Spatial and temporal variations of Os, Nd, Sr isotopes and redox sensitive elements in waters and sediments of the Arabian Sea and their implications

A THESIS

Submitted for the Award of Ph.D. degree of

MOHANLAL SUKHADIA UNIVERSITY

In the

Faculty of Science

by

Vineet Goswami

Under the Supervision of

Dr. Sunil Kumar Singh

ASSOCIATE PROFESSOR PHYSICAL RESEARCH LABORATORY, AHMEDABAD

DEPARTMENT OF GEOLOGY MOHANLAL SUKHADIA UNIVERSITY, UDAIPUR

2012

DECLARATION

I, Vineet Goswami, S/o Mr. Madan Goswami, resident of K-212, PRL residences, Navrangpura, Ahmedabad – 380009, hereby declare that the research work incorporated in the present thesis entitled "Spatial and temporal variations of Os, Nd, Sr isotopes and redox sensitive elements in waters and sediments of the Arabian Sea and their implications" is my own work and is original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required.

I solely own the responsibility for the originality of the entire content.

Date:

(Vineet Goswami)

CERTIFICATE

I feel great pleasure in certifying that the thesis entitled "Spatial and temporal variations of Os, Nd, Sr isotopes and redox sensitive elements in waters and sediments of the Arabian Sea and their implications" embodies a record of the results of investigations carried out by Vineet Goswami under my guidance.

He has completed the following requirements as per Ph.D. regulations of the University

(a) Course work as per the university rules

(b) Residential requirements of the university

(c) Presented his work in the departmental committee

(d) Published/accepted minimum of two research paper in a referred research journal.

I am satisfied with the analysis of data, interpretation of results and conclusions drawn.

I recommend the submission of thesis.

Date:

Name and designation of supervisor Sunil Kumar Singh, Associate Professor

Countersigned by Head of the Department Dedicated to Mommy, Papa, Ashu & Dimpy This thesis work was not possible without the help and support of many people. I would like to thank all of them for their help and cooperation.

First and foremost, I would like to express my sincere gratitude to my thesis supervisor, Dr. Sunil K. Singh. His supportive and humble nature is one of the many nice things I appreciate in him. He was always there to share with me, his knowledge and skill in the field of isotope geochemistry and mass spectrometry. Whenever I was in the slightest of the doubts, a discussion with him was enough to get to the right working direction. I appreciate his meticulous stance in teaching me even the slightest of the details of isotope geochemistry; working with mass spectrometers, especially TIMS; chemical processing of samples; analysis and interpretation of data. I acknowledge him for his consistent support and guidance and for providing me ample opportunities and freedom of undertaking my research work.

I also express my most sincere gratitude to Prof. S. Krishnaswami for his encouragement and advice that helped in shaping my research skills. His valuable comments and suggestions were very helpful in my development as a researcher. I really appreciate his comprehensive knowledge, efficient approach in tackling scientific problems and a drive for perfection in every aspect of life. His understanding of the subject, encouraging attitude and personal guidance has been the source of inspiration to me. It was an honour working with such a great geochemist. I sincerely thank Prof. M. M. Sarin for his support and suggestion during my thesis work. His systematic approach towards scientific problems and meticulous ways in handling the scientific instruments have been very encouraging to me.

I am extremely thankful to Prof. J. N. Goswami, the Director, Prof. Anjan S. Joshipura, Dean and Prof. A. K. Singhvi, former Dean, Physical Research

Laboratory, for providing me support and facilities for the thesis work. I thank academic committee members for timed evaluation of my research work. I would like to thank Profs. R. Ramesh, S. V. S. Murty, R. E. Amritkar and Drs. J. S. Ray, R. Rangarajan, A. D. K. Singh, D. Banerjee for their informative lectures during the course work.

