Atmospheric Deposition of N, P and Fe to the Northern Indian Ocean

A THESIS

Submitted for the Award of Ph.D. degree of MOHANLAL SUKHADIA UNIVERSITY

In the

Faculty of Science

^{by} Bikkina Srinivas

Under the Supervision of

Dr. M. M. Sarin senior professor geosciences division

PHYSICAL RESEARCH LABORATORY AHMEDABAD - 380 009, INDIA

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE MOHANLAL SUKHADIA UNIVERSITY UDAIPUR 2012

DECLARATION

I, **Bikkina Srinivas**, S/o Mr. Bikkina Bhishmudu, resident of E-202, PRL residences, Navrangpura, Ahmedabad – 380009, hereby declare that the research work incorporated in the present thesis entitled *"Atmospheric Deposition of N, P and Fe to the Northern Indian Ocean"* is my own work and is original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma. I have properly acknowledged the material collected from secondary sources wherever required.

I solely own the responsibility for the originality of the entire content.

Date: 9th July 2012

B. Simin_

(Bikkina Srinivas)

CERTIFICATE

I feel great pleasure in certifying that the thesis entitled "Atmospheric Deposition of N, P and Fe to the Northern Indian Ocean" embodies a record of the results of investigations carried out by Bikkina Srinivas under my guidance.

He has completed the following requirements as per Ph.D. regulations of the University

(a) Course work as per the university rules

(b) Residential requirements of the university

(c) Presented his work in the departmental committee

(d) Published/accepted minimum of one research paper in a referred research journal.

I am satisfied with the analysis of data, interpretation of results and conclusions drawn.

I recommend the submission of thesis.

lin

Date:9th July 2012

Name and designation of supervisor Manmohan Sarin, Senior Professor

Countersigned by Head of the Department Dedicated to My parents, brother and my mentors'

ACKNOWLEDGEMENTS

My Ph.D. years at the Physical Research Laboratory and this thesis had mentorship from numerous outstanding individuals both from within and outside the institute.

First and foremost, I would like to thank my thesis supervisor, Prof. Manmohan Sarin, for his warm encouragement and thoughtful guidance. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. I am very much fascinated by his meticulous way of organizing things, looking for the perfection in each and every aspect of my research. His enthusiasm, inspiration, and great efforts to explain things clearly and simply, helped me to accomplish my thesis. I also thank Prof. S. Krishnaswami for his critical comments and fruitful scientific discussions. In addition, I wish to thank Dr. N. Rastogi, Dr. Rengarajan and Mr. A. K, Sudheer for their critical comments, suggestions and analytical help at various stages of my research work, I also thank Prof. S. K, Singh, Dr. Ravi Bhushan, Mr. J. P. Bhavsar for their care and suggestions during my Ph. D.

I thank the Academic Committee (Profs. Utpal Sarkar, R. Ramesh, S. Mohanty, D. Banerjee, Nandita Srivastava, Pallam Raju, Shyam Lal, Shibu K, Mathew, D. Angom, Namit Mahajan, Jitesh Bhatt, Sunil Kumar Singh), PRL, for their critical comments and suggestions, that improved my thesis work remarkably and made it in the present form. I wish to thank my mentors in the Ph.D. course work (Drs. Sarin, R. Ramesh, J. S. Ray, Vinai K, Rai, Pallam Raju, P. Panigrahi, Raghavan Rangarajan, K, K, Marhas, L.K, Sahu and N. Rastogi). I express my deep sense of gratitude to Prof. N. S. Sarma, with out whose guidance and motivation this thesis wouldn't be possible. He encouraged me in various ways during my Ph.D. I am grateful to Dr. V. V. S. S. Sarma, National Institute of Oceanography, for helpful discussions. I thank Prof. A. S. Joshipura, Dean, PRL, for his support during Ph. D work. I also wish to thank Prof. J.N. Goswami, Director, PRL, for providing an opportunity to work in this institute.

