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Abstract

In the standard model (SM) of particle physics it is a well-known fact that cou-

pling constants of different fundamental interactions run with energy. The vari-

ations of these coupling constants under different local energy regimes have al-

ready been verified experimentally. But in the current scenario there is no law

or symmetry principle, other than a presumption for the sake of simplicity, that

restrains the physical constants of nature from varying in space and time. Hence,

it is necessary to verify this assumption experimentally.

Investigations of temporal variation of fundamental constants have been gain-

ing the ground steadily in both the theoretical and experimental physics for the

last two decades [J. P. Uzan, Rev. Mod. Phys. 75, 403 (2003), J. A. King,

et al. MNRAS 422, 3370 (2012), H. Chand, et al., Precision Spectroscopy in

Astrophysics]. Important consequences of searching for searching such variations

are to establish theories suggesting violation of Einstein’s equivalence principle,

to support unification of gravity with the other three fundamental interactions

of nature [T. Damour, et al., Phys. Rev. D 89, 081601 (2002), T. Damour,

et al., Phys. Rev. D 66, 046007 (2002), T. Kaluza, Sitzungber. Press. Akad.

Wiss. Phys. Math. Kl. L IV, 966 (1921), O. Klein, Z. Phys. 37, 895 (1926),

A. Chodos and S. Detweiler, Phys. Rev. D 21, 2167 (1980), W. J. Marciano,

Phys. Rev. Lett. 52], et cetera. This will also probe the multidimensionality

to space as predicted by super-string theories [T. Damour and A. M. Polyakov,

Nucl. Phys. B 423, 532 (1994)]. These theories predict temporal variations of

dimensionless fundamental constants including the electromagnetic fine structure

constant (αe = e2

~c) in the low energy limit at the cosmological time-scale.

The primary objective of this thesis is to provide accurate results for the rel-

ativistic sensitivity coefficients which can be further used to investigate temporal

variation of αe. We have employed relativistic coupled-cluster (RCC) methods

developed by us to determine these sensitivity coefficients in many astrophysi-

cally relevant atomic systems and also for some of the atomic clock transitions to

study the possible temporal variation of αe. It can be perceived that the antici-

pated relativistic effects are quite large in the highly charged ions, and seem to
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be the promising candidates for such investigation. So we have considered many

possible highly charged ions and investigated enhancement of relativistic effects

in these systems. To give more accurate results for the sensitivity coefficients,

we also estimate the contributions from the Breit interaction and the dominating

quantum electrodynamic (QED) corrections in addition to the contribution from

Dirac-Coulomb (DC) Hamiltonian.

For the above purpose, we have developed one-electron detachment and one-

electron attachment RCC methods from a closed-shell atomic configurations. Us-

ing the above methods, we determine the sensitivity coefficients for three low-lying

3s23p5 2P3/2 → 3s3p6 2S1/2, 3s23p5 2P3/2 → 3s3p6 2S1/2 and 3s23p5 2P3/2 →
3s23p5 2P1/2 transitions in the Cl-like Mn IX, Fe X, Co XI and Ni XII ions.

We also calculate the sensitivity coefficients for the three low-lying transitions

2s22p5 2P3/2 → 2s2p6 2S1/2, 2s22p5 2P3/2 → 2s2p6 2S1/2 and 2s22p5 2P3/2 →
2s22p5 2P1/2 in the F-like Ti XIV, V XV, Cr XVI, Mn XVII, Fe XVIII, Co XIX,

Ni XX, Cu XXI, Zn XXII and Mo XXXIV ions very accurately. In addition to

these ions, we have also calculated the sensitivity coefficients for a number of

astrophysically relevant transitions in the Si IV, Ti IV and Zn II ions using our

RCC methods. Since Si IV, Ti IV and Zn II ions are highly abundant in many

quasars, we have provided q-values for a number of important transitions in these

ions to achie better statistical analysis in the estimation of αe variation using the

Many-Multiplet (MM) method.

We also carry out very accurate calculations of some of the physical quantities

which are vital in the precise estimate of absolute frequencies in the atomic clock

experiments. One of them is the quadrupole shift in the Yb+ ion clock which arises

due to the interaction of electric field gradient with the quadrupole moment of

the atomic systems. We have investigated quadrupole shifts for three prominent

clock transitions, [4f 146s]2S1/2 → [4f 145d]2D3/2, [4f 146s]2S1/2 → [4f 145d]2D5/2

and [4f 146s]2S1/2 → [4f 136s2]2F7/2, in the Yb+ ion by calculating quadrupole

moments (Θs) of the [4f 145d]2D3/2,5/2 and [4f 136s2]2F7/2 states using our meth-

ods. We find an order difference in the Θ value of the [4f 136s2]2F7/2 state between

our calculation and the experimental result, but our result concur with the other
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two calculations that are carried out using different many-body methods than

ours. However, our Θ value of the [4f 145d]2D3/2 state is in good agreement with

the available experimental result and becomes more precise till date estimating

the quadrupole shift of the [4f 146s]2S1/2 → [4f 145d]2D3/2 clock transition more

accurately.