I would like to thank all members of the Chemistry Lab for their help, encouragement and support during my thesis work. First of all, I would like to thank Bhavsar bhai for helping me throughout the thesis work. I really appreciate his meticulous methods and skill to make things work with even the minimum of the available resources. It was really nice to work with him in the lab as well as on oceanographic expeditions. I thank Dr. Santosh K. Rai for his help and guidance on chemical processing of samples during early years of my PhD thesis. I thank Dr. Ravi Bhushan for his encouragement and support during the thesis. It was a pleasure to work with him. I acknowledge Dr. R Rengarajan, Sudheer and Neeraj bhai for their suggestions during the thesis work. I sincerely thank my lab-mates Satinder, Damu, Srinivas, Sneha, Saweeta, Upasana, Venky, Prashant, Jayati, Dipjyoti, Balaji and Aslam for their help and support. I would also like to thank my ex lab-mates Gyana, Rahaman, Kirpa Ram and Ashwini for making things comfortable in the lab. I duly acknowledge the help provided by Vaishali and Shantaben.

I am thankful to Dr. V. K. Rai for helping me with the measurements on the MC-ICP-MS. I would also like to acknowledge his efforts in teaching me the operation and working of the MC-ICP-MS. I am grateful to Durgaprasad and Narendra for helping with the measurements on the PLANEX ICP-MS. I am thankful to Gyana for sharing with me the basics of Inverse modelling technique. I sincerely thank Ketan for helping me with the computer programming.

I accord my thanks to all other members of the Geosciences Division for providing a pleasant working atmosphere in the division during the entire course of my research. I am grateful to all the staff-members of Library, Computer Centre, Workshop, Administration, Dispensary and Maintenance section of PRL for their assistance and cooperation. Special thanks are due to Mr. Pranav Adhyaru, Mr. Manan Shah and Mr. Lakan Singh for their early diagnosis and repair of the experimental facilities, especially TIMS. I thank Bankim for the fabrication of the Carius tubes.

I would like to thank Department of Space (DOS) for the scholarship and support for the research. Thanks are due to MoES and INSA for providing the partial funding during the research work. Sincere thanks to Dr. K. Balakrishna and Dr. C. H. Sujatha for the sediment samples of the Nethravathi and Periyar Rivers and Dr. Anirban Das, for sediment samples from Western Ghat streams. I am grateful to the captain, crew and scientific party of FORV *Sagar Sampada* cruise No. 256, 259 and the GEOTRACES oceanographic expedition onboard RV *Hakuho Maru* (cruise No. KH-09-5; Eridanus expedition). I thank Prof. T. Gamo, Dr. Hajime Obata and Dr. Noriko Nakayama for their help on the Eridanus expedition.

I take an opportunity to express gratitude to all my friends at PRL. I would like to thank my batch mates of JRF06; Anand, Ashok, Amzad, Arvind, Bhaswar, Pankaj, Naveen, Rabiul, Rohit, Sandeep, Soumya, Sreekanth, Suratna and Vimal for making my stay joyful. Special thanks are due to Negi, Avdhesh, Yashpal, Gourav (both Sharma and Tomar), Gulab, Monojit, Zulfi, Raju, Parshv and Fazlul for a very nice company during my stay at Thaltej hostel. Much needed company of my seniors and juniors made my stay pleasant at PRL. I would like to specially thank the tea time group (commonly called chat group) for much of the needed entertainment during the breaks at PRL. Special tribute to Ketan and Vimal for coming up with the newest of ideas for the entertainment and to Arvind, Amzad and Pankaj for providing the support during those brain teasing sessions.

Last but not the least; I thank my parents for always being with me and for supporting me through all these years. Without their support and sacrifice, I would not have reached this point.