I am indebted to my many student colleagues for providing a stimulating and fun environment in which to learn and grow. I am especially grateful to my batchmates (Satinder, Prashant, Jayati, Moumita, Tapas, Pravin, Ketan, Saxena, Ashish, Khan and Suruchi), seniors (Gyan, Ashwini, Kirpa, Rahman, Gandhi, Sumita, Alok, Vineet, Ashok, Arvind, Ruby, and Zeen), and juniors (Damodar, Reddy, Aslam, Venky, Balaji, Ejaz, Dipjyoti, Shraddha, Saweeta, Ikshu, Upasana and Sneha). I would also like to thank all the PRL staff members, that includes from administration, computer centre, library, workshop and purchase section.

Lastly, and most importantly, I wish to thank my parents (Bhishmudu and Bhulakshmi) and brother (Uma Mahesh), who through my childhood and study career had always encouraged me to follow my heart and inquisitive mind in any direction this took me. To them, I dedicate this thesis.

ABSTRACT

The continental outflow from south and south-east Asia to the Northern Indian Ocean is a conspicuous feature during the late NE-monsoon (January-April). The prime focus of this thesis is to assess spatio-temporal variability in the atmospheric abundances of chemical constituents over the Bay of Bengal (BoB) and the Arabian Sea (ARS). This thesis also addresses on the air-sea deposition of nutrients, their dry-deposition fluxes, fixation rates and contribution to the Primary Production (PP). Relatively high concentrations of nutrients (NO₃⁻, NH₄⁺, N_{Org} , PO_4^{3-} and Fe_{ws}) over the BoB suggest that impact of anthropogenic sources is significantly pronounced over this oceanic region. The concentration of N_{Inorg} (mainly as NH_4^+ -N over the BoB and NO_3^- -N over the ARS) dominates (> 80 %) the N_{Tot} (N_{Inorg}+N_{Org}). However, deposition of N_{Org} near coastal regions can be significant as projected by the models. Significant linear relationship among P_{Inorg}, nss-K⁺, Fews, OC and EC together with analysis of air mass back trajectories suggest their contribution from biomass burning emissions in the Indo-Gangetic Plain. The fractional solubility of aerosol-Fe (Fe_{ws} (%) = Fe_{ws} / Fe_{Tot}*100) over the BoB and the ARS varied from 1.4-24 and 0.02-0.4 %, respectively during the study period. The large variability in Fe solubility over the BoB is attributed to the type of mineral dust and contribution from combustion sources. The drydeposition fluxes are relatively high over the BoB (N_{Tot}, P_{Inorg} and Fe_{ws} are 2-167, 0.5-4.8 and 0.02-1.2 μ mol m⁻² d⁻¹, respectively) compared to those over the ARS (N_{Tot} and P_{Inorg}: 0.2–18.6 and 0.3-0.9 μ mol m⁻² d⁻¹, respectively; Fe_{ws}: 0.7-15.3 nmol $m^{-2} d^{-1}$). The air-sea deposition of N and P is of comparable magnitude with their supply via rivers. The high enrichment factors of Pb, Cd and Cu over the BoB reemphasize the dominance of anthropogenic sources.

TABLE OF CONTENTS

Chapter 1

Introduction	1
1.1. Introduction	2
1.1.1. Significance of atmospheric input of N	2
1.1.2. Significance of atmospheric input of P	4
1.1.3. Significance of atmospheric input of Fe	5
1.2. Rationale	8
1.3. Work Plan	9
1.4. Objectives	9
1.5. Structure of Thesis	9

