Biogeochemistry of Nitrogen Isotopes in Northern Indian Ocean

Thesis submitted to

The Maharaja Sayajirao University of Baroda, Vadodara, India

For the degree of

Doctor of Philosophy in Geology

By

Sanjeev Kumar

November, 2004

Planetary and Geosciences Division Physical Research Laboratory, Navrangpura, Ahmedabad-380 009, India

Contents

	List of tables List of figures	(v) (vii)
Chapter 1	Introduction	1-23
1.1	Isotopic Fractionation of Nitrogen	3
1.2	Natural distribution of ¹⁵ N/ ¹⁴ N	5
1.3	Biogeochemical transformation of nitrogen in the marine	5
	environment	
1.3.1	Nitrogen Fixation	6
1.3.2	Assimilation	7
1.3.3	Nitrification	8
1.3.4	Denitrification	8
1.3.5	Mineralisation	9
1.4	Global distribution of Nitrogen	9
1.5	Role of nitrogen and its isotopes in understanding the ocean	9
	biogeochemistry	
1.5.1	Primary production and biological pump: Role in carbon cycle	11
1.5.2	Concept of New and Regenerated production	13
1.5.3	Estimation of New, Regenerated and Export production	15
1.5.4	Basis for using nitrogen for new and regenerated production	16
1.5.5	δ^{15} N in suspended particulate matter	16
1.6	Earlier productivity related works in the world ocean and the	17
	study Area	
1.7	Scope of the present work	19
1.8	Outline of the thesis	20
1.9	Scientific questions addressed	21

Chapter 2 Materials and methods

23-53

2.1	Introduction	25
2.2	New and Regenerated production estimation	26
2.3	Sampling	27
2.3.1	Bay of Bengal	27
2.3.2	Northeastern Arabian Sea	31
2.4	Nutrients	35
2.5	Tracer addition	36
2.6	Incubation	36
2.7	Filtration	37
2.8	Isotopic Analysis and Instrumentation	38
2.8.1	Principle of Analysis	38
2.8.2	Instrumentation	39

2.9	Standards Used and precision	43
2.10	¹⁵ N atom% Measurement	43
	¹⁵ N atom% for blank samples	43
2.10.2	Error in ¹⁵ N atom% estimation	44
2.10.3	Linearity for ¹⁵ N atom%	44
2.11	Estimation of Particulate Nitrogen Content	45
2.11.1	Error in the Particulate Nitrogen Content estimates	47
2.12	Estimation of uptake rate	49
2.12.1	Concept of the general equation for uptake	49
2.12.2	Equation used for the calculation of uptake rate during the	50
	present study and involved uncertainties	
2.13	Quality Control	52
2.14	Physical and chemical parameters	52

Chapter 3 The Northeastern Arabian Sea

54-107

3.1	Introduction	55
3.2	¹⁴ C based Productivity in the Arabian Sea	58
3.3	¹⁵ N based productivity in the Northwestern and the Central	62
	Arabian Sea	
3.4	Chlorophyll a, nutrients and physical parameters during January	63
	2003 in the Northeastern Arabian Sea	00
3.4.1	Chlorophyll a	63
3.4.2	Nutrients	64
3.4.3	Hydrographic and meteorological conditions	66
3.5	¹⁵ N based productivity study during January 2003	69
3.5.1	Total Production	69
3.5.2	New Production	71
3.5.3	Regenerated production	73
3.5.4	Rationale for preference of ammonium over nitrate	74
3.5.5	Vertical profile of Nitrate and Ammonium Uptake	76
3.5.6	f-ratio during January 2003	78
3.5.7	Effect of winter cooling on the f-ratio	80
3.5.8	Low f-ratio despite presence of nutrients in the water column	80
3.6	Chlorophyll a, nitrate and physical parameters during late	01
5.0	February- early March 2003 in the Northeastern Arabian Sea	82
3.6.1	Chlorophyll a	-
3.6.2	Nitrate	82
3.6.2 3.6.3		84
3.0.3 3.7	Hydrographic and meteorological conditions	85
5.7	¹⁵ N based productivity study during late February-early March	88
2 7 1	2003.	
3.7.1	Total Production	88
3.7.2	Regenerated Production	89
3.7.3	New production	90
3.7.4	Vertical profiles of nitrate uptake	92
3.7.5	f-ratio	93
3.7.6	Source of nutrients for the sustenance of the bloom	94

