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PREFACE

—+

The understanding of the complex behavior of threogaphere and ionosphere @

s

various planets requires a balanced effort in #tgzal modeling, experiments and analysis
of the observations. The ability to combine obsiovs with numerical models is critical in

predicting atmospheric phenomena. Theoretical nsodased on fundamental principles i

-3

conjunction with data from recent satellites ar@anmant to improve our understanding off

the physical, chemical and dynamical processesaratmosphere. Given such importanc

[

modeling of planetary atmospheres has been a ntljast area in India. To help in

strengthening this area of research, we have desélearious models to study the comple
behavior of Martian atmosphere/ionosphere and stosins. The Martian ionosphere can [
divided into D, E, and F region. The Mars ionosphd¥- region is formed by EUV
radiation with wavelength 90 — 1026 A at altitude25-135 km. Mars ionospheric E-region
is produced by X-ray radiation with wavelength @90 A at altitude ~100-112 km. At
night the E-region of Mars disappear because okrates of the primary source of
ionization. Most of the radio occultation experirteensed radio frequency wave to infer the
ionosphere of Mars. The lower ionosphere is mad® oégion. The D peak of electron

density occurs at altitude range from 25 to 35 knD layer electron density is less than th

D

positive ion density from which the existence ofjaigve ions can be inferred. The primang
sources of ionization of D region are galactic cigsrays.

The Solar flare response is a key problem in tlamgihry ionosphere. The solar
flares are sudden increases in solar radiationceged with sunspots. The occurrence of

solar flares directly depends on sunspot numbeclwimi turn depends on solar activity.




The sunspot number increases as the sun progries#issactivity during 11-years solar
cycle. The solar flares are broadly classified a8fXC and B-classes according to their X-
ray brightness in the wavelength range 1 to 70 Ae TGOES, which operate in
geostationary orbit above the earth track the dtdegs reaching the earth by measuring th
X-ray, flux at shorter wavelengths (0.5-3 A and A¥8because these shorter wavelength X
ray fluxes are more sensitive to the solar flafesong various Mars’ missions, the MG$S
was the only mission, which measured a large nurabelectron density profiles (5600) in

the ionosphere of Mars during solar maximum coadgiso far. It observed the respons

(D

of about 32 solar flare events in the electron tengrofiles of Martian ionosphere.

Therefore, the electron density data of MGS is wesgful to understand the implications off

solar flares on Mars. We have also carried out itiadeof D and E region ionosphere of

Mars due to impact of soft X-rays, hard X-rays &@R radiations during solar flare and

non-flare conditions. We have reported hard X-ragsa new source of ionization, whichj

also produced D region ionosphere of Mars. We Isawdied response of all 32 Solar flare
in the E region ionosphere of Mars. The effect pbree, dust, and Schuman resonanc

frequencies in D region ionosphere of Mars are atadied. In absence of measurement;

our model results will provide a benchmark valuest tmay help to guide the design off

future atmospheric/ionospheric payloads of Mars.
In the present thesis, we have described eighttetspin chapter 1, we have

introduced Martian atmosphere and ionosphere. énsétond chapter, we have describ

(D

three theoretical models, (1) Energy loss meth@y Analytical yield spectrum, and (3
Continuity equation. In the third chapter, we hauedied effect of solar flares in D region

ionosphere of Mars.

14 ))
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In the fourth chapter, we have discussed the ressptm solar X-ray flares in the E regio
ionosphere of Mars. In the fifth chapter, we haweled seasonal variability of the ozone i
lower ionosphere of Mars. In the sixth chapterhaee described the electrical conductivit
and SR frequencies in the lower ionosphere of Mbarsthe seventh Chapter, we have
discussed the summary and conclusions on the vasrled out in the present investigation.

