy in Geology

December, 2004

Planetary and Geosciences Division Physical Research Laboratory Navrangpura, Ahmedabad-380009, India

Certificate

I hereby declare that the work presented in this thesis is original and has not formed the basis for the award of any degree or diploma by any university or institution.

Prasanta Sanyal (author)

Certified by

Dr. S.K. Gupta (Guide) Planetary and Geosciences Division Physical Research Laboratory Ahmedabad-380 009, India **Prof. P.P.Patel** (Co-guide) Department of Geology M.S. University of Baroda Vadodara-390 002, India

CONTENTS

Chapter-1 Introduction	1-12
1.1 Introduction	2
1.2 Previous studies from Siwalik	4
1.3 Causes of vegetational change	6
1.4 Motivation of present work	9
1.5 Objectives of present study	10
1.6 Out line of the thesis	11
Chapter-2 Geology, materials and methods	13-43
2.1 Introduction	14
2.1.1 Siwalik Basin	15
2.2 Age of the Siwalik Strata	15
2.2.1 Sampling in different sections and age of samp	oles 18
2.2.1a Sampling in Siwalik sections	18
2.2.1b Sampling in Gondwana sections	19
2.3 Sedimentological attributes of Siwalik	20
2.3a Sedimentology of Kangra Sub-basin	20
2.3b Sedimentology of Mohand Rao section	22
2.3c Sedimentology of Haripur Khol section	23
2.3d Sedimentology of Surai Khola section	24
2.4 Palaeosol Facies	27
2.4a Palaeosol facies of Kangra Sub-basin	27
2.4b Palaeosol facies of Mohand Rao section	30
2.4c Palaeosol facies of Haripur Khol section	30
2.5 Gondwana Supergroup	31
2.5a Denwa Formation	32
2.5b Bagra Formation	32
2.5c Age of Denwa and Bagra Formation	33
2.6 Materials and Method	34

2.6.1 Analysis of soil carbonate nodules	34
2.6.2 Analysis of sandstone nodules	34
2.7 Experimental Techniques	34
2.7.1 Carbon and oxygen isotope ratio of carbonate	34
2.7.2 Carbon isotope ratio of organic matter	37
2.7.3 Hydrogen isotope ratio of pedogenic Clay minerals	38
2.7.3a Dissolution of calcium carbonate from nodules	38
2.7.3b CBD treatment in clay	38
2.7.3c Production of hydrogen from pedogenic Clay	38
2.7.4 Stable isotope ratio measurement	39
2.7.4a Reproducibility of standards and inter-laboratory	40
comparison for CO ₂	
2.7.5 Calibration of isotope data	43
Chapter-3 Signature of monsoon variation and vegetational change	44-65
in Siwalik	
3.1 Introduction	45
3.2 Results	46
3.3 Discussion	47
3.3.1 Information on vegetation change from carbon	47
isotope ratio of soil carbonate and associated organic	
matter	
3.3.2 Relationship between δ^{13} C values of soil carbonate	51
and soil organic matter	
3.3.3 Supporting evidence of growing season change in	56
Haripur Khol	
3.4 Oxygen isotope ratios of soil carbonate	57
3.4a Source of scatter in data	57
3.4b Implication of δ^{18} O variation	58
3.5 Comparison of monsoon evolution with other proxies	60
3.6 Causes of C ₄ plant appearance	63
3.7 Conclusions	64

Chapter-4	Pala	aeovegetational reconstruction based on early diagenetic	66-83
	car	bonate cement of sandstone nodules	
	4.1	Introduction	67
	4.2	Evidences for early diagenetic character of the cement	68
	4.3	Mudstone facies with concretions in Mohand Rao Section	68
	4.4	Results	68
	4.5	Discussion	70
		4.5.1 Carbon isotope ratio of soil carbonate and early	70
		diagenetic carbonate cement of sandstone	
		4.5.2 Comparison between δ^{13} C of early diagenetic carbonate	77
		and soil carbonate	
		4.5.3 Oxygen isotope ratio of soil carbonate and early	77
		cement of sandstone diagenetic carbonate	
	4.6 Timing and nature of change in vegetation in various section		81
		of Pakistan and India	
	4.7	Conclusions	83
Chapter-5	Mo	nsoon variation from hydrogen isotope ratio of pedogenic	84-98
	clay	minerals	
	5.1	Introduction	85
	5.2	Structure of Clay minerals	86
	5.3	Identification of clays	87
	5.4	Results	88
	5.5	Discussion	88
		5.5.1 Pedogenic origin of Clays	88
		5.5.2 Pristine character of hydrogen isotope ratio	91
		5.5.3 Hydrogen isotope ratio of pedogenic clays	92
		5.5.4 Supportive evidence of climate change during last 6 Ma	95
		5.5.4.1 Proxies from Haripur Khol section	95
		5.5.4.2 Marine proxies in support of deduced climate	96
		change for Siwalik soils	
	5.6	Conclusions	98

Chapter-6	Ca	rbon and oxygen isotope ratio of soil carbonates from	99-118
	Go	ondwana and Siwalik: Implications to atmospheric CO ₂ ,	,
	ve	getation and rainfall	
	6.	1 Introduction	100
	6.2	Soill carbonate from Denwa and Bagra Formation and	101
		Ranital section	
	6.3	Identification of top surface of soil profile	102
	6.4	Results	103
	6.5	Discussion	108
		6.5.1 Comparison between carbon isotope ratio of soil	108
		carbonates from Siwalik and Gondwana	
		6.5.2 Estimation of atmospheric CO ₂	112
		6.5.3 Oxygen isotope ratio of soil carbonate	115
	6.6	Conclusions	117
Chapter-7	Dia	genesis of Siwalik sediments and its effect on	119-136
	sta	ble isotopes	
	7.1	Introduction	120
	7.2	Cement morphology of sandstone	121
	7.3	Isotopic Results	121
	7.4	Discussion	121
		7.4.1 Oxygen isotope ratio of carbonate cement	121
	7.5	Carbon isotope ratio of carbonate cement of sandstone	132
	7.6	Clay mineral assemblage in sandstone	133
	7.7	Conclusions	136
Chapter-8	Con	clusions and future studies	137-144
	8.1	Conclusions	138
	8.2	Future Studies	141
	8.2a	Reconstruction of relative abundance of C ₃ and C ₄ grasse	es 141
	8.2b	Sr isotope ratio in soil carbonate	143
	8.2c	Ar-Ar dating of ash bed	143

References	145-159
List of Publications	160-163