Environmental Radionuclides and Chemical Constituents in Rain and Aerosols: Biogeochemical Sources and Temporal Variations

A THESIS

submitted for the Award of Ph. D degree of

MOHAN LAL SUKHADIA UNIVERSITY

in the

Faculty of Science

By

Neeraj Rastogi

Under the Supervision of

Prof. S. Krishnaswami

Planetary & Geosciences Division Physical Research Laboratory, Navrangpura, Ahmedabad-380 009, India.

MOHAN LAL SUKHADIA UNIVERSITY UDAIPUR

Year of submission: 2005

DECLARATION

I hereby declare that the work incorporated in the present thesis entitled "Environmental Radionuclides and Chemical Constituents in Rain and Aerosols: Biogeochemical Sources and Temporal Variations" is my own work and is original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma.

(Neeraj Rastogi)

CERTIFICATE

I feel great pleasure in certifying that the thesis entitled "Environmental Radionuclides and Chemical Constituents in Rain and Aerosols: Biogeochemical Sources and Temporal Variations" embodies a record of the results of investigations carried out by Neeraj Rastogi under my guidance.

I am satisfied with the analysis of data, interpretation of results and conclusions drawn.

He has completed the residential requirement as per rules.

I recommend the submission of thesis.

Date: 18 April 2005

S. Krishnaswami, Senior Professor Physical Research Laboratory Dedicated to my "Mummy and Papa"

Acknowledgements

It gives me immense pleasure to acknowledge the people who contributed directly/indirectly to this thesis. Firstly, I wish to express my deep sense of gratitude to Prof. M. M. Sarin for his inspiring guidance and encouragements throughout this work. His strict fatherly attitude to improve me in all respect is something which I will never forget throughout my life. I wish to absorb his hard working nature and meticulous way of doing the things. I am extremely obliged to Prof. S. Krishnaswami for his critical comments, suggestions and support. He always encouraged me to think and do something new and discussions with him were always fruitful. I am highly influenced by his depth of knowledge in multidisciplinary fields. He helped me a lot in several aspects and for that I will always be indebted to him. I sincerely thank Prof. B. L. K. Somayajulu for his concern, encouragement and advice at various stages.

In Chemistry Lab, Ravi was always ready to help me in all respect whenever I needed, thank you 'Bhaisaab'. I must thank Rengarajan, Sudheer and Bhavsar bhai who provided me unconditional help during the sampling and analysis at various stages of my work. Discussions with Rengarajan and Sudheer were always pleasurable. I thank Rengarajan for critically going through the final draft of this thesis. Sincere thanks are due to Dr. Sunil K. Singh for his concern, discussions and support. I am thankful to Pauline for her concern towards my work and moral support. In addition, all chemistry gang members always remain very friendly and co-operative to each other that create joint-family atmosphere in the Lab. I am proud to be a member of Chemistry gang.

I thank Profs. P.N. Shukla, J. N. Goswami, N. Bhandari, A. K. Singhvi, R. Ramesh, S. K. Bhattacharya, S. V. S. Murthy, Kanchan Pande; Drs. S. K. Gupta, J. R. Trivedi, J. S. Ray and D. Banerjee for their interest in my work and interactions during the area seminars. The sincere criticism of my work by Academic Committee members is duly acknowledged. I am also thankful to Profs. Shyam Lal, A. Jayaraman, Harish Chandra, B. G. Anandrao and P. Sharma for their concern towards my work. I appreciate the encouragement, interest, discussions and suggestions provided by Dr. S. Ramachandran at various stages. I am also thankful to Som Sharma, A. D. Shukla, Naveen Jual, M. G. Yadav, R. D. Deshpande, Pranav, and Ramakant for their concerns, company and help at several stages.