Materials and Methods	
2.1. Introduction	14
2.2. Site description	
2.2.1: Arabian Sea	
2.2.2: Bay of Bengal	16
2.2.3: Kharagpur	
2.3. Aerosol Sample Collection	
2.3.1. Arabian Sea	
2.3.2. Bay of Bengal	19
2.3.3: Kharagpur	
2.4. Analytical Methods	
2.4.1. Water soluble inorganic nitrogen (N _{Inorg})	
2.4.2. Water-soluble Organic Nitrogen (N _{Org})	
2.4.3. Water-soluble inorganic phosphorous (P _{Inorg})	
2.4.4. Water-soluble iron (Fe _{ws})	
2.4.5. Crustal and trace metals	
2.4.6. Carbonaceous Species (EC and OC)	

Chemical characterization of atmospheric aerosols over Bay of Bengal during	
the continental outflow: Spatio-temporal Variability	37
3.1. Introduction	38
3.2. Cruise Track and Meteorological Conditions	40
3.3. Results	41
3.3.1. Air mass back trajectory analysis	41
3.3.2. Spatio-temporal variability of mass concentrations	41
3.3.3. Size-distribution	43
3.3.4. Chemical composition of aerosols in the IGP- and SEA-outflow	44
3.3.5. Water-soluble ionic composition	45
3.3.6. Sea-Salts	47
3.3.7. Crustal elements and mineral dust	49
3.3.8. Carbonaceous Species	51
3.4. Discussions	52
3.4.1: Seasonal variability of WSIC	52
3.4.2. Seasonal variability of mineral dust	55
3.4.3. Source apportionment of carbonaceous aerosols	56
3.4.4. Evidence of Cl ⁻ depletion over of Bay of Bengal	60
3.4.5: Dry-deposition of particulate carbon	61
3.4.6: Source apportionment	62
3.4.7: Chemical Characterization of fine mode aerosols in the IGP-outflow	65
3.4.8. Mass closure	67
3.5. Summary and conclusions	69

Atmospheric abundances of Water-soluble Inorganic and Organic Nitrogen	
over the Bay of Bengal and the Arabian Sea	71
4.1. Introduction	72
4.2. Results and Discussions	73
4.2.1. Air mass back trajectory analysis	73
4.2.2. Error propagation in N _{Org}	75

	4.2.3. Spatio-temporal variability	75
	4.2.4. Size distribution of Nitrogen Species	79
	4.2.5. Source apportionment	82
	4.2.6. Dry-deposition fluxes	85
	4.2.7. Impact on ocean surface biogeochemistry	87
4	.3. Conclusions	89

Atmospheric pathways of Phosphorous to the Bay of Bengal and the Arabian	
Sea: Contribution from anthropogenic sources and mineral dust	
5.1. Introduction	
5.2. Results and discussions	
5.2.1. Air mass back trajectory (AMBT) analyses	
5.2.2. Statistical analyses	
5.2.3. P _{Inorg} Concentration over Bay of Bengal	95
5.2.4. P _{Inorg} over Arabian Sea	
5.2.5. Anthropogenic source of P _{Inorg} vis-à-vis mineral dust	100
5.2.6. Atmospheric dry-deposition of P _{Inorg}	103
5.2.7: Comparison with Riverine Supply	105
5.3. Conclusion and implications	106

Impact of anthropogenic sources on aerosol iron solubility over the Bay of	
Bengal and the Arabian Sea	107
6.1. Introduction	108
6.2. Results and discussion	109
6.2.1. Aerosol iron solubility	109
6.2.2. Evidence for chemical processing of mineral dust	112
6.2.3. Evidence for biomass-burning source	114
6.2.4. Mixing model for fractional solubility	116
6.3. Aerosol iron solubility in the IGP-outflow	119
6.3.1. Temporal variability	119

6.3.2. Elemental ratios of crustal constituents	
6.3.3. Evidence for the chemical processing of alluvial dust	
6.3.4. Impact of anthropogenic combustion sources	
6.3.5. Effect of particle size on the aerosol iron solubility	
6.4. Deposition flux of Fe _{ws}	
6.5. Conclusions	127

