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Abstract

As the thesis title indicates this work is about studying properties of exotic

particles whose existence is supported by astrophysical observations. The presence

of Dark Matter(DM) has been supported by a variety of evidence. At galactic

and sub-galactic scales, this evidence includes galactic rotation curves, the weak

gravitational lensing of distant galaxies by foreground structure, and the weak

modulation of strong lensing around individual massive elliptical galaxies. On

cosmological scales, observations of the anisotropies in the cosmic microwave back-

ground and large scale structure strongly lead us to the conclusion that 80− 85%

of the matter in the universe (by mass) consists of non-luminous and non-baryonic

material.

The experimental constraints on DM include relic density measurement from

WMAP, direct detection of DM and indirect detection of DM. The mass and cross

section of the DM is probed by direct detection experiments like XENON, CDMS,

DAMA and COGENT. Of these experiments, the DAMA experiment observed

an annual modulation in its signal which could have been due to DM scattering.

However none of the other experiments conducting direct DM searches are able

to confirm the DAMA result. In the work presented here we consider dipolar

interactions of DM to analyse results from these experiments and find that there is

a valid parameter space where DAMA and the null experiments can be explained.

In addition we also improve previous bounds on the dipole moments of DM. We

do not assume any particular candidate of DM for this purpose, except that its a

weakly interacting massive particle (WIMP).

We also consider an extension of Standard Model where such a dipolar DM

can be realised. And we find that the right handed neutrino added to the SM

particle content, can be such a candidate. In particular we find that for a mass

of the order of 100 GeV can explain the direct detection experiments. We also

test the candidate for indirect detection experiments like PAMELA and FERMI

which measure cosmic ray fluxes of positrons/electrons and find reasonably good

agreement with the data.

The indirect detection experiments like PAMELA and FERMI rely on the ob-
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servations of DM annihilation products such as positrons, antiprotons and photons

which might indicate the existence of DM. The PAMELA experiment has reported

results indicating a sharp upturn in the positron fraction (e+/(e++e)) from 10−100

GeV, counter to what is expected from high-energy cosmic rays interacting with

the interstellar medium (ISM). This result confirms excesses seen in previous ex-

periments. One possible explanation for this is dark matter annihilation into e+e,

but this requires a large cross section. However no such increase in the antiprotons

has been seen.

Here we consider a supersymmetric model with a heavy wino as the DM can-

didate. In order to obtain the correct relic density for such a DM candidate, in

addition to getting the required annihilation cross section to explain the PAMELA

positron anomaly keeping the antiproton flux undisturbed by the DM signal, we

use the concept of Sommerfeld enhancement. In a consistent manner, Sommerfeld

enhancement is incorporated in the relic density calculation and near the Sommer-

feld resonant mass one obtains the correct relic abundance as measured by WMAP,

while at the same time one gets a sufficiently large boost factor in the annihilation

cross section to explain the PAMELA positron excess.
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