3.8	Natural Isotopic Composition of Surface Suspended Matter	96
3.8.1	January	98
3.8.2	Late February- Early March	98
3.8.3 3.9	Possible reasons for increased δ^{15} N Conclusions	100 107

Chapter 4 The Bay of Bengal

108-172

4.1	Introduction	109
4.2	Effect of tracer concentration and incubation time on the uptake	110
	rate of nutrients	
4.2.1	Material and Methods	112
4.2.2	Physical conditions and nutrients at the experimental stations	113
4.2.3	Results and Discussion	115
4.3	Earlier measurements of 14 C based Productivity and Chl <i>a</i> in the	123
	Bay of Bengal	
4.4	Chlorophyll a, nitrate and physical parameters during the	124
	postmonsoon (September-October) 2002	
4.4.1	Chlorophyll a	124
4.4.2	Nitrate	125
4.4.3	Hydrographic and meteorological conditions	126
4.5	¹⁵ N based productivity study during postmonsoon 2002	128
4.5.1	Total Production	128
4.5.2	New Production	129
4.5.3	Regenerated Production	131
4.5.4	f-ratio	132
4.6	Chlorophyll <i>a</i> , nitrate and physical parameters during	133
	premonsoon (April-May 2003)	
4.6.1	Chlorophyll <i>a</i>	133
4.6.2	Nitrate	134
4.6.3	Hydrographic and meteorological Conditions	135
4.7	¹⁵ N based productivity study during premonsoon 2003	137
4.7.1	Total Production	137
4.7.2	New Production	138
4.7.3	Regenerated Production	140
4.7.4	f-ratio	142
4.8	Implications of the new production measurements in the Bay of	143
4.0	Bengal	
4.9	Relationship between new and total production: possible	147
4 10	implication	
4.10	Possible nutrient sources to the Bay of Bengal	150
4.11	Natural Nitrogen Isotopic Composition of Suspended Matter	154
4.11.1	1	154
4.11.2	Depth profiles of δ^{15} N of suspended matter	160
4.12	Primary productivity estimation using IRS P4 OCM	163
4.12.1 4.12.2	OCM data processing for Oceanic constituents	164
	Estimation of Primary production	166
4.12.3	Discussion	168
4.13	Conclusion	172

Chapter 5Summary and scope for future work173-181

5.1	Important findings of this study	174
5.5.1	New productivity study in the Bay of Bengal	174
5.5.2	Results from uptake experiment	176
5.5.3	Natural isotopic composition of nitrogen in suspended matter of	176
	the Bay of Bengal	
5.5.4	Total productivity comparison with IRSP4 data	177
5.5.5	New and regenerated production in the Northeastern Arabian	177
	Sea	
5.5.6	Natural isotopic composition of nitrogen in the suspended matter	178
	of the Arabian Sea	
5.2	Scope for future work	179

References	 182-202

List of Tables

Table		Page
1.1	Common species of marine nitrogen	2
1.2	Global distribution of nitrogen (Tg N yr ⁻¹)	10
1.3	New or export production in different regions	17
2.1	Details of the cruises undertaken for the present study	25
2.2	Sampling locations along with dates of sampling during both pre and postmonsoon in the Bay of Bengal	28
2.3	Details of the sample depths during premonsoon season in the Bay of Bengal	31
2.4	List of stations with locations and dates of sampling during January 2003.	33
2.5	Sampling depths during January 2003 in the Arabian Sea	33
2.6	List of stations along with locations and sampling dates during late February-early March	34
2.7	Sampling depths during Feb-March 2003 in the Arabian Sea	34
2.8	The calculated urea and ammonium concentrations using mesozooplankton displacement volume	35
2.9	Values and precision obtained during present study for standard materials used	43
2.10	The average value of ¹⁵ N atom% in the blank samples during the present study	44
2.11	The percentage error in ¹⁵ N atom% estimation during present study	44
2.12	A typical example for the method used for the calibration for the estimation of total nitrogen	46
2.13	Calibration equations used for the estimation of total nitrogen content during the present study	48