Atmospheric deposition of N, P and Fe to the Northern Indian Ocean:	
Implications to C- and N- fixation	. 129
7.1. Introduction	. 130
7.2. Dry-deposition fluxes	. 131
7.3. Marine budget of N and P - role of atmospheric input	. 134
7.3.1. Comparison of with riverine supply	. 134
7.3.2. Comparison with Primary Production	. 137
7.4. C- and N- fixation by atmospheric input	. 138
7.4.1. Potential C- fixation	. 138
7.4.2. Potential N- fixation	. 141
7.5. Ecological impact	. 143
7.6. Conclusions	. 144

Atmospheric deposition of toxic metals to the Bay of Bengal: Implications to	
surface biogeochemistry	147
8.1. Introduction	
8.2. Results	150
8.2.1 Mass concentrations	150
8.2.3. Enrichment factors	152
8.2.4. Dry depositional fluxes	153
8.3. Discussions	157
8.3.1. Characteristic differences in the IGP- and SEA- Outflow	157
8.3.2. Seasonal variability	159

8.3.3. Sources and Size distribution	
8.3.4. Dry-deposition fluxes	
8.3.5. Mineral dust input	
8.3.6. Residence time of trace metals	
8.4. Conclusions	

Synthesis and Future Directions 1	73
9.1. Synthesis	74
9.2. Scope of future research	78
9.2.1. Stable isotopic composition of Fe 1	78
9.2.2. Mineralogy of dust in the MABL 1	79
9.2.3. Mixing state of aerosols	79
9.2.4. Modelling the effects of aeolian input on the Ocean Biogeochemistry. 1	80
9.2.5. Long-term characterization of dust transport and regional mapping of	
fractional solubility of aerosol iron1	80

LIST OF TABLES

Table 2.1: The sampling period, duration and the no of samples (N) collected
from the MABL of Northern Indian Ocean during the continental outflow
(January-April)14
Table 2.2: Atomic absorption and emission wavelengths (λ) used for various
elemental analyses by GF-AAS and ICP-AES, and LWCC-
Spectrophotometer, the precision of analyses
Table 2.3: Optimized temperature conditions used for the measurement of water-
soluble iron and trace metals on GF-AAS
Table 2.4: Standard additions performed to check the accuracy of the
measurement of trace elements
Table 3.1: Mean (± 1 σ) concentration (in µg m ⁻³) of chemical constituents in
aerosols collected from the IGP- and SEA-outflow during the late NE-
monsoon (January-April) over the Bay of Bengal
Table 3.2: One-way ANOVA results for the mass concentrations of water-soluble
inorganic ions (WSIC), mineral dust, Organic carbon and EC between the
IGP- and SEA-outflow during January'09 and March-April'06
Table 3.3: The mass ratio of $PM_{2.5}/PM_{10}$ for the measured constituents in aerosols
sampled from the IGP- and SEA-outflow during January'09
Table 3.4: Diagnostic ratios of chemical composition in the IGP- and SEA-
outflow during January'09 and March-April'06 51
Table 3.5: One-way ANOVA analyses (at $\alpha = 0.05$) of comparison of mean scores
between the outflows sampled from the Bay of Bengal during January'09 and
March-April'06 (Note: Subscript number below the p-value (0.05) denotes
comparison between the outflows)
Table 3.6: Principal Component Analysis (PCA) of chemical constituents in PM ₁₀
and PM _{2.5} fractions