ABSTRACT

The prime focus of this thesis is application of spatio-temporal distributions and associated variations in the concentration and isotopic composition of selected trace elements to understand contemporary and paleo processes operating in the Arabian Sea and on the nearby continents. The study encompasses the ocean circulation, aeolian dust deposition, role of denitrification on distribution of redox sensitive elements, seawater ¹⁸⁷Os/¹⁸⁸Os evolution, erosion-climate coupling and pattern of dispersal of sediments in the Arabian Sea. The study of Nd concentration and ε_{Nd} of waters of the Arabian Sea along with inverse model calculations suggest return of deeper water masses towards south in the eastern Arabian Sea along the western flange of Chagos-Laccadive ridge. Nd content in surface waters of the Arabian Sea show an enrichment due to aeolian dust flux, estimated to be 8 \pm 2 g m⁻² y⁻¹. Further, the distributions of dissolved redox sensitive elements Re, U and Mo display conservative nature with no influence of suboxic/denitrifying layers of the Arabian Sea. Salinity seems to control their distribution in the Arabian Sea. The salinity-concentration link further supports that the distribution of these elements is governed by physical processes such as advection, mixing and evaporation. The temporal evolution of ¹⁸⁷Os/¹⁸⁸Os in the Arabian seawater show significant variation on glacial-interglacial timescale. The ¹⁸⁷Os/¹⁸⁸Os record of Arabian seawater shows deviation from the global ocean trend during the Last Glacial Maxima (LGM). This was due to anoxic/suboxic conditions deeper waters of the Arabian Sea because of reduced transport of North Atlantic Deep Water (NADW) into the Arabian Sea, resulting in its partial isolation from rest of the oceans during LGM. Results on Sr and Nd isotopic composition of sediments from north-eastern Arabian sea suggest the stablility in provenances of the sediments since last 40 ka whereas sediments from the southeastern Arabian Sea exhibit two major variation in proportions of sediment sources coinciding with two major climate change events; the LGM and the Holocene Intensified Monsoon Phase (IMP) resulting from the transport of sediments of the Bay of Bengal to the Arabian Sea during LGM and vice versa during IMP suggesting significant role of climate and ocean currents in erosion, dispersal and deposition of sediments in the Arabian Sea.

CONTENTS

List o	of Tables	iv		
List o	List of Figuresvi			
Chapter 1	Introd 1.1 1.2 1.3	action1-11Introduction2Objectives of the thesis9Structure of the thesis9		
Chapter 2	Materi 2.1	als and Methods12-56Materials132.1.1Sediment Samples13		
	2.2	 2.1.2 Seawater Samples		
		 2.2.2 Re, U and Mo concentration measurement of seawater samples		
		 2.2.2.2 U and Mo concentration measurement of seawater samples		
		composition measurements in silicate fraction of sediments		
		 and hydrogenous leach of the sediments from the Arabian Sea44 2.2.5 Re concentration measurement in bulk sediments from the Arabian Sea55 		
Chapter 3	Nd isot waters using i 3.1 3.2 3.3	copic composition and concentration of of the Arabian Sea: water mass analysisnverse model approach		

		3.3.1.3 Contribution of different water	
		masses in the Arabian Sea71	
		3.3.1.4 Excess Nd and its ε_{Nd}	
	3.4	Conclusions81	
Chapter 4	Dissolved redox sensitive elements, Re, U and Mo		
	in in	tense denitrification zone of the Arabian Sea83-108	
	4.1	Introduction84	
	4.2.	The Arabian Sea and its suboxic water column	
	4.3	Results89	
		4.3.1 General observations	
		4.3.2 Re, U and Mo distributions 92	
	4.4	Discussion100	
		4.4.1 Re, U and Mo in the water column of the	
		Arabian Sea100	
		4.4.2 Re, U and Mo in the Arabian Sea	
		Sediments106	
	4.5	Conclusions107	
~ -			
Chapter 5	Varia	ations in ¹⁰⁷ Os/ ¹⁰⁸ Os of the Arabian seawater	
	durii	ng past 30 ka109-125	
	5.1	Introduction	
	5.2	Results and discussion	
		5.2.1 Os concentration and its isotope	
		composition of bulk sediments	
		5.2.2 Re concentration of bulk sediments114	
		5.2.3 Os concentration and isotopic	
		composition of hydrogenous fraction of	
		core \$\$-3101G	
		5.2.3.1 Os concentration variations in the	
		leachable fraction	
		01 SS-3101G118	
		5.2.3.2 Temporal variation in $1870 - 1880 - 56$	
		US/ US of seawater	
	53	Conclusions 124	
	5.5	Conclusions	
Chanter 6	Tem	poral variations in 87 Sr/ 86 Sr and symin	
Chapter 0	sedin	nents of the south-eastern Arabian Sea:	
	Impa	of monsoon and surface water circulation	
	6.1	Introduction	
	6.2	Results	
	0.2	6.2.1 River sediments	
		6.2.2 Arabian Sea sediments	
	6.3	Discussion	
	0.0	6.3.1 Core SS-3104G	
		6.3.2 Core SS-3101G	
		6.3.2.1 Provenance of sediments during	

