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Abstract

Random matrix theory (RMT) has been established to be one of the central themes in

quantum physics during the end of 20th century. This theory has emerged as a power-

ful statistical approach leading to paradigmatic models describing generic properties

of complex systems. On the other hand, with scientific developments it was clear by

mid 20th century that deterministic ideas are not valid for microscopic systems and

this led to the development of a new field of research called ‘quantum chaos’. One-

body chaos is well understood by 90’s with RMT playing a key role. More specifically,

the spectral statistics predicted by RMT is a characteristic of quantum systems whose

classical analogue is chaotic. However, most of the real systems are many-body in

character. The classical Gaussian orthogonal (GOE), unitary (GUE) and symplectic

(GSE) ensembles, introduced by Wigner and Dyson, are ensembles of multi-body in-

teractions. In various quantum many-body systems such as nuclei, atoms, meso-

scopic systems like quantum dots and small metallic grains, interacting spin systems

modeling quantum computing core and BEC, the interparticle interactions are es-

sentially two-body in nature. This together with nuclear shell-model examples led to

the introduction of random matrix ensembles generated by two-body interactions in

1970-1971. These two-body ensembles are defined by representing the two-particle

Hamiltonian by one of the classical ensembles and then the m (m > 2) particle H-

matrix is generated by the Hilbert space geometry. Thus the random matrix ensem-

ble in the two-particle spaces is embedded in the m-particle H-matrix and therefore

these ensembles are generically called embedded ensembles (EEs). Simplest of these

ensembles is the embedded Gaussian orthogonal ensemble of random matrices gen-

erated by two-body interactions for spinless fermion [boson] systems, denoted by

EGOE(2) [BEGOE(2); here ‘B’ stands for bosons]. In addition to the complexity gener-

xi



ating two-body interaction, Hamiltonians for realistic systems consist of a mean-field

one-body part. Then the appropriate random matrix ensembles are EE(1+2). The

spinless fermion/boson EGEs (orthogonal and unitary versions) have been explored

in detail from 70’s with a major revival from 1994. It is now well understood that

EGEs generate paradigmatic models for many-body chaos or stochasticity exhibited

by isolated finite interacting quantum systems. Besides the mean-field and the two-

body character, realistic Hamiltonians also carry a variety of symmetries. In many

applications of EGEs, generic properties of EGE for spinless fermions are ‘assumed’

to extend to symmetry subspaces. More importantly, there are several properties of

real systems that require explicit inclusion of symmetries and they are defined by a

variety of Lie algebras. The aim of the present thesis is to identify and systematically

analyze many different physically relevant EGEs with symmetries by considering a

variety of quantities and measures that are important for finite interacting quantum

systems mentioned above. The embedded ensembles investigated to this end and

the corresponding results are as follows.

The thesis contains nine chapters. Chapter 1 gives an introduction to the sub-

ject of two-body random matrix ensembles. Also, the known results for spinless

fermion/boson EGEs are described briefly for completeness and for easy reference

in the following chapters.

Finite interacting Fermi systems with a mean-field and a chaos generating two-

body interaction are modeled, more realistically, by one plus two-body embedded

Gaussian orthogonal ensemble of random matrices with spin degree of freedom

[called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as λ, the

strength of the interaction (measured in the units of the average spacing of the single

particle levels defining the mean-field), increases, generically there is Poisson to GOE

transition in level fluctuations, Breit-Wigner to Gaussian transition in strength func-

tions (also called local density of states) and also a duality region where information

entropy will be the same in both the mean-field and interaction defined basis. Spin

dependence of the transition points λc , λF and λd , respectively, is described using

the propagator for the spectral variances and the analytical formula for the propaga-

tor is derived. We further establish that the duality region corresponds to a region of

thermalization. For this purpose we have compared the single particle entropy de-
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fined by the occupancies of the single particle orbitals with thermodynamic entropy

and information entropy for various λ values and they are very close to each other at

λ=λd . All these results are presented in Chapter 2.