My life at PRL hostel is unforgettable. Love was showered on me by my seniors, batch mates and juniors (in different ways) throughout my stay. Manytimes, I wonder that whether I really deserved it. To list the names of all may require extra chapter of this thesis but to name a few of my seniors: Pattu, Jitti, Rajesh, Koushik, Tarun, Arun, Neerja, Pradeep, Aninda, Subrata, Prashant, Tarun Pant, Ashish da, Supriya da, Kunnu, Rishi, and Sankar. I am lucky to enter PRL with the batch mates of interesting characters. Manoj (my closest friend at PRL) is very cool, calm but (!!!); Harish (very helping and hansmukh), Sanjeev (unsatisfied, practical, lucky), Santosh (jovial, dedicated player, aaj tak), Anirban (very mature), Prasanta (inverse of his name), Pandeyji (talkative), Sajan (mast mallu), PK (and Gere)-nice persons, Thakur (huun!), Manish (moody) and Pathak (gareeb brahman). Remaining friends, who made my stay at PRL hostel more enjoyable and memorable, are Nagar, Ganguly, Gowda, Lokesh, Tarak, Jayendra, S. Rajesh, Sudeshna, Sarika, Morthekai, Preeti, Jayesh, Vinai, Amit, Rajneesh, Charan, Pavan1, Ravi Shankar, Kaushar, Harsha, Aparna, Deepak, Neeraj, Niharika, Shanmugam, Uma, Sumit, Satya, Shreyash, Sharad Sheth, Sanat and Shilpi. Friends! I am indebted to you all. I would like to thank tea-time friends Dipu, Dubey, Virendra, Thampi and Panda for their concern towards my work.

Thanks are due to staff of Library (Nishtha-Madam, Ghia-Madam, Keyur and Thakkar bhai), Computer Centre (Jigar, Tejendra and Subhasis), Workshop (Ubale, Vaghela, Vipul and Rajput) and Liquid Nitrogen plant (Jayanti bhai and Mathew) for their help. I am thankful to staff members of Mt Abu Observatory (Rajesh, Mathur, Jain, Purohit, Peetambar and Kothari) for their help and company during aerosol sampling at Mt Abu. Sincere thanks are due to Acharya ji, Vinchi bhai, Venkatramani, Modh, Sunil, Rajesh T, Ranganathan, KK Patel, Deekshitullu, Ghanshyam bhai, V. R. Shah and Babu bhai for their concern and help at various stages.

I am extremely grateful to my mummy, papa, bhaiya, bhabhi and Om for their love, goodwill, and moral support without which this work would not have been possible. I owe special thanks to my soul mate 'Parul' for providing moral support and encouragement during the last years of this study.

CONTENTS

List of Tables

List of Figures

Chapter 1	Introduction	1-9
1.1	Introduction	2
1.1.1	Effect of aerosols on Earth's radiation budget	2
1.1.2	Aerosols and hydrological cycle	3 3
1.1.3	Role of aerosols in atmospheric chemistry	3
1.1.4	Rainwater composition and deposition fluxes of chemical	
	species	5
1.1.5	Usefulness of environmental radionuclides (⁷ Be and ²¹⁰ Pb)	6
1.2	Objectives of present study	7
1.3	Thesis outline	9
Chapter 2	Materials and Methods	10-29
2.1	Introduction	11
2.2	Site description	11
2.2.1	Ahmedabad	11
2.2.2	Mt Abu	14
2.2.3	Marine boundary layer	14
2.3	Sampling	16
2.3.1	Rainwater sampling	16
2.3.2	Aerosol sampling	18
2.4	Analytical techniques	18
2.4.1	Rainwater analysis	18
2.4.2	Aerosol analysis	24
2.4.3	Environmental radionuclides	28
Chapter 3	Chemical characteristics of aerosols	30-68
3.1	Introduction	31
3.2	Results and discussion	31
3.2.1	Water-soluble ions in aerosols	31
3.2.1.1	Charge balance	32
3.2.1.2	Relationships among major ions	35
3.2.1.3	Temporal variations in ionic concentrations	40
3.2.1.4	Acid uptake by mineral dust	45
3.2.2	Acid-soluble species in aerosols	49
3.2.2.1	Relationships among acid-soluble elements	49
3.2.2.2	Temporal variations of acid-soluble species	54
3.2.2.3	Enrichment Factors of trace elements	58
3.2.3	Aerosol studies in the MBL	60
3.2.3.1	Deposition fluxes of trace elements over MBL	65
3.3	Summary and conclusions	67