Last Glacial Maximum (LGM).....141

		6.3.2.2 Provenance of sediments during	
		Holocene Intensified Monsoon	
		Phase (IMP)	143
	6.4	Conclusions	145
Chapter 7	Sum	mary and future perspectives	147-153
	7.1	Nd and ε_{Nd} of water from Arabian Sea:	
		quantification of water masses and estimation	
		of dust flux using inverse model approach	148
	7.2	Distribution of Re, U and Mo in the Arabian Sea.	149
	7.3	Temporal evolution of ¹⁸⁷ Os/ ¹⁸⁸ Os of seawater	
		from the Arabian Sea	150
	7.4	Temporal variation in 87 Sr/ 86 Sr and ε_{Nd} of the	
		sediments of eastern Arabian Sea	151
	7.5	Future Perspectives	151
References.			154-171

List of publications	•••••••••••••••••••••	

LIST OF TABLES

Table	Contents	Page
2.1	Details of the sediments cores	14
2.2	Calibrated ¹⁴ C ages of the sediments of cores	16
2.3	Location of sediment samples from west flowing rivers	18
2.4	Details of sampling for seawater in Arabian Sea	20
2.5	Various analytical techniques used in this thesis	22
2.6	Abundances of Nd isotopes in the sample and spike	27
2.7	Calibration of Nd Spike using Nd standard of known strength	27
2.8	Nd isotopic composition of GEOTRACES samples	30
2.9	Nd concentration measured in GEOTRACES samples	32
2.10	Nd isotopic composition of GEOTRACES standard	33
2.11	Replicate analysis for Nd concentration measurements	33
2.12	Replicate analysis for the Nd isotopic composition	34
2.13	Abundances of Re isotopes in the sample (natural) and spike	35
2.14	Calibration of Re spikes	35
2.15	Abundances of U isotopes in the sample (natural) and spike	30 26
2.10 2.17	Adundances of Mo isotopes in the sample (natural) and spike	30 27
2.17 2.18	Calibration of U and Mo spikes	38
2.10 2.10	Replicate analysis of L and Mo concentrations	
2.19	Measurement of Re. II and Mo in SAFe water sample	40 41
2.20	D line of Ke, C and Wo in SATE water sample	17
2.21	Replicate analysis of Sr, Sr/Sr , Nd and ε_{Nd} in sediments	43
2.22	Colibration of Os Spike	45
2.23	Calibration of Os Spike	45
2.24	Replicate analysis of Os and ¹⁰ /Os/ ¹⁰⁰ Os in samples	52
2.25	Measurement of Os and ¹⁸ /Os/ ¹⁸⁸ Os in USGS SCo-1 standard	53
2.26	Total procedural blank for Os analysis (bulk sediment analysis)	54
2.27	Total procedural blank for Os analysis (Hydrogenous leaching)	54
2.28	Blank of reagents used for hydrogenous Os leaching procedure	54
2.29	Replicate analysis of Re concentration in sediment samples	55
2.30	Measurement of Re concentration in USGS SCO-1 standard	56
2.51	I otal procedural blank for Ke measurements in bulk sediments	56
3.1	Salinity, pot. Temp., Nd and ϵ_{Nd} in profiles from Arabian Sea	62
3.2	A priori and a posterior values of the water mass end-members	69
3.3	Excess Nd and its ε_{Nd} in the Arabian Sea waters	77