EGOE(1+2)-s also provides a model for understanding general structures gen-

erated by pairing correlations. In the space defined by EGOE(1+2)-s ensemble for

fermions, pairing defined by the algebra U (2Ω) ⊃ Sp(2Ω) ⊃ SO(Ω)⊗SUS(2) is identi-

fied and some of its properties are derived. Using numerical calculations it is shown

that in the strong coupling limit, partial densities defined over pairing subspaces are

close to Gaussian form and propagation formulas for their centroids and variances

are derived. As a part of understanding pairing correlations in finite Fermi systems,

we have shown that pair transfer strength sums (used in nuclear structure) as a func-

tion of excitation energy (for fixed S), a statistic for onset of chaos, follows, for low

spins, the form derived for spinless fermion systems, i.e., it is close to a ratio of Gaus-

sians. Going further, we have considered a quantity in terms of ground state energies,

giving conductance peak spacings in mesoscopic systems at low temperatures, and

studied its distribution over EGOE(1+2)-s by including both pairing and exchange in-

teractions. This model is shown to generate bimodal to unimodal transition in the

distribution of conductance peak spacings. All these results are presented in Chapter

3.

For m fermions in Ω number of single particle orbitals, each four-fold degenerate,

we have introduced and analyzed in detail embedded Gaussian unitary ensemble of

random matrices generated by random two-body interactions that are SU (4) scalar

[EGUE(2)-SU (4)]. Here, the SU (4) algebra corresponds to the Wigner’s supermulti-

plet SU (4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU (4) ensemble

is U (4Ω) ⊃U (Ω)⊗SU (4). Exploiting the Wigner-Racah algebra of the embedding al-

gebra, analytical expression for the ensemble average of the product of any two m-

particle Hamiltonian matrix elements is derived. Using this, formulas for a special

class of U (Ω) irreducible representations (irreps) {4r , p}, p = 0, 1, 2, 3 are derived for

the ensemble averaged spectral variances and also for the covariances in energy cen-

troids and spectral variances. On the other hand, simplifying the tabulations avail-

able for SU (Ω) Racah coefficients, numerical calculations are carried out for general

U (Ω) irreps. Spectral variances clearly show, by applying the so-called Jacquod and
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Stone prescription, that the EGUE(2)-SU (4) ensemble generates ground state struc-

ture just as the quadratic Casimir invariant (C2) of SU (4). This is further corrobo-

rated by the calculation of the expectation values of C2[SU (4)] and the four periodic-

ity in the ground state energies. Secondly, it is found that the covariances in energy

centroids and spectral variances increase in magnitude considerably as we go from

EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU (4)

implying that the differences in ensemble and spectral averages grow with increas-

ing symmetry. Also for EGUE(2)-SU (4) there are, unlike for GUE, non-zero cross-

correlations in energy centroids and spectral variances defined over spaces with dif-

ferent particle numbers and/or U (Ω) [equivalently SU (4)] irreps. In the dilute limit

defined by Ω→∞, r >> 1 and r /Ω→ 0, for the {4r , p} irreps, we have derived analyt-

ical results for these correlations. All correlations are non-zero for finite Ω and they

tend to zero as Ω→∞. All these results are presented in Chapter 4.

One plus two-body embedded Gaussian orthogonal ensemble of random matri-

ces with parity [EGOE(1+2)-π] generated by a random two-body interaction (mod-

eled by GOE in two particle spaces) in the presence of a mean-field, for spinless iden-

tical fermion systems, is defined in terms of two mixing parameters and a gap be-

tween the positive (π=+) and negative (π=−) parity single particle states. Numeri-

cal calculations are used to demonstrate, using realistic values of the mixing param-

eters, that this ensemble generates Gaussian form (with corrections) for fixed parity

state densities. The random matrix model also generates many features in parity ra-

tios of state densities that are similar to those predicted by a method based on the

Fermi-gas model for nuclei. We have also obtained a simple formula for the spectral

variances defined over fixed-(m1,m2) spaces where m1 is the number of fermions

in the +ve parity single particle states and m2 is the number of fermions in the −ve

parity single particle states. The smoothed densities generated by the sum of fixed-

(m1,m2) Gaussians with lowest two shape corrections describe the numerical results

in many situations. The model also generates preponderance of +ve parity ground

states for small values of the mixing parameters and this is a feature seen in nuclear

shell-model results. All these results are presented in Chapter 5.