The other one is the black-body radiation (BBR) shifts due to the magnetic

dipole (M1) and electric quadrupole (E2) components of the radiation fields in

the Ca+ and Sr+ single ion clocks. We have estimated contribution from the

M1 and E2 multipoles of the radiation field for the 4s 2S1/2 → 3d 2D5/2 and

5s 2S1/2 → 4d 2D5/2 transitions in the singly ionized calcium and strontium, re-

spectively. These shifts are obtained by calculating the corresponding multipolar

scalar polarizabilities of the involved atomic states. Precise estimate of these sys-

tematics are quite important for determining uncertainties to the measured clock

frequencies in these ions, which are further used for giving stringent bound on

the temporal variation in αe.

Keywords: Fine structure constant, Sensitivity coefficient, Alkali-Doublet

method, Many-Multiplet method, Atomic clock, Dirac-Fock model, Hyperfine

interaction, Quadrupole shifts, Black-body radiation shifts, Many-body perturba-

tion theory, Relativistic coupled-cluster method, one-electron detachment method,

one-electron attachment method, Ionization potential energies, Electron affini-

ties.
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[7] T. Kaluza, Zum Unitätsproblem der Physik, Sitzungsberichte der Königlich

Preußischen Akademie der Wissenschaften (Berlin), Seite p. 966-972 pp.

966–972 (1921).

[8] O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie,

Zeitschrift fur Physik 37, 895–906 (1926).

[9] T. Damour and A. M. Polyakov, String theory and gravity, General Rela-

tivity and Gravitation 26, 1171–1176 (1994).

173



174 BIBLIOGRAPHY

[10] T. Damour and A. M. Polyakov, The string dilation and a least coupling

principle, Nuclear Physics B 423, 532–558 (1994).

[11] K.-I. Maeda, On Time Variation of Fundamental Constants in Superstring

Theories, Modern Physics Letters A 3, 243–249 (1988).

[12] A. R. Agachev, I. Y. Belov, V. V. Bochkarev, R. A. Daishev, S. V. Mavrin,

Z. G. Murzakhanov, A. F. Skochilov, Y. P. Chugunov, and O. P. Shindyaev,

Test of local position invariance at the detector “Dulkyn-1”, Gravitation and

Cosmology 17, 83–86 (2011).

[13] A. R. Agachev, I. Y. Belov, V. V. Bochkarev, R. A. Daishev, S. V. Mavrin,

Z. G. Murzakhanov, A. F. Skochilov, Y. P. Chugunov, and O. P. Shindyaev,

Test of local position invariance using a double-cavity laser system, Soviet

Journal of Experimental and Theoretical Physics 110, 1–6 (2010).

[14] J. W. Moffat, Superluminary Universe:. a Possible Solution to the Initial

Value Problem in Cosmology, International Journal of Modern Physics D

2, 351–365 (1993).

[15] H. B. Sandvik, J. D. Barrow, and J. Magueijo, A Simple Cosmology with a

Varying Fine Structure Constant, Phys. Rev. Lett., 88, 031302 (2002).

[16] J. D. Barrow, H. B. Sandvik, and J. Magueijo, Behavior of varying-alpha

cosmologies, Phys. Rev. D, 65, 063504 (2002).

[17] J. D. Barrow, J. Magueijo, and H. B. Sandvik, Variations of alpha in space

and time, Phys. Rev. D, 66, 043515 (2002).

[18] J. D. Bekenstein, Fine-structure constant: Is it really a constant? Phys.

Rev. D, 25, 1527–1539 (1982).

[19] J.-P. Uzan, The fundamental constants and their variation: observational

and theoretical status, Reviews of Modern Physics 75, 403–455 (2003).

[20] M. J. Drinkwater, J. K. Webb, J. D. Barrow, and V. V. Flambaum, New

limits on the possible variation of physical constants, mnras 295, 457 (1998).



BIBLIOGRAPHY 175

[21] J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D.

Barrow, Search for Time Variation of the Fine Structure Constant, Phys.

Rev. Lett., 82, 884–887 (1999).

[22] L. L. Cowie and A. Songaila, Astrophysical Limits on the Evolution of

Dimensionless Physical Constants over Cosmological Time, Astrophys. J.,

453, 596 (1995).

[23] J. N. Bahcall, W. L. W. Sargent, and M. Schmidt, An Analysis of the

Absorption Spectrum of 3c 191, Astrophys. J. Lett., 149, L11 (1967).

[24] A. I. Shlyakhter, Direct test of the constancy of fundamental nuclear con-

stants, nature, 264, 340 (1976).

[25] T. Damour and F. Dyson, The Oklo bound on the time variation of the

fine-structure constant revisited, Nuclear Physics B 480, 37–54 (1996).

[26] A. I. Shlyakhter, Direct test of the constancy of fundamental nuclear con-

stants using the Oklo natural reactor, Leningard Nuclear Physics Institute,

Leningard, (1976).

[27] Y. Fujii, A. Iwamoto, T. Fukahori, T. Ohnuki, M. Nakagawa, H. Hidaka,
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