Dissociation Dynamics of Unstable Molecular Systems

A Thesis

submitted for the award of Ph.D. degree of MOHANLAL SUKHADIA UNIVERSITY

in the

Faculty of Science

by

Amrendra Kumar Pandey

Under the Supervision of

Dr. Bhas Bapat Associate Professor Space and Atmospheric Sciences Division Physical Research Laboratory Ahmedabad, India

DEPARTMENT OF PHYSICS MOHANLAL SUKHADIA UNIVERSITY UDAIPUR

Year of submission: 2014

DECLARATION

I, Mr. Amrendra Kumar Pandey, S/O Mr. Ram Bihari Pandey, resident of Room No:101, PRL Thaltej Hostel, Thaltej, Ahmedabad-380054, hereby declare that the work incorporated in the present thesis entitled, "Dissociation Dynamics of Unstable Molecular Systems" is my own and original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required. I solely own the responsibility for the originality of the entire content.

Date : May 26, 2014

(Amrendra Kumar Pandey)

CERTIFICATE

I feel great pleasure in certifying that the thesis entitled, "**Dissociation Dynamics of Unstable Molecular Systems**" embodies a record of the results of investigations carried out by Mr. Amrendra Kumar Pandey under my guidance. He has completed the following requirements as per Ph.D. regulations of the University.

- (a) Course work as per the university rules.
- (b) Residential requirements of the university.
- (c) Regularly submitted six monthly progress reports.
- (c) Presented his work in the departmental committee.
- (d) Published minimum of one research paper in a refereed research journal.

I am satisfied with the analysis of data, interpretation of results and conclusions drawn. I recommend the submission of thesis.

Date : May 26, 2014

Dr. Bhas Bapat (Thesis Supervisor) Associate Professor, Physical Research Laboratory, Ahmedabad, India

Countersigned by Head of the Department

Contents

Ac	knov	ledgements	ix
Ab	ostrac		kiii
Lis	st of]	ublications	xv
Ac	rony	ns and Abbreviations x	vii
Lis	st of '	ables	xix
Lis	st of]	igures	xxi
1	Intr	duction	1
	1.1	The origin of new physics	1
	1.2	Development of theoretical methods	5
	1.3	Development of experimental methods	6
	1.4	Motivation of the work	9
	1.5	Overview of the thesis	10
2	Exp	riment	13
	2.1	Collision processes and measurement of kinematics	13
	2.2	Kinematics of dissociative ionization	14
		2.2.1 Preparation of the initial state	15
		2.2.2 Measurement of the final state	15
	2.3	The measurement scheme	16
		2.3.1 Recoil Ion Momentum Spectrometer	17

CONTENTS

	2.4	The experimental set-up			
		2.4.1	Interaction region	18	
		2.4.2	Extraction region	18	
	2.5	Detect	ion of the reaction products	21	
		2.5.1	Charged particle detector	21	
		2.5.2	Position sensitive detector	22	
		2.5.3	Electron detector and signal processing	24	
		2.5.4	Ion detector and signal processing	24	
	2.6	Data a	equisition	27	
	2.7	Buildi	ng the ion momentum vectors	30	
	2.8	Resolu	ntion of the RIMS	33	
n	Date			97	
3		a Analy	ists	3/	
	3.1	Coinci		3/	
	3.2			39	
		3.2.1	Nature of fragmentation	39	
		3.2.2	Mean file time of the transfert molecular for	41	
	0.0	3.2.3	Analysis of the fragmentation channels	42	
	3.3	Fragm	Rentation properties from the complete kinematics	43	
		3.3.1		44	
		3.3.2	Iransient molecular ion geometry	45	
		3.3.3	Anisotropy measurement	46	
		3.3.4 Branching ratios of the fragmentation channels		48	
	3.4	Correc	ctions in the measured kinematics	48	
		3.4.1	Ion transmission losses	49	
		3.4.2	Effect of dead time of the detectors in ion-coincidence	51	
		3.4.3	MCP detection efficiency	54	
		3.4.4	Effect of transmission meshes	54	
4	The	ory		57	
	4.1	The molecular system			
		4.1.1	Separation of nuclear and electronic motions	60	