For m number of bosons, carrying spin (s = 1
2 ) degree of freedom, in Ω num-

ber of single particle orbitals, each doubly degenerate, we have introduced and an-
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alyzed embedded Gaussian orthogonal ensemble of random matrices generated by

random two-body interactions that are spin (S) scalar [BEGOE(2)-s]. The ensemble

BEGOE(2)-s is intermediate to the BEGOE(2) for spinless bosons and for bosons with

spin s = 1 which is relevant for spinor BEC. Embedding algebra for the BEGOE(2)-s

ensemble and also for BEGOE(1+2)-s that includes the mean-field one-body part is

U (2Ω)⊃U (Ω)⊗SU (2) with SU (2) generating spin. A method for constructing the en-

sembles in fixed-(m,S) spaces has been developed. Numerical calculations show that

the fixed-(m,S) density of states is close to Gaussian and generically there is Poisson

to GOE transition in level fluctuations as the interaction strength (measured in the

units of the average spacing of the single particle levels defining the mean-field) is

increased. The interaction strength needed for the onset of the transition is found

to decrease with increasing S. Propagation formulas for the fixed-(m,S) space en-

ergy centroids and ensemble averaged spectral variances are derived. Using these,

covariances in energy centroids and spectral variances are analyzed. Variance propa-

gator clearly shows that the BEGOE(2)-s ensemble generates ground states with spin

S = Smax . This is further corroborated by analyzing the structure of the ground states

in the presence of the exchange interaction Ŝ2 in BEGOE(1+2)-s. Natural spin order-

ing (Smax , Smax −1, Smax −2, . . ., 0 or 1
2 ) is also observed with random interactions.

Going beyond these, we have also introduced pairing symmetry in the space defined

by BEGOE(2)-s. Expectation values of the pairing Hamiltonian show that random in-

teractions exhibit pairing correlations in the ground state region. All these results are

presented in Chapter 6.

Parameters defining many of the important spectral distributions (valid in the

chaotic region), generated by EGEs, involve traces of product of four two-body op-

erators. For example, these higher order traces are required for calculating nuclear

structure matrix elements for ββ decay and also for establishing Gaussian density

of states generated by various embedded ensembles. Extending the binary correla-

tion approximation method for two different operators and for traces over two-orbit

configurations, we have derived formulas, valid in the dilute limit, for the skewness

and excess parameters for EGOE(1+2)-π ensemble. In addition, we have derived a

formula for the traces defining the correlation coefficient of the bivariate transition

strength distribution generated by the two-body transition operator appropriate for
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calculating 0ν-ββ decay nuclear transition matrix elements and also for other higher

order traces required for justifying the bivariate Gaussian form for the strength dis-

tribution. With applications in the subject of regular structures generated by random

interactions, we have also derived expressions for the coefficients in the expansions

to order [J (J + 1)]2 for the energy centroids Ec (m, J ) and spectral variances σ2(m, J )

generated by EGOE(2)-J ensemble members for the single- j situation. These expan-

sion coefficients also involve traces of four two-body operators. All these results are

presented in Chapter 7.

In Chapter 8, to establish random matrix structure of nuclear shell model Hamil-

tonian matrices, we have presented a comprehensive analysis of the structure of

Hamiltonian matrices based on visualization of the matrices in three dimensions as

well as in terms of measures for GOE, banded and embedded random matrix ensem-

bles. We have considered two nuclear shell-model examples, 22Na with JπT = 2+0

and 24Mg with JπT = 0+0 and, for comparison we have also considered SmI atomic

example with Jπ = 4+. It is clearly established that the matrices are neither GOE nor

banded. For the EGOE [strictly speaking, EGOE(2)-JT or EGOE(2)-J ] structure we

have examined the correlations between diagonal elements and eigenvalues, fluctu-

ations in the basis states variances and structure of the two-body part of the Hamilto-

nian in the eigenvalue basis. Unlike the atomic example, nuclear examples show that

the nuclear shell-model Hamiltonians can be well represented by EGOE.

Finally, Chapter 9 of the thesis gives conclusions and future outlook. To summa-

rize, we have obtained large number of new results for embedded ensembles and in

particular for EGOE(1+2)-s, EGUE(2)-SU (4), EGOE(1+2)-π and BEGOE(1+2)-s, with

EGUE(2)-SU (4) introduced for the first time in this thesis. Moreover, some results are

presented for EGOE(2)-J and for the first time BEGOE(1+2)-s has been explored in

detail in this thesis. In addition, formulas are derived, by extending the binary corre-

lation approximation method, for higher order traces for embedded ensembles with

U (N ) ⊃ U (N1)⊕U (N2) embedding and some of these are needed for new applica-

tions of statistical nuclear spectroscopy. Results of the present thesis establish that

embedded Gaussian ensembles can be used gainfully to study a variety of problems

in many-body quantum physics and this includes quantum information science and

the thermodynamics of isolated finite interacting quantum systems.