Table

Page

2.14	Percentage error in particulate nitrogen content in the Arabian Sea and the Bay of Bengal	49
3.1	¹⁴ C based average total productivity values reported for different seasons and locations in the Arabian Sea	61
3.2	¹⁵ N based productivity and f-ratio estimates during January 2003 in the Arabian Sea	79
3.3	¹⁵ N based productivity and f-ratio estimates during late February - early March 2003 in the Arabian Sea	94
3.4	PON content and nitrogen isotopic composition in surface suspended matter during January and late February-early March	99
4.1	Physical parameters at the experimental stations	114
4.2	Comparison of specific uptake and uptake rates at two different stations for 4 h incubation at 0.01µM concentration	120
4.3	Time-averaged fluxes of organic carbon (gC.m ⁻² yr ⁻¹) in sediment traps, 1000 m above sea floor	144
4.4	The nitrate, ammonium and urea uptake rates in the Bay of Bengal during pre and postmonsoon	148
4.5	PON content and δ^{15} N of surface suspended matter observed during pre and post monsoon in the Bay of Bengal	155
4.6	δ^{15} N of particulate organic nitrogen in surface suspended matter from different oceanic regions of the world	160
4.7	The technical specifications of IRS P4 OCM	164

List of Figures

Figures		Page
1.1	Evolution of isotopic composition of substrate (NO_3^-) and product (N_2) for different fractionation factors as denitrification progresses	4
1.2	Summary of δ^{15} N in biogenic nitrogen containing substances in the marine environment.	5
1.3	Important biogeochemical transformations involving nitrogen and their relationships	6
1.4	Summary of US JGOFS primary productivity observations as compiled by Falkowski et al. (2003)	12
1.5	Simplified nitrogen cycle in euphotic zone modified after Dugdale and Goering (1967)	14
1.6	Export ratios calculated as a function of temperature and net photosynthesis rate (Laws et al. 2000)	14
1.7	Export flux of particulate organic carbon (²³⁴ Th method) vs primary productivity (Buessler 1998) (source: Treguer et al. 2003)	15
2.1	Locations showing all the CTD stations as well as new and regenerated production stations (PP)	28
2.2	Sampling of seawater onboard ORV Sagar Kanya.	29
2.3	Sample Locations in the NE Arabian Sea	32
2.4	Filtration unit used during the present study	37
2.5	Schematic diagram showing the elemental analyzer set up	40
2.6	A typical chromatogram (for ammonium sulphate ~ 0.053mg) obtained during the present study	42
2.7	The linearity of ¹⁵ N atom% for (a) atropine and (b) ammonium sulphate over widely varying sample amounts	45
2.8	A typical example of calibration curves using different materials (atropine, ammonium sulphate and potassium nitrate)	47

Page

3.1	A schematic representation of identified current branches during Northeast (top) and southwest (bottom) monsoon	56
3.2	Findlater jet along with region assumed to have positive and negative wind stress curl (Brock et al 1991)	57
3.3	Euphotic zone integrated concentration (left panel) and vertical profile (right panel) of Chlorophyll <i>a</i>	64
3.4	The euphotic zone integrated (left panel) and vertical profile (right panel) of ambient nitrate at different stations during January 2003	64
3.5	The euphotic zone integrated (left panel) and vertical profile (right panel) of ambient ammonium at different stations	65
3.6	The long-term average Sea surface Temperature (SST) of the Arabian Sea during January	66
3.7	Air temperature at different stations at the time of sampling (right panel) during January 2003	67
3.8	The monthly average of wind speed and direction over Arabian Sea (left panel, Source: Quikscat)	67
3.9	Air pressure at the time of sampling during January 2003	68
3.10	Temperature profiles at different stations obtained with Satlantic Radiometer during January 2003	68
3.11	Salinity variation from south to north at sampling time during January 2003	68
3.12	¹⁵ N based total productivity (estimated as sum of nitrate, ammonium and urea uptakes) observed during present study	69
3.13	New production observed at different locations during January 2003.	71
3.14	Relationship between new and total production (excluding PP2) observed during January 2003 in the Arabian Sea	72
3.15	New (nitrate uptake) and Regenerated (ammonium + urea uptake) production observed in the Arabian Sea during present study	74
3.16	Vertical profile of nitrate uptake rates at discrete depths at different locations	76
3.17	Vertical profile of ammonium uptake rates at different depths at various locations	77