		4.1.2	Electronic structure properties	63
		4.1.3	Properties of the PECs	65
		4.1.4	Vibrational structures of the PECs	67
	4.2	Dissoc	iative ionization processes in molecules	69
		4.2.1	Direct processes of dissociation	70
		4.2.2	Indirect processes of dissociation	72
	4.3	Metho	ds of calculation	75
		4.3.1	Linear variational procedure	75
		4.3.2	Building the N-electron basis functions for SCF method	77
		4.3.3	Hartree-Fock SCF method	79
		4.3.4	Configuration interaction SCF methods	80
		4.3.5	MCSCF, CASSCF and MRCI methods	82
		4.3.6	Calculation performed	84
5	Rest	ılts		87
	5.1	The ba	asis of a comparative study	88
5.2 The experimental results		aperimental results	91	
		5.2.1	The TOF spectrum	91
		5.2.2	The T1-T2 correlation maps	93
		5.2.3	Estimation of CSD-to-ND ratios	94
		5.2.4	CSD-KER spectrum of N_2 and CO dications	97
	5.3	The co	mputational results	97
	2	5.3.1	Calculation of Potential Energy Curves	98
		5.3.2	Need of precise calculations	100
		5.3.3	Calculation of FC Factors and tunneling life times	102
		5.3.4	Calculation of KER	102
	5.4	Identif	fication of the KER features	103
		5.4.1	Direct dissociation channels	103
		5.4.2	Indirect dissociation channels	107
	5.5	Calcul	ation of the partial cross sections	109
	5.6	Conclu	1sions	111

6	Summary and discussions	113
Α	Calculation of transmission loss	117
B	Vibrational levels of N_2^{++} and CO^{++}	121
Bi	Bibliography	

skot studio Sest

Acknowledgements

In my view, acknowledgement is an account of the various sources of support that can not be completely grasped even after recognizing the contributions of the individuals and institutions. Also, for such a long time, like a PhD tenure, it is not only the knowledge and information that is achieved, if it is, it would feel insufficient and be dissatisfying at the end. I consider it as my accomplishment the way I have experienced the human faculties and world views in this time that would have otherwise certainly different. It is my privilege to be a part of the Physical Research Laboratory and I thank all the members of the institution for their support.

First, I would like to express my gratitude to my supervisor Dr. Bhas Bapat for his constant encouragement and guidance. I appreciate his insight and knowledge on the subject and admire his urge for the broader understanding. I am deeply grateful to him for his involvement in my work. I have always benefited from the discussions we had on the subject. In addition, he always inspires me to pursue the independent research. Apart from his role as an adviser, I must acknowledge him for being extremely supportive and I wish to thank him for his patience.

I would also like to thank Dr. K.R. Shamasundar, IISER Mohali, for his support and guidance in the theoretical aspect of this work. I am grateful to him for critical comments and suggestions that proved to be very beneficial.

I am grateful to my group members for their support. I am obliged to Prof. K P Subramanian for his constant encouragement and interest in my work. I acknowledge Dr. I A Prajapati and Dr. S B Banerjee for their assistance in the experimental work. I am also thankful to Prashant Kumar, V K Lodha for their help in many occasions. I want to thank my seniors Rajesh Kushawaha and Arvind Saxena for their useful suggestions. A special thanks goes to Koushik Saha for his sincere involvement and the discussions we had on the many topics. Apart from this, I thank to the senior members of my group for providing the valuable knowledge about the history and development of this institution. I also find the discussions on the various interesting topics that we had on the tea worth acknowledging. I enjoyed their company and warmth all this time.

I would like to thank Prof J N Goswami, the Director PRL, and Prof. Utpal Sarkar, the Dean, for their support. I must thank PRL academic committee for reviewing my research work and giving suggestions and critical comments. I am also thankful to all the members of SPA-SC division and Laser physics group for their valuable suggestions that emerged out in the seminars. I would like to thank all the faculties who taught me during the coursework. I learned many things from R Ramesh, B Bapat and R Rangarajan. Late Prof D Lal and R K Verma were very inspiring.

I would also like to thank and appreciate the members of the PRL Library, computer center, administration and dispensary for their sincere support. I want to thank the staffs of the canteen, cleaning service, transport service and CISF for their long responsible service and care.

I would like to thank my friends Abhishek, Arun, Chinmay, Koushik, Siddhartha, Sunil, Susanta, Vema and Yogita for making this journey enjoyable. I am deeply grateful for their friendship. In this time, many memorable and meaningful moments belong to their company. I also enjoyed company of Arko, Tonmay, Manojit, Sashi, Fazlul, Priyanka, Gourav, Gulab and many others. I learned many things from them. I am grateful to my old friends Sanat and Aditya for helping me whenever needed. I thank Shaili for her friendship and encouragement. I also thank Diganta for his friendship and pleasant company. A special thanks goes to all the people who made a very healthy and cheerful environment, because of them I really enjoyed

ACKNOWLEDGEMENTS

my stay in PRL and Thaltej campus.

Finally, I owe my deepest gratitude to my family members for their unconditional support. They always showed me their trust and encouraged me throughout my PhD years. I am indebted to my mother and father for their wholehearted love. I would like to express the deepest appreciation to my brother, Madhurendra, for helping me in programming and computer skills. I would like to express my regard to my elder brother and his family for encouragement and support. I sincerely appreciate my sisters for giving me time from their occupied lives.