xvi



Contents

Declaration v

Certificate vii

Abstract xi

1 Introduction 1

1.1 Random Matrix Theory, Quantum Chaos and Finite Quantum Systems . 1

1.2 Embedded Ensembles for Spinless Fermion Systems . . . . . . . . . . . . 6

1.2.1 EGOE(2) and EGOE(k) ensembles . . . . . . . . . . . . . . . . . . . 7

1.2.2 EGOE(1+2) ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 EGUE(2) and EGUE(k) ensembles . . . . . . . . . . . . . . . . . . . 11

1.3 Embedded Ensembles for Spinless Boson Systems . . . . . . . . . . . . . 12

1.4 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 EGOE(1+2)-s: Transition Markers 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 EGOE(1+2)-s Ensemble: Preliminaries . . . . . . . . . . . . . . . . . . . . . 20

2.3 Gaussian Level Densities and Ensemble Averaged Spectral Variances . . 23

2.3.1 Gaussian form for fixed-(m,S) eigenvalue densities . . . . . . . . . 23

2.3.2 Propagation formulas for ensemble averaged spectral variances . 25

2.4 Poisson (or close to Poisson) to GOE Transition in Level Fluctuations . . 29

2.5 Breit-Wigner to Gaussian Transition in Strength Functions . . . . . . . . 34

2.6 Information Entropy and Duality Marker . . . . . . . . . . . . . . . . . . . 37

2.7 Occupancies, Single-particle Entropy and Thermodynamic Region . . . 41

2.8 Some Results for λ0 �=λ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xvii



2.9 Results for γ2(m,S) for EGOE(1+2)-s . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 EGOE(1+2)-s: Pairing Correlations 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 U (2Ω)⊃ Sp(2Ω)⊃ SO(Ω)⊗SUS(2) Pairing Symmetry . . . . . . . . . . . . 54

3.3 Fixed-(m,v,S) Partial Densities and their Centroids and Variances . . . . 58

3.4 Expectation Values
〈

PP †
〉E

of the Pairing Operator as Signature of Chaos 66

3.5 Distribution of Δ2 = E (m+1)
g s +E (m−1)

g s −2 E (m)
g s With Pairing and Exchange

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Brief introduction to mesoscopic systems . . . . . . . . . . . . . . 71

3.5.2 Conductance peak spacing (Δ2) distribution . . . . . . . . . . . . . 74

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 EGUE(2)-SU (4): Group Theoretical Results 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Preliminaries of U (4Ω)⊃U (Ω)⊗SU (4) Algebra . . . . . . . . . . . . . . . 82

4.2.1 Generators of U (Ω) and SU (4) algebras . . . . . . . . . . . . . . . . 82

4.2.2 Quadratic Casimir operators of U (Ω) and SU (4) and the Majo-

rana operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 SU (4) and U (Ω) irreps and identification of the ground state

U (Ω) or SU (4) irreps . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Definition and Basic Properties of EGUE(2)-SU (4) . . . . . . . . . . . . . 90

4.3.1 Definition of EGUE(2)-SU (4) . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Matrix structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Matrix construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 U (4Ω)⊃U (Ω)⊗SU (4) Wigner-Racah Algebra for Solving EGUE(2)-SU (4) 97

4.5 Exact Expressions for Spectral Variances, Lower Order Cross-correlations

and Analytical Results for Lowest U (Ω) Irreps . . . . . . . . . . . . . . . . 101

4.5.1 Covariances in energy centroids 〈H〉m, fm 〈H〉m′, fm′ . . . . . . . . . 101

4.5.2 Spectral variances
〈

H2
〉m, fm . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 Cross-correlations in energy centroids Σ11(m, fm ;m′, fm′) . . . . . 107

4.5.4 Cross-correlations in spectral variances Σ22(m, fm ;m′, fm′) . . . . 111

xviii



4.6 Numerical Results for Spectral Variances, Expectation Values of C2[SU (4)]

and Four Periodicity in GS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Spectral variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.2 Expectation values 〈C2[SU (4)]〉E . . . . . . . . . . . . . . . . . . . . 118

4.6.3 Four-periodicity in the ground state energies . . . . . . . . . . . . 120

4.6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Numerical Results for Correlations in Energy Centroids and Spectral

Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.1 Self-correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.2 Cross-correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7.3 Results for λ2
{2} �=λ2