Finally, in eighth Chapter, we described the futwoek.
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Effect of Dust Storm and GCR Impact on the Producibn Rate of Q" in
MY 28 and MY 29: Modeling and SPICAM Observation
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ResearchUniversity, Udaipur, India
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ABSTRACT

We have developed a seasonally dependent energyrodel to calculate the zonally
averaged production rates @ff due to impact of galactic cosmic rays in the ddgsi
troposphere of Mars between solar longitudes (I05) and 360° at low latitudes (2°N,
2°S, 25°N, and 25°S), mid-latitudes (45°N and 4588y high latitudes (70°N and 70°S)
in the Martian Year (MY) 28 and MY 29. We also repent the seasonal variability of
zonally averaged ozone column density obtained fhMans Climate Database (MCD;
Millour et al., 2014, https://hal.archives-ouvertéhal-01139592) during the daytime.
These results are compared with the daytime obsemgaof column ozone made by
Spectroscopy for the Investigation of the Charasties of the Atmosphere of Mars
onboard Mars Express (MEX). At mtd-high latitudes ozone column density is
maximum in northern winter and minimum in southesmmmer. At lowto-middle

latitudes (2°N-S, 25°N-S, and 45°N-S), the productiates of 03 represent a broad
peak between altitudes 26 and 45 km in both heraigsh The peak production rates are
increasing up to Ls = 47.5° and then stabilizedtatut 2.5 x 1@ cnT¥/s. At Ls> 47.5°

the peak production rate @3 starts decreasing until it disappeared after UIRZ5°. A

major dust storm occurred in MY 28 at Ls~280° irutbern latitudes (~25°-35°S).
During the dust storm period, dust opacity, ozaslaron density, and)3 production rate

on the surface of Mars were increased by a fadteBo

Published in: Journal of Geophysical Research: Space Phykik2271-2282(2019),
ISSN: 2169-9402
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Schumann resonance frequency and conductivity in #gnnighttime
lonosphere of Mars: A source for lightning

S. A. Haidet, Jayesh P. Pabjri). Masoorh? and Siddhi Y. Shat?

Planetary Science Division, Physical Research Latboy, Ahmedabad, India
2Research Scholar, Faculty of Science, Pacific Acgdef Higher Education and
Research

University, Udaipur, India

ABSTRACT

We have solved the Maxwellian equations of elecagnetic waves which oscillate

within the cavity formed in the lower ionosphere Mars between 0 and 70 km. The
electrical conductivity and Schumann Resonance (&Rjuencies are calculated in the
lower ionosphere of Mars, in the presence of a madjst storm that occurred in Martian

Year (MY) 25 at low latitude region (25832S). It is found that the atmospheric

conductivity reduced by one to two orders of magtetin the presence of a dust storm. It
represents a small dust layer at about 25-30 kitadds where lightning can occur. We

also found that the SR frequencies peak at ~18 kinwalues 19.9, 34.5 and 48.8 Hz for
the modes | = 1, 2 and 3, respectively, in the homogeneous medium. Our results
indicate that practical or measurable values oh&Rdependent on the altitudes.

Published in: Advances in Space Resear6B, 2260-2266 (2019),
ISSN: 0273-1177
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Characteristics of solar X-ray flares and their efects on the ionosphere
and human exploration to Mars: MGS radio science ofervations

P. Thirupathaiah??, Siddhi Y. Shal?, S.A. Haider"

3Planetary Sciences Division, Physical Research ilzdbry, Ahmedabad, India
bFaculty of Science, Pacific Academy of Higher Ediszaand Research
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ABSTRACT

Responses of solar X-ray flares were observed layer of the Martian ionosphere at
altitudes of ~110 km from 32 electron density desfi obtained by radio science
experiment onboard Mars Global Surveyor (MGS) dysnlar cycle 23. Of the 32 profiles
recorded during flare periods, 10 were associatiéa X+class flares, 12 with M class and
10 with C class flares. The flare E-peak densii@y with solar X-ray flux, Solar Zenith
Angle (SZA), Solar Longitude (Ls) and latitudesndspheric Electron Content (IEC) and
E-peak electron production rates of these flardilpspoare estimated in the E region
ionosphere. We found a maximum increase of ~20040% and ~90% in the time series
of IEC for X, M and C class flares respectively.eTéhependence of flare E-peak electrg
production rate with Ls is fitted by a sinusoidain€tion. We have also calculated
biological doses ~0.1-1.0x1) 1-8x103% and 1-6x10'Gy for X, M, C class flares
respectively to study the human risk for explomatio Mars. Among 10 X-class flares X1
Is a strong solar flare that gives highest dosechwis potentially lethal for human risk in
Mars' space.

=
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