> Studio Studio

Abstract

A molecular system is generally viewed as a composite of two sub-systems of electrons and nuclei which are drastically different on the basis of their dynamical time scales. These two sub-systems, however are coupled by the Coulomb interactions. The assumptions and approximations based on the inherent differences in the dynamical properties of the electrons and nuclei are used to construct the picture of a molecule. The resulting model of the molecular system explain and predict many molecular processes very successfully. However, there are processes in which their predictions do fail. Dissociation processes of highly charged molecular systems provide a unique opportunity to examine and explore their nature in this regard. Such studies are employed as a probe to investigate the regime and conditions of the validity of assumptions and approximations that are otherwise remain valid in the molecular processes.

This thesis is concerned with experimental as well as theoretical investigations to explore some of the fragmentation properties of the doubly ionized molecular ions of N_2 and CO, which are isolectronic molecules with different symmetries but nearly identical total ionization cross-sections. By combining ab initio calculations with the experimental investigation of the kinematics of dissociative double ionization of these molecules, we have identified various transient states contributing to the dissociation process. Further we have quantified the BO and non-BO processes therein. It has emerged as an important result because of the striking differences between their observed proportions for these dications. The work reported in this thesis empasize the relevance of such comparative studies.

List of Publications

- Charge symmetric dissociation of doubly ionized N₂ and CO molecules
 A. Pandey, B. Bapat, K.R. Shamasundar, The Journal of Chemical Physics, 140, 3 (2014)
- Effect of transmission losses on measured parameters in multi-ion coincidence momentum spectrometers
 A. Pandey, and B. Bapat, International Journal of Mass Spectrometry, 361, 0 (2014)
- 3. A comparative study of Dissociative Ionization of N₂ and CO
 A. Pandey, B. Bapat, K.R. Shamasundar, Journal of Physics: Conference Series, 488, 5 (2014)

Acronyms and Abbreviations

AO	Atomic Orbital
CE	Coulomb Explosion
CI	Configuration Interaction
CSD	Charge Symmetric Dissociation
CAD	Charge Asymmetric Dissociation
CSF	Configuration State Function
DI	Dissociative Ionization
DLD	Delay Line Detector
FWHM	Full Width Half Maximum
GTO	Gaussian Type Orbital
HF	Hartree Fock
KER	Kinetic Energy Release
LCAO	Linear Combination of Atomic Orbitals
МСР	Multi Channel Plate
MCSCF	Multi Configuration Self-Consistent-Field
МО	Molecular Orbital
MRCI	Multi Reference Configuration Interaction
PEC	Potential Energy Curve
RIMS	Recoil Ion Momentum Spectrometer
SCF	Self Consistent Field
STO	Slater Type Orbital
TOF/ToF	Time Of Flight

List of Tables

2.1	A sample of the list mode data file	29
B.1	Properties of vibrational levels of N_2^{++}	122
B.2	Properties of vibrational levels of CO ⁺⁺	123

desk of studio

List of Figures

2.1	A schematic diagram of the RIMS setup	19
2.2	A schematic view of the MCP and micro channel	22
2.3	A schematic diagram of the DLD	23
2.4	Signal processing of the electron detector	25
2.5	Schematic diagram of the data acquisition of RIMS set up	26
2.6	Schematic representation of multi-hit coincidence	28
2.7	TOF calibration curve for RIMS	32
2.8	Transverse and linear momentum distribution of Ar gas	34
3.1	A schematic diagram of the time correlation map	40
3.2	A schematic diagram of the KER spectrum	43
3.3	Schematic representation of the molecular ion geometry	45
3.4	Asymmetry parameter β	47
3.5	Loss corrections in the KER spectrum	53
4.1	A schematic representation of the molecular coordinates	59
4.2	Properties of vibrational levels of a PEC	67
4.3	KER from direct processes	71
4.4	KER from indirect processes	73
5.1	Illustration of the molecular symmetries of N_2 and CO MOs $\ \ldots \ \ldots$	88
5.2	First-Hit ToF spectrum of N_2 and CO molecules	92
5.3	Partial first-Hit ToF spectrum of N_2 and CO $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	93
5.4	Time correlation maps of CSD of N_2^{++} and CO^{++}	94

LIST OF FIGURES

5.5	Loss corrected CSD-KER spectrum of N_2^{++} and CO^{++}	97
5.6	PECs of N_2^{++}	99
5.7	PECs of CO^{++}	100
5.8	Identification of CSD-KER features of N_2^{++}	104
5.9	Identification of CSD-KER features of CO ⁺⁺	105
5.10	Properties of vibrational levels of N_2^{++} and CO^{++}	106
5.11	Fractional estimation of the sources of DI using CSD-to-ND ratios .	110
A.1	Illustration of the transimission loss	118
A.2	Loss angle and loss factor as a function of ion's energy	119