{12}
. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 EGOE(1+2)-π: Density of States and Parity Ratios 131

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 EGOE(1+2)-π Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Energy Centroids, Variances, Skewness and Excess Parameters for Fixed-

(m1,m2) Partial Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Gaussian form for fixed-π state densities . . . . . . . . . . . . . . . 143

5.4.2 Parity ratios for state densities . . . . . . . . . . . . . . . . . . . . . 151

5.4.3 Probability for +ve parity ground states . . . . . . . . . . . . . . . . 155

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 BEGOE(1+2)-s: Spectral Properties 159

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Definition and Construction of BEGOE(1+2)-s . . . . . . . . . . . . . . . . 160

6.3 Numerical Results for Eigenvalue Density and Level Fluctuations in the

Dense Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4 Energy Centroids, Spectral Variances and Ensemble Averaged Spectral

Variances and Covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.1 Propagation formulas for energy centroids and spectral variances 169

xix



6.4.2 Ensemble averaged spectral variances for BEGOE(2)-s . . . . . . . 172

6.4.3 Ensemble averaged covariances in energy centroids and spectral

variances for BEGOE(2)-s . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Preponderance of Smax = m/2 Ground States and Natural Spin Order :

Role of Exchange Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5.1 Introduction to regular structures with random interactions . . . 179

6.5.2 U (Ω) algebra and space exchange operator . . . . . . . . . . . . . . 180

6.5.3 Numerical results for Smax = m/2 ground states and natural spin

order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.6 Pairing in BEGOE(2)-s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.6.1 U (2Ω)⊃ [U (Ω) ⊃ SO(Ω)]⊗SUS(2) Pairing symmetry . . . . . . . . 185

6.6.2 Pairing expectation values . . . . . . . . . . . . . . . . . . . . . . . . 188

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Higher Order Traces and their Applications 195

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.2 Application to EGOE(1+2)-π: Formulas for Skewness and Excess Param-

eters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.3 Application to ββ Decay: Formulas for the Bivariate Correlation Coeffi-

cient and Fourth Order Cumulants for the Transition Strength Density . 208

7.3.1 Transition matrix elements and bivariate strength densities . . . . 208

7.3.2 Formulas for the bivariate moments . . . . . . . . . . . . . . . . . . 210

7.3.3 Numerical results for bivariate correlation coefficient and fourth

order cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.4 EGOE(2)-J Ensemble: Structure of Centroids and Variances for Fermions

in a Single- j Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.4.1 Definition and construction of EGOE(2)-J . . . . . . . . . . . . . . 217

7.4.2 Expansions for centroids Ec(m, J ) and variances σ2(m, J ) . . . . . 221

7.4.3 Propagation equations for bivariate cumulants kr s(m) for ( j )m

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.4.4 Structure of centroids and variances . . . . . . . . . . . . . . . . . . 230

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

xx



8 Hamiltonian Matrix Structure 233

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.2 Matrix Structure by Visualization . . . . . . . . . . . . . . . . . . . . . . . . 234

8.3 Analysis in Terms of GOE and BRME . . . . . . . . . . . . . . . . . . . . . . 238

8.3.1 GOE structure: distribution of the off-diagonal matrix elements . 239

8.3.2 BRME structure: bandwidths and sparsity . . . . . . . . . . . . . . 240

8.4 Analysis Using Measures for EGOE Structure . . . . . . . . . . . . . . . . . 243

8.4.1 Correlations between diagonal matrix elements and eigenvalues . 243

8.4.2 Fluctuations in the basis states spreading widths . . . . . . . . . . 245

8.4.3 Structure of the two-body part of the Hamiltonian in the eigen-

value basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.4.4 Comments on deviations from EGOE in the atomic example . . . 249

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

9 Conclusions and Future Outlook 253

A Unitary decomposition for a one plus two-body Hamiltonian for spinless

fermions 261

B Exact variance formula for a given member of EGOE(1+2)-s 263

C EGUE(2)-s ensemble 267

D U (2Ω)⊃ [U (Ω) ⊃ SO(Ω)]⊗SU (2) pairing symmetry 271

E Some properties of SU (Ω) Wigner coefficients 275

F Excess parameter γ2(m, fm) in terms of SU (Ω) Racah coefficients 277

G Further extensions of BEGOE(1+2) 281

H Basic binary correlation results 285

I Fixed-(m, M) occupation numbers 297

J Bivariate edgeworth expansion 299

Bibliography 301

xxi




