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ABSTRACT

We study the dynamics and directed transport in a class of chaotic Hamiltonian sys-

tems. The system we consider is aδ−kicked particle in the presence of(i) double-

barrier potential and(ii) periodic lattice of square-well potentials. In contrast to

the well studied kicked rotor, the kicked system, in the presence of two variants of

square-well potentials, studied in this thesis does not obey the Kolmogorov-Arnold-

Moser (KAM) theorem. Due to this, invariant curves are absent and instead the

phase space displays intricate chains of islands and fully connected chaotic layer

even for very small kick strength. However, a special feature of the system reported

in this thesis is that, inspite of being a non-KAM system, dynamics is KAM-like in

some regions of phase space. We study the effect of interplaybetween of non-KAM

and KAM-like phase space dynamics on dynamical properties of the system. We

report a number of novel and interesting dynamical featureslike (a) the classically

induced suppression of energy growth,(b) non-equilibrium steady state and(c) mo-

mentum filtering effect. We also report results for the quantum analogues of these

dynamical features.

To study the directed transport properties of the system, westudy evolution

of a set of initial states. We study the effect of spatio-temporal symmetries on

net current of a set of states. We observe that the system shows ratchet effect,

i.e., directed current in absence of net bias, upon breaking certain spatio-temporal

symmetries. We explain how the non-KAM nature of the system imparts some

useful characteristics to it as ratchet model. Throughout this work, we also analyse

the quantum dynamics of the system, mainly in the semiclassical regime, and study

the consequences of quantum effects. We also show that the system can act as a

quantum ratchet.
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