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Abstract

The upper atmosphere of the Earth is influenced by incoming solar radiation

(UV, EUV, and X-rays) and by secondary effects like waves from the lower at-

mosphere. The EUV radiation is absorbed above about 100 km altitude of the

Earth’s surface by atomic and molecular constituents resulting in their excitation

to higher energy states. These excited species while returning to their respec-

tive ground states give rise to radiations, which are called dayglow (or daytime

airglow). Chemically excited atmospheric species can also contribute to dayglow

emissions. The intensity of these dayglow emissions depends on the number den-

sities of the reactants and on the temperature. The distribution in densities of

the reactants can be affected by the waves, thereby leading to the variations in

the intensities of the dayglow emissions. Thus, the dayglow measurements pro-

vide an effective means to investigate the upper atmospheric dynamics, which are

influenced by both solar flux variations and lower atmospheric processes.

Solar activity changes due to its internal dynamics giving rise to variations

of different periods ranging from hours to years. The lower atmospheric waves

are excited by topography, convection, etc., and in the presence of stable atmo-

sphere they can propagate to the upper atmospheric altitudes. In this study

we characterize various types of coupling processes in the atmosphere and their

variations with waves and solar activity. The main data set that has been used

in this work has been retrieved using Multiwavelength Imaging Spectrograph us-

ing Echelle-grating (MISE). MISE is a unique instrument capable of obtaining

daytime sky spectra at high-spectral resolutions over a large field-of-view. From

such spectra of MISE oxygen dayglow emission intensities at 557.7 nm, 630.0 nm,

and 777.4 nm wavelengths have been obtained. In addition to oxygen dayglow

emission intensities, data sets of ionospheric total electron content (TEC), zonal

mean winds and temperatures from the stratosphere to the lower thermosphere,

and the equatorial electrojet (EEJ) strengths have been used.

In this thesis, it has been shown that the lower atmospheric influence on the

upper atmosphere through waves is affected by solar activity. This is because

the latter is responsible for the alteration of the atmospheric background condi-
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tions on which wave propagation and dissipation depend. From an investigation

of the oscillations of planetary wave regime in dayglow and other atmospheric

parameters at three different levels of solar activity, it has been shown that the

vertical coupling of atmospheres through these waves is solar activity dependent.

It is proposed that: (i) the effect on upper atmospheric dynamics due to lower

atmosphere exists at least until the average sunspot number (SSN) is ≤ 35, (ii)

there is a transition from the lower atmospheric forcing to mixed behavior be-

tween average SSNs of 35 to 52, and (iii) another transition from mixed effects to

those of purely solar origin occurs between SSN values of 52 to 123. Further, in

this thesis it has also been shown that even during high solar activity period if a

sudden stratospheric warming (SSW) event occurs then the vertical coupling is

enhanced, as the SSW related processes provide additional energy to enable this

coupling.

A statistical study of gravity waves present in the thermospheric altitudes

is made using the three dayglow emissions and the EEJ strength data obtained

during the years 2011 to 2013. The gravity waves are found to be present in higher

numbers in the thermosphere during higher solar activity of 2013 compared to

2011, which is attributed to a reduction in dissipation in the lower thermosphere

during higher solar activity epoch.

Investigations using long-term data sets of EEJ and TEC revealed that the

vertical coupling during SSW events depends on the strength of the SSW. Also,

the interaction between quasi-16-day planetary waves and semi-diurnal tides has

been found to be very strong for the strong major SSW events. In an another re-

sult, using both ground- and satellite-based optical remote sensing measurements,

a new circulation cell in the mesosphere-thermosphere system has been shown to

exist during SSW events, which has been alluded to in previous modeling studies.

Keywords: Atmospheric coupling, Dayglow, Ionosphere, Upper atmosphere,

Sudden stratospheric warming, Sun-Earth interaction, Gravity waves, Planetary

waves.
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