Chapter 4	Rainwater chemical composition	69-88
4.1	Introduction	70
4.2	Results and discussion	70
4.2.1	Data quality assessment	70
4.2.2	Chemical characteristics of rainwater	71
	Rainwater pH	74
4.2.2.2		76
4.2.3	Relationship between rainfall and ionic concentrations	81
4.2.4	Seasonal variability in rainwater composition	83
4.2.5	Inter-annual variability in rainwater composition	86
4.2.6	Neutralization factors	87
4.3	Summary and conclusions	88
Chapter 5	Scavenging ratios and deposition fluxes of major ionic species	89-102
5.1	Introduction	90
5.2	Results and discussion	91
5.2.1	Scavenging ratios	91
5.2.2	Relationship between scavenging ratio and rainfall	94
5.2.3	Comparison of ionic ratios in rain and aerosols	95
5.2.4	Dry and wet deposition fluxes of ionic species	98
5.3	Summary and conclusions	102
Chapter 6	Environmental radionuclides	103-119
6.1	Introduction	104
6.2	Results and discussions	105
6.2.1	Temporal variability in ⁷ Be and ²¹⁰ Pb concentrations	105
6.2.2	Use of ⁷ Be and ²¹⁰ Pb as independent tracers of air mass and	109
	chemical species	
6.2.3	⁷ Be and ²¹⁰ Pb in marine boundary layer	113
6.2.4	²¹⁰ Pb in precipitation	115
6.3	Summary and Conclusions	118
Chapter 7	Synthesis and scope of future research	120-124
7.1	Synthesis	121
7.2	Scope of future research	123
	References	125-136
	List of publications	137-138
	Appendices	139-149

List of Tables

Tables	Content	Page
2.1	Detection limits of major ions	22
2.2	Procedure blanks for ²¹⁰ Pb in rainwater samples	22
2.3	Filter blanks for water-soluble ionic species	27
2.4	Filter blanks for acid-soluble constituents	27
3.1	Ionic composition of aerosols over Ahmedabad and Mt Abu	33
3.2	Acid-soluble constituents in aerosols over Ahmedabad and Mt Abu	50
3.3	Concentrations of ionic species in aerosols over MBL	60
3.4	Concentrations and Enrichment Factors of trace elements over MBL	64
3.5	Dry deposition fluxes of trace elements over MBL	66
4.1	Chemical composition of precipitation events over Ahmedabad	73
4.2	Relative contribution of ions in different pH-range samples	76
4.3	Neutralization factors of NH_4^+ , Ca^{2+} and Mg^{2+}	87
5.1	Scavenging ratios of ionic species over Ahmedabad	91
5.2	Relation between scavenging ratios and rainfall	95
5.3	Annual dry and wet deposition fluxes of major ionic species	101
6.1	⁷ Be and ²¹⁰ Pb concentrations and ⁷ Be/ ²¹⁰ Pb ratio in aerosols	106
6.2	Volume-weighted-mean concentration of ²¹⁰ Pb in rainwater	116

