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Abstract

In the history of elementary particle physics, the discovery of the Higgs boson
at the Large Hadron Collider (LHC) in July 4, 2012 is an important breakthrough
which completes the Standard Model (SM) of particle physics. Nevertheless, there
exist experimental observations which cannot be explained by the SM, like the
neutrino oscillations, dark matter, baryon asymmetry etc. With these experimen-
tal shortcomings it is evident that there exist some beyond the Standard Model
(BSM) physics. There are several ways to extend the SM to explain some of
the experimental phenomena which is still to be observed in the state-of-the-art
experiment like LHC. But the recent Higgs discovery can shed some light in the
uncharted territory of theoretical physics. We are living at a minima of the Higgs
potential where the Higgs field acquires a vacuum expectation value (vev) which
is intertwined with the Higgs boson mass (my) measured at the LHC. The sta-
bility of the minimum is ensured by the condition that the Higgs quartic coupling
should be positive. But recent observation of my at the LHC indicates that the
SM minima does not remain stable upto the Planck scale. This also indicates
that there must be some new physics phenomena which will stabilize the mini-
mum. Hence the stability analysis of the BSM scenarios is necessary to constrain
parameters of the model. There are other constraints like perturbativity and
unitarity of scattering amplitudes of longitudinal gauge boson modes which will
also restrict the parameter space.

The BSM models that include many scalar fields posses scalar potential with
many quartic couplings. Due to the complicated structures of such scalar poten-
tials it is indeed difficult to adjudge the stability of the vacuum. Thus one needs
to formulate a proper prescription for computing the vacuum stability criteria.
We have used the idea of copositive matrices to deduce the conditions that guar-
antee the boundedness of the scalar potential. We have discussed the basic idea
behind the copositivity and then used that to determine the vacuum stability cri-
teria for the Left-Right symmetric models with doublet, and triplet scalars and
Type-II seesaw. As this idea is based on the strong mathematical arguments it

helps to compute simple and unique stability criteria embracing the maximum
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allowed parameter space.

We study the B — L gauge extension of the Standard Model which contains a
singlet scalar and three right-handed neutrinos. The vacuum expectation value
of the singlet scalar breaks the U(1)p_, symmetry. The B — L symmetry breaks
when the complex singlet scalar acquires a vev. We studied two different cases of
B— L breaking scale: TeV scale and ~ 10!° GeV. The TeV scale breaking scenario
can have signatures at the LHC and we have constrained parameter space of
this model. The high scale breaking scenario provides a constrained parameter
space where both the issues of vacuum stability and high-scale inflation can be

successfully accommodated.

The Left-Right symmetric model (LRSM) is theoretically well motivated and
also contains rich phenomenology. We used idea of copositivity to calculate vac-
uum stability conditions for two variants of the LRSM. We incorporate the uni-
tarity conditions in LRSM which can translate into giving a stronger constraint
on the model parameters together with the criteria derived from vacuum stability
and perturbativity. In this light, we demonstrate the bounds on the masses of
the physical scalars present in the model and find the scenario where multiple

scalar modes are in the reach of Large Hadron Collider.

We have also studied a variant of TeV scale seesaw model in which three addi-
tional heavy right handed neutrinos are added to the standard model to generate
the quasi-degenerate light neutrinos. This model is theoretically interesting since
it can be fully rebuilt from the experimental data of neutrino oscillations except
for an unknown factor in the Dirac Yukawa coupling. We study the constrains on
this coupling coming from meta-stability of electro-weak vacuum. Even stronger
bound comes from the lepton flavor violating decays on this model, especially in
a heavy neutrino mass scenario which is within the collider reach. Bestowed with
these constrained parameters, we explore the production and discovery potential
coming from these heavy neutrinos at the 14 TeV run of Large Hadron Collider.
Signatures with tri-lepton final state together with backgrounds are considered

in a realistic simulation.



Keywords: Vacuum Stability, Copositivity, Extended Scalar Sector, Beyond
the Standard Model, Z’ Model, B-L symmetry, Left-Right symmetry, TeV scale

seesaw, Quasi-degenerate neutrinos, Collider Phenomenology
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