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ABSTRACT

Measurement of large angle correlations in the cosmic microwave background

(CMB) anisotropy by COBE and WMAP experiments indicates that the uni-

verse went through a period of accelerated expansion in the past known as

inflation. Inflation not only explains the long standing horizon and flatness

problems of standard hot-big bang cosmology, it can also describe the struc-

ture formation very well in addition to the cosmic microwave anisotropy. In

general, inflation is driven by the scalar field, which is known as inflaton. In

this thesis we study the consequences of assumption that the Higgs field of the

standard model can be the inflaton.

It is known that non-minimal coupling of the Higgs and gravity sector is

needed to create a successful model of Higgs inflation. In this thesis we study

magnetic field generation in the curvature coupled Higgs inflation model. It

not only explains the magnitude of experimentally observed magnetic field at

large scales, we also show that in this model there is no problem of back-

reaction on the inflaton potential, which is normally seen in the generation of

magnetic field studied in generic inflation model.

It is also known that in a potential with a large negative quartic coupling

of a conformally coupled scalar field, one can generate scale invariant density

perturbations to explain the structure formation of the universe and the CMB

anisotropy. In this thesis we have implemented this idea in realistic inert dou-

blet model. We show that we can generate the observed spectrum of the CMB

anisotropy in this model by a suitable choice of the scalar Higgs couplings.

With this choice of parameter one can tune the couplings to give a Higgs mass

around 125.6 GeV along with light scalar dark matter candidate of mass 33.7

GeV which may be detected in the experiments.

In last part of this thesis we discuss the study of vacuum stability of the

standard model Higgs potential which is the condition that the Higgs quartic

coupling does not become negative under renormalization, all the way upto

the Planck scale. In particular we study the phenomenological constraints

on the heavy neutrino of Type-I seesaw models from the criterion of Higgs



iv

vacuum stability. We find that the Dirac mass of the neutrino is constrained

to mD ≤ 24.36 GeV through the bound on the neutrino Yukawa coupling,

Yν ≤ 0.14. This has application on the phenomenology of TeV scale heavy

neutrinos, which can be tested in Large Hadron Collider. The three aspect of

the heavy neutrino phenomenology, namely, Neutrino-less double beta decay

(0νββ), Lepton flavor violating decays like µ → eγ and Like-sign dilepton

signals are studied in the light of the vacuum stability condition.
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