Page

3.18	f-ratio observed (with and without urea) during January 2003	79
3.19	The observed negative relationship between f-ratio and euphotic zone integated nitrate (left panel)	81
3.20	Euphotic zone integrated (left panel) and vertical profiles (right panel) of Chlorophyll <i>a</i> at productivity stations	83
3.21	The euphotic zone integrated (left panel) and vertical profiles (right panel) of ambient nitrate at different stations	84
3.22	The long-term average Sea Surface Temperature (SST) of the northeastern Arabian Sea for the study period (1-10 March)	85
3.23	Air temperature measured over the northeastern Arabian Sea during sampling	86
3.24	Wind speed over the Arabian Sea during Late February-early March	86
3.25	Air Pressure during sampling time in the Arabian Sea	86
3.26	Temperature profile at different stations obtained with Satlantic Radiometer during Late February-Early March 2003	87
3.27	¹⁵ N based total productivity during late February-early March 2003	89
3.28	Components of regenerated production (ammonium and urea uptake)	89
3.29	New production observed at different locations during late February- early March in the northeastern Arabian Sea	90
3.30	Observed relationship between new and total production in the Arabian Sea during late February and early March 2003	91
3.31	Relationship between new production and euphotic zone integrated nitrate observed in the Arabian Sea	91
3.32	Vertical profiles of nitrate uptake rates at various locations in the northeastern Arabian Sea during late February-early March	93
3.33	f-ratios observed (with and without urea) in the northeastern Arabian Sea during the present study	94
3.34	Relationship between the temperature based mixed layer depth and the residence time of nitrate in the water column	95

3.35	Relationship between δ^{15} N and PON during both cruises	99
3.36	Relationship between $\delta^{15}N$ and NO ₃ concentration during both cruises.	100
3.37	Geographical limits of the Arabian Sea denitrification zone delineated by Naqvi (1991)	102
3.38	Isotopic composition of nitrate and nitrogen gas with depth	103
3.39	Relationship between fraction of remaing nitrate (f) and its isotopic composition for different fractionation factors	107
4.1	Mean monthly water discharge of Ganges (averaged over 1985- 1992) and Brahmaputra (averaged over 1969-1975)	110
4.2	The result of experiment 1 showing variation in specific uptake rate (top panel), uptake rate (middle panel) and f-ratio (bottom panel)	115
4.3	The result of experiment 2 showing variation in the specific uptake rate (top), uptake rate (middle) and f-ratio (bottom)	118
4.4	Comparison of uptake results obtained from in-situ and simulated in- situ experiments	121
4.5	The specific uptake rate at PP2 (left) and PP7 (right) for the incubation at different intervals during a day	122
4.6	Euphotic zone integrated (left) and vertical profiles of Chl <i>a</i> at different productivity stations (right) in the Bay of Bengal	125
4.7	Figures showing euphotic zone integrated (left) and vertical profiles of nitrate at different productivity stations	126
4.8	The spatial distribution of salinity (top left), SST (top right), MLD (bottom left) and typical wind speed	127
4.9	The euphotic zone integrated total column productivity (left) and relationship with 14 C based productivity (right), during postmonsoon.	128
4.10	The euphotic zone column integrated nitrate uptake (left panel) and depth profile of nitrate uptake at different stations (right panel)	130
4.11	Euphotic zone integrated column uptake of ammonium (top left) and urea (top right)	131

Page

4.12	The upper bound of f-ratio (left) and relationship between f-ratio and total production during post monsoon in the Bay of Bengal	132
4.13	Euphotic zone integrated (left) and vertical profiles of Chl <i>a</i> at different productivity stations during premonsoon	133
4.14	Euphotic zone integrated (left) and vertical profiles of nitrate at different productivity stations	135
4.15	Comparison of Salinity (top left), MLD (top right) and SST (bottom) during pre and postmonsoon in the Bay of Bengal	136
4.16	The euphotic zone integrated total column productivity (left) and relationship with ¹⁴ C based productivity	138
4.17	The euphotic zone column integrated nitrate uptake (left panel) and depth profiles of nitrate uptake at different stations	139
4.18	Euphotic zone integrated column uptake of ammonium (top left) and urea (top right) during premonsoon.	141
4.19	The upper bound of f-ratio (left) and relationship between f-ratio and total production during pre monsoon in the Bay of Bengal	142
4.20	Relationship between total and new production. Top panel represents the Arabian Sea data from Watts and Owens (1999)	149
4.21	The relationship between δ^{15} N and PON during post (filled circles and squares represent offshore and shelf stations) and premonsoon.	155
4.22	The relationship between salinity and $\delta^{15}N$ for post (filled circles and squares represent offshore and shelf stations) and premonsoon.	157
4.23	The depth profiles of δ^{15} N and PON during premonsoon in Bay of Bengal at different stations. The filled and unfilled circles indicate δ^{15} N and PON respectively.	161
4.24	The Log-Log plot of euphotic zone integrated insitu primary productivity estimated by ¹⁵ N technique and corresponding climatological mixed layer integrated OCM values	169

Plates showing OCM data based productivity maps for the Bay of Bengal 170-171

For Fulltext Please Contact To

sanjeev@prl.res.in