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                                 PREFACE 

The understanding of the complex behavior of the atmosphere and ionosphere of 

various planets requires a balanced effort in theoretical modeling, experiments and analysis 

of the observations. The ability to combine observations with numerical models is critical in 

predicting atmospheric phenomena. Theoretical models based on fundamental principles in 

conjunction with data from recent satellites are important to improve our understanding of 

the physical, chemical and dynamical processes in the atmosphere. Given such importance, 

modeling of planetary atmospheres has been a major thrust area in India. To help in 

strengthening this area of research, we have developed various models to study the complex 

behavior of Martian atmosphere/ionosphere and dust storms. The Martian ionosphere can be 

divided into D, E, and F region. The Mars ionospheric F- region is formed by EUV 

radiation with wavelength 90 – 1026 Å at altitude ~125-135 km. Mars ionospheric E-region 

is produced by X-ray radiation with wavelength of 10-90 Å at altitude ~100-112 km. At 

night the E-region of Mars disappear because of absence of the primary source of 

ionization. Most of the radio occultation experiments used radio frequency wave to infer the 

ionosphere of Mars. The lower ionosphere is made of D region. The D peak of electron 

density occurs at altitude range from 25 to 35 km. In D layer electron density is less than the 

positive ion density from which the existence of negative ions can be inferred. The primary 

sources of ionization of D region are galactic cosmic rays.  

The Solar flare response is a key problem in the planetary ionosphere. The solar 

flares are sudden increases in solar radiation associated with sunspots. The occurrence of 

solar flares directly depends on sunspot number which in turn depends on solar activity. 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

       

The sunspot number increases as the sun progresses in its activity during 11-years solar 

cycle. The solar flares are broadly classified as X, M, C and B-classes according to their X-

ray brightness in the wavelength range 1 to 70 Å. The GOES, which operate in 

geostationary orbit above the earth track the solar flares reaching the earth by measuring the 

X-ray, flux at shorter wavelengths (0.5-3 Å and 1-8 Å) because these shorter wavelength X-

ray fluxes are more sensitive to the solar flares. Among various Mars’ missions, the MGS 

was the only mission, which measured a large number of electron density profiles (5600) in 

the ionosphere of Mars during solar maximum conditions so far. It observed the responses 

of about 32 solar flare events in the electron density profiles of Martian ionosphere. 

Therefore, the electron density data of MGS is very useful to understand the implications of 

solar flares on Mars. We have also carried out modelling of D and E region ionosphere of 

Mars due to impact of soft X-rays, hard X-rays and GCR radiations during solar flare and 

non-flare conditions. We have reported hard X-rays as a new source of ionization, which 

also produced D region ionosphere of Mars. We have studied response of all 32 Solar flare 

in the E region ionosphere of Mars. The effect of ozone, dust, and Schuman resonance 

frequencies in D region ionosphere of Mars are also studied. In absence of measurements, 

our model results will provide a benchmark values that may help to guide the design of 

future atmospheric/ionospheric payloads of Mars.  

In the present thesis, we have described eight chapters. In chapter 1, we have 

introduced Martian atmosphere and ionosphere. In the second chapter, we have described 

three theoretical models, (1) Energy loss method, (2) Analytical yield spectrum, and (3) 

Continuity equation. In the third chapter, we have studied effect of solar flares in D region 

ionosphere of Mars. 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

      

In the fourth chapter, we have discussed the response to solar X-ray flares in the E region 

ionosphere of Mars. In the fifth chapter, we have studied seasonal variability of the ozone in 

lower ionosphere of Mars. In the sixth chapter, we have described the electrical conductivity 

and SR frequencies in the lower ionosphere of Mars. In the seventh Chapter, we have 

discussed the summary and conclusions on the work carried out in the present investigation. 

Finally, in eighth Chapter, we described the future work. 
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ABSTRACT 

 
We have developed a seasonally dependent energy loss model to calculate the zonally 

averaged production rates of  O�
� due to impact of galactic cosmic rays in the dayside 

troposphere of Mars between solar longitudes (Ls) ~0° and 360° at low latitudes (2°N, 

2°S, 25°N, and 25°S), mid-latitudes (45°N and 45°S), and high latitudes (70°N and 70°S) 

in the Martian Year (MY) 28 and MY 29. We also represent the seasonal variability of 

zonally averaged ozone column density obtained from Mars Climate Database (MCD; 

Millour et al., 2014, https://hal.archives-ouvertes.fr/hal-01139592) during the daytime. 

These results are compared with the daytime observations of column ozone made by 

Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars 

onboard Mars Express (MEX). At mid‐to‐high latitudes ozone column density is 

maximum in northern winter and minimum in southern summer. At low‐to‐middle 

latitudes (2°N–S, 25°N–S, and 45°N–S), the production rates of  O�
� represent a broad 

peak between altitudes 26 and 45 km in both hemispheres. The peak production rates are 

increasing up to Ls = 47.5° and then stabilized at about 2.5 × 10−8 cm−3/s. At Ls ≥ 47.5° 

the peak production rate of  O�
� starts decreasing until it disappeared after Ls = 127.5°. A 

major dust storm occurred in MY 28 at Ls~280° in southern latitudes (~25°–35°S). 

During the dust storm period, dust opacity, ozone column density, and  O�
� production rate 

on the surface of Mars were increased by a factor of ~3. 
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ABSTRACT 

 
We have solved the Maxwellian equations of electromagnetic waves which oscillate 
within the cavity formed in the lower ionosphere of Mars between 0 and 70 km. The 
electrical conductivity and Schumann Resonance (SR) frequencies are calculated in the 
lower ionosphere of Mars, in the presence of a major dust storm that occurred in Martian 
Year (MY) 25 at low latitude region (25o–35oS). It is found that the atmospheric 
conductivity reduced by one to two orders of magnitude in the presence of a dust storm. It 
represents a small dust layer at about 25–30 km altitudes where lightning can occur. We 
also found that the SR frequencies peak at ~18 km with values 19.9, 34.5 and 48.8 Hz for 
the modes l = 1, 2 and 3, respectively, in the non-homogeneous medium. Our results 
indicate that practical or measurable values of SR are dependent on the altitudes. 

Published in: Advances in Space Research, 63, 2260-2266 (2019), 
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ABSTRACT 
 
Responses of solar X-ray flares were observed in a layer of the Martian ionosphere at 
altitudes of ~110 km from 32 electron density profiles obtained by radio science 
experiment onboard Mars Global Surveyor (MGS) during solar cycle 23. Of the 32 profiles 
recorded during flare periods, 10 were associated with X-class flares, 12 with M class and 
10 with C class flares. The flare E-peak densities vary with solar X-ray flux, Solar Zenith 
Angle (SZA), Solar Longitude (Ls) and latitudes. Ionospheric Electron Content (IEC) and 
E-peak electron production rates of these flare profiles are estimated in the E region 
ionosphere. We found a maximum increase of ~200%, ~140% and ~90% in the time series 
of IEC for X, M and C class flares respectively. The dependence of flare E-peak electron 
production rate with Ls is fitted by a sinusoidal function. We have also calculated 
biological doses ~0.1-1.0×10−1, 1-8×10−3 and 1-6×10−4Gy for X, M, C class flares 
respectively to study the human risk for exploration to Mars. Among 10 X-class flares X1 
is a strong solar flare that gives highest dose, which is potentially lethal for human risk in 
Mars' space. 
 
Published in: Icarus, 330, 60-74 (2019), 
ISSN: 0019-1035 
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