Nitrogen and Noble Gases in Carbonatites of India

A THESIS

submitted for the Award of Ph. D. degree of

Mohan Lal Sukhadia University

in the

Faculty of Science

BY

Sudeshna Basu

Under the Supervision of

Prof. S. V. S. Murty

PLANETARY AND GEOSCIENCES DIVISION PHYSICAL RESEARCH LABORATORY, AHMEDABAD

MOHANLAL SUKHADIA UNIVERSITY, UDAIPUR

Year of submission: 2004

То

my dear grandmother, Didan

CERTIFICATE

This is to certify that the thesis entitled "Nitrogen and Noble Gases in Carbonatites of India" submitted for the award of the degree of Doctor of Philosophy of Mohanlal Sukhadia University in the faculty of Science is a record of bonafide investigations carried out by Ms. Sudeshna Basu under my supervision and guidance.

This is an original piece of work on which no one has been awarded a degree in this University or in any other University.

The literary presentation of the thesis is satisfactory and it is in a form suitable for publication. The work presented in the thesis has been done after registration in this University.

Further the candidate has put in attendance of more than 200 days in my institution as required under rule 7(b) and thus completed the residential requirement.

Professor S.V.S. Murty (SUPERVISOR)

March 2004

Contents

Acknowledgements	i
Abstract	iv
List of Tables	vi
List of Figures	viii

Chapter 1

	Introduction	1
1.1	Interior of the Earth	1
1.2	Mantle samples	2
1.3	The Heterogeneous mantle	3
1.4	Noble gases in the mantle	4
1.5	Nitrogen in the earth's mantle	7
1.6	Carbonatites as mantle representatives	9
1.7	Experimental approach	11
1.8	Objectives of the present study	11
1.9	The samples:	12
1.9A	Hogenakal:	12
1.9B	Sevattur:	12
1.9C	Sung Valley:	13
1.9D	Ambadongar:	13
1.10	Outline of the thesis	14

Chapter 2

	Experimental details	16
2.1	Introduction	16
2.2	VG Micromass 1200	16
2.3	Gas extraction units	17
2.4	Vacuum crusher	17
2.5	The gas cleaning and separation line (metal):	19
2.5A	The line fingers:	19
2.5B	CuO finger:	20
2.5C	TiZr/Ti getters:	21
2.6	Glass extraction system:	21
2.6A	Combustion finger:	23
2.6B	Extraction bottle:	23
2.7	The main line (glass)	25
2.8	Standard procedures	26
2.8A	Gas extraction:	26
2.8B	Cleaning and separation:	27
2.8C	Mass analysis:	29
2.8D	Data acquisition and reduction:	29
2.9	Blanks	29
2.10	Interference corrections:	30
2.10A	Interference at mass 3:	30
2.10B	Interferences at masees 20 and 22:	31

2.10C	CO correction:	31
2.11	Calibration of the mass spectrometer	32
2.12	Mass discrimination:	32
2.13	Reproducibility of measurement	32
2.14	Characterisation of samples	35

Chapter 3

	Noble gases in carbonatites - In situ produced components	40
3.1	Introduction	40
3.2	U,Th- ⁴ He dating technique	41
3.3	U- ¹³⁶ Xe dating technique	42
3.4	U,Th- ²¹ Ne dating technique	43
3.5	Calculation of in situ noble gases	44
3.6	U,Th- ⁴ He, U,Th- ²¹ Ne, U,Th- ²² Ne and U- ¹³⁶ Xe as dating tools	45
3.7	Estimation of fluorine in apatites from neon three isotope plot	47
3.8	Retentivity of different in situ noble gases in apatites	47
3.9	Age estimation in Hogenakal and Sevattur apatites from in situ ⁴ He, ²¹ Ne, and ¹³⁶ Xe	49
3.10	Age estimation of Khambamettu apatite: indication of crustal contamination	51
3.11	Summary	52

Chapter 4

	Noble gases in carbonatites- Trapped components	53
4.1	Introduction	53
4.2	Release pattern of noble gases by vacuum crushing	54
4.3	Release pattern of noble gases by pyrolysis (apatites)	55
4.4	Comparison of gas released during vacuum crushing and pyrolysis for apatites	56
4.5	Variation of concentration of magmatic gases in different mineral phases	58
4.6	Noble gas elemental pattern	61
4.7	Isotopic ratios:	71
4.7A	Lighter noble gases:	71
4.7B	Heavier noble gases:	85
4.8	Disequilibrium between vesicles and matrix in apatites	93
4.9	Mixing plots	93
4.10	Summary	97

Chapter 5

	Nitrogen and argon in carbonatites A coupled study	98
5.1	Introduction	98
5.2	Release pattern of nitrogen during vacuum crushing:	100
5.2A	Carbonates:	100
5.2B	Apatites:	109
5.2C	Magneties:	110
5.3	Release pattern of nitrogen during pyrolysis (apatites)	110

5.4	Isotopic fractionation	112
5.5	Comparison of vacuum crushing and pyrolysis for apatite	114
5.6	Crustal contamination	116
5.7	Nitrogen components:	117
5.7A		118
5.7B		119
5.8	Mixing plots	120
5.9	δ^{15} N of LM	120
5.10	Secular changes in N and Ar, isotopic and elemental ratios in mantle	123
5.11	Summary	126

Chapter 6

	Implications of the present study	128
6.1	Introduction	128
6.2	Petrogenetic models	128
6.3	Lower mantle δ^{15} N and its implications	130
6.4	Future aspects	137
	Appendix	141
	References	143