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ABSTRACT

The Earth’s upper atmosphere is influenced by the incoming solar radiation
from above and upward propagating atmospheric waves from lower atmo-
sphere. The present thesis deals with the understanding of these two influences
on the Earth’s upper atmosphere. While Earth’s upper atmosphere have been
studied in the past using all sort of available techniques, there still exist large
gap in our understanding of mesosphere lower thermosphere (MLT) region.
MLT region is the part of the upper atmosphere where most of the atmo-
spheric waves deposit their energy and momentum affecting overall structure
and composition of the middle atmosphere. Therefore, quantitative under-
standing of the various processes that influence MLT region becomes essential.
In this work, the main atmospheric parameters that have been used to under-
stand the various coupling processes in the MLT region are nightglow emission
intensities and mesospheric temperatures. Nightglow is a very weak emission
occurring in the Earth’s upper atmosphere in the infrared, visible, and ul-
traviolet wavelength regions. These nightglow emissions comes mainly from
the recombination processes e.g., when two oxygen atoms recombine to form
molecular oxygen. Therefore, intensity of these nightglow emissions depends
upon the number densities of the reactants. Hence, by measuring the varia-
tions in nightglow emission intensities provides information on the densities
of the reactants that is mainly affected by the atmospheric waves and/or so-
lar influences. Measurements of these parameters are carried out mostly by
ground- and space-based remote sensing techniques and less frequently using
in-situ rocket-based measurements.

In this work, the main focus was to characterize various coupling processes
in the MLT region, wave dynamical couplings under varying geophysical con-
ditions, effect of the solar influences in the MLT region, lower- and upper-
atmosphere coupling during cyclones, and latitudinal couplings during sudden

stratospheric warming (SSW) events. These investigations were carried out
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mainly by using ground-based long-term data obtained from couple of in house
built instruments namely, Near InfraRed Imaging Spectrograph (NIRIS) and
CCD-based Multi-Wavelength Airglow Photometer (CMAP). NIRIS provides
nightglow emission intensities and temperatures corresponding to 87 and 94
km altitudes using OH(6-2) Meinel and O5(0-1) atmospheric band emissions,
CMAP provides nightglow emission intensities using sodium doublet line (589.0
and 589.6 nm), OI green line (557.7 nm), and OI red line (630.0 nm) which
emanate from 92, 100, and 250 km altitudes, respectively. In addition to these
nightglow emission intensities and temperatures, mesospheric temperatures ob-
tained from multiple satellite-based observations, data of F10.7 cm radio flux
and SSN number, stratospheric zonal winds and temperatures from reanalysis
dataset, OLR data from Kalpna-1 satellite etc. have been used. In the present
doctoral thesis entitled “Investigations of Interactions in The Earth’s
Upper Atmosphere Using Optical and Radio Wave Techniques” an
attempt has been made for a detailed investigations on the basis of the above
stated broad topics. The work carried out in this thesis is presented in six
chapters.

In this thesis work, development of a new spectrograph, NIRIS, which
is capable of simultaneous measurements of OH(6-2) Meinel and O5(0-1) at-
mospheric band nightglow emission intensities have been described. In this
spectrographic technique, rotational line ratios are obtained to derive temper-
atures corresponding to the emission altitudes of 87 and 94 km. In addition to
NIRIS, development of a new nightglow photometer, CMAP, to measure the
nightglow emission intensities at multiple wavelength is also described. These
two instruments have been commissioned for continuous operation from optical
aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E).

Large- and small-timescale variations in the mesosphere have been investi-
gated using three (2013-2015) years of O5(0-1) and OH(6-2) bands nightglow
emission intensities and corresponding rotational temperatures as tracers of

mesospheric dynamics. The solar activity show different small- and large-time
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periods along with well known 27 days and 11 years periods. Both O, and OH
intensities show variations similar to those of number of sunspots and F10.7
cm radio flux indicating a strong solar influence on mesospheric dynamics. In
addition, both mesospheric airglow intensities also showed periodicities which
are of atmospheric origin. Statistical study were performed using the peri-
odicities derived from the nocturnal variations in all the four parameters (O
and OH intensities and their respective temperatures) in order to understand
mesospheric gravity wave behaviour over long term.

Vertical coupling of atmospheres during cyclone Nilofar have been studied,
wherein, we have observed a common periodicity of around 4-hours in meso-
spheric nightglow intensities at three emissions (O2(0-1), OH(6-2) bands, and
Na(589.3 nm)) from Gurushikhar, Mount Abu on the night of 26 October 2014.
A convective activity due to the cyclone Nilofar, which had developed in the
Arabian Sea during 25-31 October 2014, was found to be the source as this too
showed a gravity wave period coherent with that of the mesospheric emissions
on the 26'*. The periodicities at the source region were obtained using Outgo-
ing Longwave Radiation (OLR) fluxes (derived from Kalpana-1 satellite) which
were used as a tracer of tropospheric activity. We have derived all the GW
parameters (wave period, 7, horizontal phase speed, ¢, horizontal wavelength,
An, vertical phase speed, c,, vertical wavelength, \., and vertical propagation
angle, 0,) which were obtained experimentally from ground-based optical data
that exist during cyclone Nilofar. These results thus provide not only unam-
biguous evidence on the vertical coupling of atmospheres engendered by the
tropical cyclone Nilofar, but also the characteristics of waves that exist during
such cyclonic events.

Significant enhancements observed in the NIRIS derived mesospheric ro-
tational temperatures at 87 and 94 km altitudes during the major sudden
stratospheric warming (SSW) event of January 2013 provided motivation for
the further investigation on the global scale. To investigate the relationship

of these enhancements in the context of SSW occurrences, a detailed study
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was carried out for eleven SSW events that occurred during 2004-2013 using
SABER (Sounding of the Atmosphere using Broadband Emission Radiometry)
data. In addition to SABER, Optical Spectrograph and InfraRed Imaging Sys-
tem (OSIRIS) and Solar Occultation For Ice Experiment (SOFIE) mesospheric
temperatures were also used which showed similar latitudinal behaviour as ob-
tained by SABER. The longitudinal mean mesospheric temperatures at dif-
ferent latitudes of northern and southern hemispheres have been derived. It
is found that, during SSW events the well-known mesospheric cooling over
the northern hemispheric high-latitudes turns to heating over mid-latitudes
and then reverts to cooling closer to equatorial regions. This trend continues
into the southern hemisphere as well. These variations in the mesospheric
temperatures at different latitudes have been characterized based on northern
hemispheric stratospheric temperature enhancements at high-latitudes during
SSW periods. In comparison with the CIRA-86 derived temperatures the
SABER temperatures show an increase/decrease in southern/northern hemi-
sphere. Such a characterization in mesospheric temperatures with respect to
latitudes reveals an hitherto unknown intriguing nature of the latitudinal cou-
pling in the mesosphere that gets set up during the SSW events.

Keywords:Nightglow emissions, Mesospheric temperatures, OH(6-2) and
O4(0-1) rotational temperatures, Mesosphere Lower Thermospheric (MLT) dy-
namics, Gravity wave characteristics, Tropical cyclone generated gravity waves,
Atmospheric coupling, Low-latitude MLT dynamics, Stratospheric mesospheric
coupling, Inter-hemispheric mesospheric couplings, Sudden Stratospheric Warm-
ing (SSW), Mesospheric inversion layers, Mesospheric temperature inversions,
Optical techniques, Near Infrared Imaging spectrograph (NIRIS), CCD-based
Multi-Wavelength Airglow Photometer (CMAP).
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