List of figures

Figures Content Page 2.1 Map showing the sampling sites of present study 12 2.2 Monthly average temperature, RH and rainfall over Ahmedabad 13 2.3 Monthly average wind patterns over India 15 Rainfall in individual precipitation events for three years over 17 2.4 Ahmedabad 2.5 Analytical scheme for rainwater sampling and analysis 19 Comparison of Ca²⁺ and Mg²⁺ measured in samples on Flame-AAS 20 2.6 and ICP-AES Analytical scheme for ²¹⁰Pb analysis in rainwater 2.7 23 Analytical scheme for aerosol sampling and analysis 25 2.8 2.9 Repeat measurements of chemical species in rainwater and aerosols 26 2.10 Expected and measured concentrations of Ca, Al and Pb in standard 28 addition method 29 2.11 Regression plot between energy of gamma photon and detection efficiency of radionuclides 3.1 34 Ion balance between Σ cations and Σ anions measured in water-soluble fraction of aerosols **3.2a** Scatter plots among major ions 37 Scatter plots among major ions 38 **3.2b** Temporal variations of Na^+ , nss- Ca^{2+} and nss- $SO_4^{=}$ 42 **3.3**a Temporal variations of NO₃, NH₄⁺ and nss-K⁺ **3.3b** 43 3.4 Percentage ionic composition over Ahmedabad and Mt Abu 45 Scatter plots: (a): $(NH_4^+ + nss-K^+)$ vs $(nss-SO_4^- + NO_3^-)$ and (b): $(nss-SO_4^- + NO_3^-)$ 3.5 46 $Ca^{2+} + nss-Mg^{2+}$) vs HCO₃) Scatter plot: EA/(nss-Ca²⁺ + nss-Mg²⁺) vs HCO₃⁻/(nss-Ca²⁺+nss-Mg²⁺) 48 3.6 Scatter plots among Al, Fe, K and Mn 3.7 51 3.8 Scatter plots among Al, Ca and Mg 53 **3.9**a Temporal variations of Al, Fe and Ca 55 **3.9b** Temporal variations of Mg, K and Mn 56 3.10 Scatter plot between TSP and Fe 57 Temporal variations in Enrichment Factors of Mn, Pb and Zn 3.11 59 Scatter plot between total and non-sea-salt components of Ca^{2+} , $SO_4^{=}$, 3.12 61 Mg^{2+} and K^+ measured over MBL Percentage ionic composition over MBL 3.13 62 Spatial variation in Cl⁻/Na⁺ ratio, Cl-deficit (%) and nss-SO₄⁼(%) 3.14 63 3.15 Scatter plot between Al and Fe over MBL 64 4.1 71 Charge balance between Σ cations and Σ anions in rainwater samples 4.2 72 Seasonal and inter-annual variations in TDS (a): for individual rain events (b): with rainfall Frequency distribution of pH in rainwater 75 4.3

4.4 Scatter plot between Na⁺ and Cl⁻ with seawater line 76 Non-sea-salt content (%) of nss-Ca²⁺, nss-SO₄⁼, nss-K⁺ and nss-Mg²⁺ 77

4.6 4.7 4.8 4.9 4.10 4.11 4.12	Scatter plot between nss-SO ₄ ⁼ and NO ₃ ⁻ Scatter plot between (nss-Ca ²⁺ + nss-Mg ²⁺) and HCO ₃ ⁻ Scatter plot between nss-Ca ²⁺ and nss-SO ₄ ⁼ Scatter plot between (NH ₄ ⁺ + nss-Ca ²⁺) and (nss-SO ₄ ⁼ + NO ₃ ⁻) Log-log plots between precipitation volume and concentrations of ionic species Percentage contribution of ions to TDS in individual events Contribution of various cations and anions to Σ cations and Σ anions as a function of TDS	78 79 80 80 82 84 85
4.13	Volume-weighted average cationic and anionic composition of rainwater over the period of three years	86
5.1 5.2 5.3	Variability in scavenging ratios of ionic species for aerosol-rain pairs Comparison of ionic ratios in aerosols and subsequent rain events Comparison of wet and dry deposition fluxes of major ionic species	92 97 99
6.1	Temporal variability in ⁷ Be and ²¹⁰ Pb activities and ⁷ Be/ 210 Pb ratio over Ahmedabad and Mt Abu	107
6.2 6.3a	Relationship between ²¹⁰ Pb and ⁷ Be during WET and DRY period Scatter plots between ²¹⁰ Pb and nss-K ⁺ over Ahmedabad, Mt Abu and MBL	110 111
6.3b 6.4	Scatter plots between ²¹⁰ Pb and Pb over Mt Abu and MBL Temporal variability in ⁷ Be and ²¹⁰ Pb activities and ⁷ Be/ ²¹⁰ Pb ratio over MBL	112 114
6.5	Rainfall amount and ²¹⁰ Pb concentrations for individual precipitation events	115
6.6	Relationship between rainfall amount and ²¹⁰ Pb deposition flux	118

For Full text Please Contact

То

nrastogi@prl.res.in