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ABSTRACT

Violations under the discrete symmetry transformations, like parity (P), time-

reversal (T) and combined charged-conjugation-parity (CP) symmetries, have

already been observed in nature at the elementary particle level. However, in the

composite systems like atoms, P and T-violating (P,T-odd) interactions between

its constituent particles could give rise to net intrinsic electric dipole moment

(EDM) of the system. Therefore, observation of a non-zero EDM in an atomic

system would be a clean signature of violations of both the P- and T- symmetries.

In addition, atomic EDMs can also probe CP-violation originating from leptonic,

semileptonic and hadronic CP sources. Since last six decades, several attempts

have been made by physicists in both the high-energy and low-energy sectors to

probe such CP-odd sources.

The EDMs of closed-shell (diamagnetic) atoms (dA) arise predominantly from

the P,T-odd electron-nucleus (e-N) tensor-pseudotensor (T-PT) interactions and

interactions between the nuclear Schiff moment (NSM) with the atomic elec-

trons. It is assumed that NSM originates primarily due to the distorted charge

distribution inside a finite size nucleus caused by the P,T-odd interactions among

the nucleons mediated by the neutral pions (π0-mesons) and due to EDMs of the

nucleons. Further, at the quantum chromodynamics (QCD) energy scale, the

origin of NSM can be viewed as the P,T-odd interactions among the constituent

quarks and due to the EDMs and chromo-EDMs of the quarks.

Accurate theoretical evaluations of EDMs require sophisticated many-body

methods, which can treat both the electron-correlation effects and the relativis-

tic corrections adequately. In past, several lower-order many-body methods have

been employed to study these properties in the atomic systems that are under

consideration by the experimentalists to measure their EDMs. Validity of these

methods are not well investigated and from the theoretical prospectives, they

do not appear to present reliable results. The main objective of this work is

to develop more accurate all-order perturbative many-body methods in the rel-

ativistic framework so that calculations obtained using these methods can be
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combined with the experimental values of the EDMs for different closed-shell

atomic systems to infer fundamental quantities that can be used to test possible

new physics of elementary particles. In this view, we have developed methods

based on the relativistic coupled-cluster (RCC) theory considering full singles

and doubles approximation with linear terms (LCCSD method) and including

all non-linear terms (CCSD method). To further improve our CCSD results,

we perturbatively take into account contributions from the important triple ex-

citations due to the electron-electron repulsion (CCSD(T) method) and along

with the P,T-odd interaction (CCSDpT method). In order to compare our EDM

results with the previously reported values we developed a method based on ran-

dom phase approximation (RPA). In addition to that, we have also developed

a third-order many-body perturbation theory (MBPT(3)) and studied trends in

the behavior of electron-correlation effects going from one method to another in

the evaluation of the property of interest. Before performing EDM calculations,

we test the potential of our many-body methods by evaluating electric dipole po-

larizability (α) of various closed-shell atomic system and comparing these results

with the available measurements and other calculations. Since the evaluation of

dA and α demands similar angular momentum and parity selection criteria, but

accuracies of αs can be tested against their experimental values. This, therefore,

can serve as benchmark to determine EDMs reliably. After rigorous testing of

our developed many-body methods, we finally evaluate dA due to T-PT and NSM

interactions of the experimentally considered atoms like 129Xe, 199Hg, 223Rn and

225Ra. Till date, the best atomic measurement on dA is obtained from 199Hg as

|dA(199Hg)| < 3.1 × 10−29|e|cm (at 95% confidence level). Large discrepancies

among the previously reported calculated results using a variety of many-body

methods have been noticed. In this thesis, we aim to explain the reasons for

observing such differences by systematically including higher-order corrections

to the many-body methods. With above many-body methods in hand we rigor-

ously demonstrate the trends in the electron-correlation effects in determining α

and dA. We find that non-RPA contributions (pair-correlation effects) which are

already there in CCSD are very crucial in achieving better accuracies in these
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results. The contributions from important triple excitations to α and dA were

also found to be very significant (sometime 3%). Finally, we present the rec-

ommended EDM results from a method that takes into account more physical

effects. On combining our recommended EDM results with the measured value

of 199Hg, we obtain limits on the T-PT coupling constant as CT < 2.09 × 10−9

and on the NSM as S < 1.45 × 10−12|e|fm3. Using these values together with

the latest nuclear structure and QCD calculations, we get limits for the strong

CP parameter as |θ̄| < 1.1 × 10−9 and for the combined up- and down- quark

chromo-EDMs as |d̃u − d̃d| < 2.8 × 10−26|e|cm. Experiments to measure EDMs

in 129Xe and 225Ra are actively underway aiming to improve the precision of the

measurements so that the new results can surpass the upper limit set by the

Hg experiment. In fact, a research group at Argonne National Laboratory has

recently reported their first EDM measurement on 225Ra atom. Though, their

obtained limit is not competitive with Hg at present but from the theoretical

and experimental point of view, 225Ra has the potential to enhance this effects

significantly.

In brief, a comprehensive study of closed-shell atomic EDMs is presented in

this thesis with a focus on various relativistic many-body methods including the

RCC theory. We highlight the importance of non-RPA contributions in deter-

mining accurate results of α and dA in various closed-shell atomic systems. Our

obtained limits on various P,T-odd couplings from 199Hg could constraint various

extensions of the standard model (SM) of particle physics. These constraints can

further useful for probing new physics beyond-SM.

Keywords: Electric Dipole Moment, CPT Theorem, Dipole Polarizability,

Parity, Charge-Conjugation, Time-Reversal, CP-Violation, Tensor-Pseudotensor

Interaction, Nuclear Schiff Moment, Many-Body Perturbation Theory, Random

Phase Approximation, Relativistic Coupled-Cluster Theory, Standard Model.
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