4.1	Re, U and Mo concentration in profiles from the Arabian Sea	94
4.2	Statistics of Re, U, Mo concentration with different DO levels	101
4.3	Re, U and Mo in Arabian Sea and other basins (at 35 salinity)	106
4.4	Enrichment of Re, U, Mo in Arabian Sea sediments over UCC	106
5.1	Os content and ¹⁸⁷ Os/ ¹⁸⁸ Os of bulk sediments from Arabian Sea	113
5.2	Re concentration in bulk sediments from the Arabian Sea	115
5.3	Os content of the leachable fraction and ¹⁸⁷ Os/ ¹⁸⁸ Os of seawater	117
6.1	Sr, Nd isotopic composition of river sediments	130
6.2	Sr, Nd content and isotopic composition of SS-3104G silicates	132
6.3	Sr, Nd content and isotopic composition of SS-3101G silicates	134
6.4	$^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd} of potential end members	138

LIST OF FIGURES

Figure	Contents	Page
2.1	Scheme of sampling and initial processing of samples	14
2.2	Location of seawater and sediment cores used in this thesis	15
2.3	¹⁴ C chronology of SS-3101G and SS-3104G	16
2.4	Location of river sediments used in this thesis	19
2.5	Research vessel, collection and processing of samples	21
2.6	Analytical techniques for measurement of various proxies	23
2.7	Setup for extraction of REEs using C18 cartridges	24
2.8	Extraction of REEs using C18 cartridges	25
2.9	Separation of Nd from REEs by the LN-C50-B resin	26
2.1	Measurement of ¹⁴³ Nd/ ¹⁴⁴ Nd of JNdi-1 on TIMS	28
2.11	Measurement of ¹⁴³ Nd/ ¹⁴⁴ Nd of JMC-321 on MC-ICP-MS	29
2.12	Nd isotopic composition of GEOTRACES samples	31
2.13	Measurement of "unknown" GEOTRACES standard	32
2.14	Measurement of ⁸⁷ Sr/ ⁸⁶ Sr of NBS-987 on TIMS	43
2.15	Measurement of ⁸⁷ Sr/ ⁸⁶ Sr of NBS-987 on MC-ICP-MS	44
2.16	Sediment samples in Carius tube before sealing	46
2.17	Bromine refluxing in the digestion vessel for Os extraction	49
2.18	Measurement of ¹⁸⁷ Os/ ¹⁸⁸ Os of standard on TIMS	52
3.1	Location of stations for Nd isotopic composition	59
3.2	Nd and ε_{Nd} in vertical profiles from the Arabian Sea	64
3.3	Contour plots for distribution of various water masses	73-75
3.4	Nd_{excess} and its corresponding ϵ_{Nd}	80
4.1	Representative θ -S plots for two stations from Arabian Sea	90
4.2	Contour plots for temp, salinity, DO, nitrite, Re, U and Mo	91-93
4.3	Salinity, DO, nitrite, Re, U and Mo in Arabian Sea	97-100
4.4	Frequency distribution of Re, U and Mo concentrations	102
4.5	Re, U and Mo concentration versus salinity	105
5.1	Os and ¹⁸⁷ Os/ ¹⁸⁸ Os in Arabian Sea sediments with time	114
5.2	Re content in Arabian Sea sediments with time	116
5.3	Temporal variation of ¹⁸⁷ Os/ ¹⁸⁸ Os of Arabian seawater	118
5.4	Temporal variation in Re, Os content and organic carbon	119
5.5	¹⁸⁷ Os/ ¹⁸⁸ Os of Arabian seawater with other oceanic basins	122
6.1	Location of two sediment cores analyzed	129

6.2	Sr-Nd isotope plot of contemporary river sediments	131
6.3	Temporal variation in 87 Sr/ 86 Sr and ε_{Nd} of SS-3104G	135
6.4	Temporal variation in 87 Sr/ 86 Sr and ε_{Nd} of SS-3101G	136
6.5	Sr-Nd isotopic plot of sediments from cores used in study	137
6.6	Surface currents in the Arabian Sea during monsoon	142