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we observed from USO-Spar telescope and is shown in Figure 8.3.
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Abstract

Magnetic helicity is a physical quantity that measures the degree of linkages

and twistedness in the field lines. It is given by a volume integral over the scalar

product of magnetic field B and its vector potential A. Direct computation of

magnetic helicity in the solar atmosphere is not possible due to two reasons. First,

we do not have the observations at different heights in the solar atmosphere to

compute the volume integral. Second, the vector potential A is non-unique owing

to gauge variance. Many researchers incorrectly inferred twist, a component of

magnetic helicity, from the force-free parameter α. We clarified the physical

meaning of α and its relation with the magnetic helicity. Also, a direct method is

proposed for the computation of global α values of sunspots. An analytical bipole

was generated to study the effect of polarimetric noise on the estimation of various

magnetic parameters. We find that the effect of polarimetric noise, present in the

recent vector magnetograms e.g., from Hinode (Solar Optical Telescope/Spectro-

Polarimeter (SOT/SP)), on the magnetic parameters like α and magnetic energy,

is negligible.

We examined the fine structures of local current and α in the sunspots. Local

α patches of opposite signs are present in the umbra of each sunspot. The am-

plitude of the spatial variation of local α in the umbra is typically of the order of

the global α of the sunspot. We find that the local α and current are distributed

as alternately positive and negative filaments in the penumbra. The amplitude of

azimuthal variation of the local α in the penumbra is approximately an order of

magnitude larger than that in the umbra. The contributions of the local positive

and negative currents and α in the penumbra cancel each other giving almost no

contribution for their global values for whole sunspot.

We have introduced the concept of signed shear angle (SSA) for sunspots and
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establish its importance for non force-free fields. The spatially averaged SSA

(SASSA) gives the actual twist present in a sunspot irrespective of the force-free

nature and the shape of the sunspot. We find that the sign of global α is well

correlated with the SASSA of the sunspots but the magnitudes are not.

We find that there is no net current in the sunspots, although there is sig-

nificant twist present in the photospheric magnetic field of the sunspots. The

existence of a global twist for a sunspot even in the absence of a net current is

consistent with the fibril-bundle structure of the sunspot magnetic fields. We also

discovered the curly interlocking combed structure in the azimuthal component

of sunspot magnetic field.

We studied the SASSA of sunspots to predict the flare activity of the asso-

ciated active regions. We studied the evolution of vector magnetic fields using

a large number of vector magnetograms of both, an eruptive and a non-eruptive

sunspot. We arrive at a critical threshold value of the SASSA for each class of

X-ray flare associated with these two sunspots. Thus, the SASSA holds promise

to be very useful in predicting the probability of the occurrence of solar flares.

A good correlation is found between the sign of helicity in the sunspots at

the photosphere and the chirality of the associated chromospheric and coronal

features. This study will be very useful as a constraint while modeling the chro-

mospheric and coronal features.

We find that a large number of sunspots observed in the declining phase

of the solar cycle 23 follow the reverse hemispheric helicity rule. Most of the

sunspots observed in the beginning of new solar cycle 24 follow the conventional

hemispheric helicity rule. This indicates a long term behaviour of the helicity

patterns in the solar atmosphere. However, this needs to be confirmed with the

data sets spanning large number of years.
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