PLASMA INSTABILITIES AND THE DYNAMICS OF THE EQUATORIAL F-REGION

A THESIS

SUBMITTED FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

OF THE

GUJARAT UNIVERSITY

BY

RAMANATHAN SEKAR (R. SEKAR)

JANIJARY 1990

PHYSICAL RESEARCH LABORATORY
NAVRANGPURA
AHMEDABAD - 380 009
INDIA

043

R14188

CONTENTS

.. Page No.

			STATEMENT			
			Acknowledgement			
hapter 1		Inti	coduction			
	1.1		Nomenclature	• •	1	
	1.2	,	Thermosphere	• •	2	
	1.3		Thermospheric Composition		3	
	1.4		Thermospheric Winds and Temperature	• •	4	
	1.5		Low latitude Thermospheric Dynamics		5	
	1.6		Numerical Models	• •	8	
	1.7		F-region of the Ionosphere	• •	9	
	1.8		F-region Electric Fields	• •	14	
	1.9		Theory of Electric Fields	• •	18	
	1.10		F-region Electron Densities	• •	19	
	1.11		Plasma Instabilities	• •	20	
	1.12		Geomagnetic Storm and its effects over the low latitude F region			
		a)	Characteristics of Geomagnetic Storms	• •	22	
		b)	Effects of Magnetic Storms at low latitudes		23	
		c)	Effects on Plasma densities	• •	24	
		d)	Effects on neutral composition	• •	25	
		e)	On neutral temperature	• •	26	
		f)	On neutral winds		26	

		g)	On electric fields	• •	26
	1.3		Equatorial Spread-F	• •	28
		a)	ESF Varieties	• •	31
		b)	Characteristics of Irregularities	• •	31
		c)	Plasma bubble and its characteristics	• •	32
		d)	Generation Mechanism of ESF	• •	33
		e)	Numerical simulation studies	• •	34
		f)	Importance of E region during Spread-F	• •	3 5
		g)	Association of ESF with Equatorial Ionisation Anomaly	• •	37
		h)	Effects of ESF	• •	38
		i)	Artificial Spread-F	• •	40
		j)	Physical Picture of Natural ESF		41
		k)	Present study	• •	4 2
		1)	Scope of the present thesis	• •	43
Chapter 2			niques of measurements of neutral and plasma parameters		
	2.1		Neutral parameters by artificial vapour clouds	• •	46
	2.2		Vapour releases in the present study	• •	48
	2.3		Analysis Procedure for blob releases	• •	50
	2.4		Determination of vertical velocities	• •	5 3
	2.5		Analysis procedure for trail releases	• •	5 4

	2.6	Determination of Molecular Diffusion	• •	5 5
	2.7	Neutral Temperature from Diffusion Profile	• •	58
	2.8	Temperature Measurements by a Fabry-Perot Spectrometer	• •	60
	2.9	Measurements of electric fields from Ba-Sr releases	• •	61
	2.10	Measurements of Electron density by Langmuir probe	• •	65
	2.11	Ion-Mass Spectrometer	• •	68
Chapter 3	Qui	et-time Measurements on Neutral and Plasma Parameters at the onset of ESF		
	3.1	Measurements on neutral winds	• •	7 2
	3.2	Electron density Measurements	• •	77
	3.3	Ionosonde data	• •	79
	3.4	Results of plasma drifts and electric fields		80
	3.5	Measurements on the altitude profile of plasma motion	• •	8 5
	3.6	Discussion	• •	87
	3.7	Possible Mechanism for the existence of spatial gradient in electric field	• •	88
	3.8	Conclusion	• •	92
Chapter 4		ar Theories of Plasma Instabilities in the F-region of the Ionosphere Physical Mechanism of Plasma Instabilities		
	6.1 a)	Collisional Rayleigh-Taylor Instability	• •	94

	b)	$\underline{E} \times \underline{B}$ Instability	9 /	
	c)	Zonal wind driven instability	• •	100
	4.2	Role of Vertical winds in the Rayleigh-Taylor Mode	• •	102
	4.3	Discussion	• •	109
	4.4	Quantitative estimation of growth rates	• •	112
	4.5	Conclusion	• •	116
Chapter 5		of Nonlinear thoery of equatorial spread-F by numerical simulation		
	5.1	Introduction	• •	118
	5.2	Historical Background	• •	118
	5.3	Results obtained by earlier workers	• •	120
	5.4	The Present numerical study	• •	126
	5.5	Theory	• •	128
	5.6	Region of simulation and boundary conditions	• •	133
	5.7	Inputs to the model	• •	134
	5.8	Numerical methods	• •	135
	5.9	Numerical Results and discussion	• •	136
	5.10	Case Study on the effects of advection	• •	147
	5.11	Conclusion	• •	152
Chapter 6		urements during a geomagnetically disturbed period		
	6.1	Introduction	• •	153

6.2	Experimental details and Results	• •	154
6.3	Neutral winds	• •	155
6.4	Diffusion Results	• •	157
6.5	Neutral temperature measurements		160
6.6	Turbopause level	• •	164
6.7	Measurement on Electron density		166
6.8	Discussion on the F region plasma densities during disturbed day		167
6.9	Discussion on the occurrence of spread-F		172
6.10	E region stratification		173
6.11	Conclusion	• •	179
	Scope of Future work		180
	Appendix 1	• •	A1-1
	Appendix 2	• •	A2-1
	References		D 1