DIRECTED TRANSPORT IN CHAQTIC
HAMILTONIAN SYSTEMS
A THESIS

submitted for the award of Ph.D. degree of
MOHANLAL SUKHADIA UNIVERSITY

in the

Faculty of Science

by
Harinder Pal

Under the Supervision of
Dr. Madabushi Srinivasan Santhanam
Ex-Reader
Physical Research Laboratory, Ahmedabad, India
and
Co-Supervisor
Dr. Angom Dilip Kumar Singh
Associate Professor

Physical Research Laboratory, Ahmedabad, India

DEPARTMENT OF PHYSICS
MOHANLAL SUKHADIA UNIVERSITY

UDAIPUR
2011



To
My family



CERTIFICATE

| feel great pleasure in certifying that the thesis entjti@irected Transportin
Chaotic Hamiltonian Systems”embodies a record of the results of investigations
carried out by Harinder Pal under my guidance.

He has completed the following requirements as per Ph.ula&gns of the
University.

(a) Course work as per the university rules.

(b) Residential requirements of the university.

(c) Presented his work in the departmental committee.

(d) Published/accepted minimum of two research papers é@fieared research
journal.

| am satisfied with the analysis of data, interpretation stits and conclusions
drawn.

| recommend the submission of thesis.

Date :

Dr. Madabushi Srinivasan Santhanam
(Thesis Advisor)

Countersigned by

Head of the Department



DECLARATION

[, Harinder Pal, S/O Mr. Harbans Lal, resident of A-2, PRL
Residences, Navrangpura, Ahmedabad - 380 009, herebyredotd
the work incorporated in the present thesis entitféirected Trans-
port in Chaotic Hamiltonian Systemsis my own and original. This
work (in part or in full) has not been submitted to any Univir$or
the award of a Degree or a Diploma.

Date :

(Harinder Pal)



Acknowledgments

First and foremost, | offer my sincerest gratitude to my suviger, Dr. M. S. San-
thanam, who has supported me throughout my thesis with lus/lleglge and pa-
tience. | am grateful to him for providing me unflinching encagement and guid-
ance during all these years. His openness to new ideas atiéataal support for
their pursuance has made research life rewarding for mankthim for his efforts
to educate me with the concepts and tools necessary for theimthis thesis.

| owe special gratitude to my co-supervisor, Dr. Dilip Angornextend my
warmest thanks to him for many useful discussions, enceuanagt and support. |
am grateful to him for his kind concern regarding my academggirements.

| thank Dr. Bimalendu Deb for giving an encouraging start tpnesearch life
by guiding me in my coursework project. | would also like tatik Prof. J. Banerji,
Dr. Jitesh Bhatt, Dr. Dilip Angom, Dr. M. S. Santhanam, Pr8hyam Lal, Prof.
R Sekar, Prof. S. A. Haider, Dr. Varun Sheel and Dr. A. K. Sirga teach-
ing various courses and making coursework an enjoyablailepexperience. |
extend my thanks to Prof. P. K. Panigrahi for many informaldtimulating discus-
sions during my early days in Physical Research Laborataigicerely thank Prof.
Sushanta Dattagupta and Prof. Steven Tomsovic for givinghaie valuable time
and sharing some ideas during their visit to PRL. Specialkbare due to Dr. R.
Sankaranarayanan who visited PRL during starting phaseyaloutoral research
and discussed his work on generalized standard map. | wdsddii&e to thank
Prof. Arul Lakshminarayan for some useful discussionsmdunternational con-
ference on "Recent Developments in Non-linear Dynamict IrelTiruchirapalli in
2008.

| am extremely grateful to PRL for various facilities it hasopided, without
which this thesis would not have been possible. | would dlsotb thank all the
staff members of library, computer center, administrgtioaintenance and medical
dispensary for their support in making efficient use of ad facilities possible. |

would like to specially thank Mrs. Nishtha AnilKumar, Mrsa#line Joseph, Dr.



ACKNOWLEDGMENTS \%

Sheetal Patel, Dr. Bhushit, Mrs. Parul Parikh, Miss Jayshkér. Keyur Shah,
Mr. Gangadharia, Mr. B. M. Joshi, Mr. Ghanshyam Patel, Mmdgaathan, Miss
Pragya, and Mr. N. P. M. Nair for always being happy to helpckdrewledge the
extensive use of High Performance Computing cluster taditir my thesis work.

| am thankful to Mr. G. G. Dholakia, Mr. D. V. Subhedar, Mr. digRaval, Mr.

Hitendra, Mr. Tejas, Mr. Alok and Mr. Mrugesh Gajjar for therompt actions to
my computation related requests. | would like to extend mgmesst regards for Mr.
Manjunatha and Mr. Anish of CDAC, Pune for their help in usuagious packages
on HPC. Their zeal to deal with HPC related issues made myé&fy. | am also
grateful to IISER, Pune for its hospitality during my visits thesis related work.
| also thank the staff of MLSU, Udaipur for their kind co-opgon and prompt
services.

I would like to thank all my friends in PRL for their affectiate company and
best wishes, as well as express my apology that | could notiamemames of all of
them because they are just too many. Vimal and Suman havegoeeh'school-
mates”. Their company during the schools and conferencelsawe attended to-
gether made those learning periods more enjoyable. | wakedd thank Suman
also for helping me out whenever | had some software or opgraystem related
issues. | also thank my senior Dr. Rajneesh Atre for his hetpbguidance.

| express my deepest thanks to my parents for their untirffogte and encour-
agement throughout my studies. | also thank my sisters,t&and Sandeep, for
their loving support. | express my sincere gratitude to ndeekister Sunita for
her guidance during my schooling and also for encouragindgambigher educa-
tion. I am deeply thankful to my wife Manan whose understagdpatience and
unconditional support has kept my spirits up through thic#t tin.

Finally, | feel great pleasure to express my gratitude toottlers who have

directly or indirectly contributed to this thesis.



ABSTRACT

We study the dynamics and directed transport in a class aftichdamiltonian sys-
tems. The system we consider ig-akicked particle in the presence @f) double-
barrier potential andi:) periodic lattice of square-well potentials. In contrast to
the well studied kicked rotor, the kicked system, in the pneg of two variants of
square-well potentials, studied in this thesis does noy tieKolmogorov-Arnold-
Moser (KAM) theorem. Due to this, invariant curves are abserd instead the
phase space displays intricate chains of islands and folyected chaotic layer
even for very small kick strength. However, a special featfrthe system reported
in this thesis is that, inspite of being a non-KAM system, a@iyics is KAM-like in
some regions of phase space. We study the effect of intelpglayeen of non-KAM
and KAM-like phase space dynamics on dynamical propertieeeosystem. We
report a number of novel and interesting dynamical featlikeq«) the classically
induced suppression of energy grow(h), non-equilibrium steady state afe mo-
mentum filtering effect. We also report results for the quanainalogues of these
dynamical features.

To study the directed transport properties of the systemstwdy evolution
of a set of initial states. We study the effect of spatio-terap symmetries on
net current of a set of states. We observe that the systemsstaiehet effect,
i.e., directed current in absence of net bias, upon breakingioespatio-temporal
symmetries. We explain how the non-KAM nature of the systerparts some
useful characteristics to it as ratchet model. Throughwstwork, we also analyse
the quantum dynamics of the system, mainly in the semidaksgime, and study
the consequences of quantum effects. We also show that siensyan act as a

guantum ratchet.
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