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ABSTRACT

The interaction between the solar wind and the Earth’s magnetosphere decides

the energy input into the terrestrial plasma environment and this, in turn,

controls the magnetosphere-ionosphere (MI) coupling processes. The solar

wind-magnetosphere interaction drives the magnetospheric plasma convection

from the high to low latitude ionosphere through the prompt penetration (PP)

electric field. This PP electric field modifies the ionospheric dynamo electric

field, driven by tidal winds over low latitudes. Therefore, the origin, strength

and efficiency of the PP electric field depend on the solar wind (interplanetary),

magnetospheric and ionospheric conditions. The present thesis work comprises

of various aspects of the effects of PP electric field on the global ionosphere,

in general, and low latitude ionosphere, in particular.

Chapter 1 of this thesis work introduces the background physics that

is required to understand the results discussed in chapters 3-6. In order to

address the impacts of different types of prompt penetration electric fields on

the global ionosphere, data from various measurement techniques are adopted.

Further, the analyses techniques used in the investigations are also discussed

in Chapter 2.

Chapter 3 brings out different types of prompt electric field perturbations

on equatorial ionosphere during a geomagnetic storm based on coordinated

digisonde and OI 630.0 nm airglow observations from Thumba (TVM). It is

shown that although, traditionally, these prompt electric field perturbations

are classified under one category (Disturbance-Polar current Type 2 or DP2)

during long duration events, these might constitute phenomenologically differ-

ent processes that include the electric field perturbations due to substorm and

pseudo-breakup. In fact, for the first time, signatures of substorm and pseudo-

breakup induced electric field perturbations in 630.0 nm nightglow emission

intensities over equatorial region are also brought out in this chapter.

xxv



In Chapter 4, the responses of the global ionospheric electric field associ-

ated with the passage of the ICME sheath region have been investigated using

Incoherent scatter radar measurements of Jicamarca and Arecibo along with

the variations of EEJ strength over India. This investigation shows that ICME

can be geoeffective in terms of PP electric field perturbations even if variation

in ring current indices suggest absence of a typical geomagnetic storm.

In Chapter 5, a total of 43 CIR-induced geomagnetic storms during the

deep solar minimum of solar cycle 23 (2006-2010) are studied. The daytime

ionospheric effects are investigated by using the EEJ strength over Jicamarca

as the signature of geoeffectiveness during these CIR events. It is found that

PP electric field perturbations affect equatorial ionosphere when the average

solar wind azimuthal angle is below 6 degree at the first Lagrangian point (L1)

of the Sun-Earth system. Therefore, this result, for the first time, provides a

method to forecast the geoeffectiveness of CIR events based on the observations

from the L1 point.

Chapter 6 brings out a new type of PP electric field disturbance which

is driven by changes in solar wind density alone. The density-driven electric

field has not only enhanced the high-latitude ionospheric convection pattern

but also enhanced the EEJ strength and the peak height of the F layer (hmF2)

over the Indian dip equatorial sector. It is suggested that this type of electric

field originates in the magnetosphere and is phenomenologically different from

conventional PP electric fields.

Chapter 7 brings out the scope of the thesis.

Keywords: CME, CIR, Geomagnetic storm, Magnetospheric substorm,

Pseudo-breakup, Magnetosphere-Ionosphere coupling, Prompt penetration elec-

tric field, Space weather, 630.0 nm airglow, Geoeffectiveness
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