Table 3.7: Statistical description of data regarding their range, mean and standard
deviation for the aerosols collected from the IGP-outflow during
November'09 to March'10
Table 4.1: Range of concentrations of N_{Inorg} and N_{Org} in aerosols over the Bay of
Bengal
Table 4.2: Concentration (nmol m ⁻³) of soluble nitrogen species in aerosols from
different occanic regions
Table 4.3: Reported columnar integrated Primary Production in the Bay of Bengal. 88
Table 5.1: Chemical constituents (Mean $\pm 1\sigma$) in aerosols from the Bay of Bengaland the Arabian Sea.95
Table 5.2: Diagnostic mass ratios in aerosols collected from the Bay of Bengal and the Arabian Sea. 98
Table 5.3: Comparison of P _{Inorg} Fluxes (Tg yr ⁻¹) from the North Indian Ocean with other oceanic regions (viz., Atlantic and Pacific).105
Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal
 Table 6.1: Aerosol iron and its fractional solubility over the Arabian Sea and the Bay of Bengal

Table 8.1: Statistical description of c	oncentration of trace	metals data in the	Bay
of Bengal during the "Winter"	(January'09; PM_{10} ;	N = 33) and "Sprit	ing-
intermonsoon" (March-April'06;	TSP; N = 23)		151

Table 8.2: Two-tailed t-test results for identifying the significant differencesbetween the (a) IGP- and SEA-outflow (b) Winter and Spring-intermonsoonover the Bay of Bengal.152

- Table 8.3: Comparison of mean concentrations of crustal and trace metals in aerosols from different oceans.
 156
- Table 8.4: Binary correlation matrixes for the measured crustal constituents (Al, Ca, Fe and Mg) trace metals during March-April'06 and January'09...... 158
- Table 8.5: Comparison of dry-deposition fluxes of metals from the MABL of Bayof Bengal with other Oceanic regions.167
- Table 8.6: Estimates of residence times (years) of trace metals in the surface

 waters of Bay of Bengal.

 168

Figure 1.1: Biogeochemistry of nutrient species (N, P and Fe) in the marine
environment
Figure 2.1: The synoptic wind pattern over the Northern Indian Ocean during the
NE- (January-April) and SE-monsoon (June-September) 15
Figure 2.2: Map of India, showing the sampling sites: Kharagpur, Arabian Sea
and Bay of Bengal17
Figure 2.3: Cruise tracks in the Bay of Bengal and the Arabian Sea during the
continental outflow (January-April)
Figure 2.4: Aerosol Sample collection onboard ORV Sagar Kanya, as part of
national Programme, Integrated Campaign of Aerosols and trace gases
Radiation Budget during 27 th December, 2008-31 st January, 2009 21
Figure 2.5: Analytical scheme for the analysis of water-soluble inorganic ionic
constituents, crustal and trace and elements; carbonaceous species and water-
constituents, crustal and trace and elements; carbonaceous species and water- soluble iron in aerosols
constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols
 constituents, crustal and trace and elements; carbonaceous species and water-soluble iron in aerosols

Figure 2.10: Repeat measurements of Crustal elements (Al, Fe, Ca and	l Mg;	are
expressed in ppm) in aerosol samples. Solid line represents the 1:	line	and
'n' represents the number of repeat measurements		. 31

- Figure 3.8: Fractional contribution of anthropogenic water-soluble inorganic constituents (ANTH = $NO_3^- + nss-SO_4^{2-} + NH_4^+$), mineral dust (Al*12.5), Sea-Salt, particulate organic matter and EC to the particulate mass in air

- Figure 5.1: Cruise tracks undertaken onboard ORV Sagar Kanya: (a) Bay of Bengal (SK-223A: March-April'06) and Arabian Sea (SK-223B: April-May'06); (b) Bay of Bengal (SK-254: January'09). 7-day Air Mass Back

- Figure 6.3: Scatter plot of (a) $nss-K^+$ vs. OC (b) $nss-K^+$ and Fe_{ws} in PM₁₀ and PM_{2.5} samples collected over the Bay of Bengal during Januar'09 indicate

that significant contribution of soluble iron is derived from biomass burning Figure 6.4: Spatial variability of fractional solubility of aerosol iron (Fe_{ws} %) over Figure 6.5: (a) Fractional solubility of aerosol iron (Fe_{ws} %) in PM_{2.5} and PM₁₀ plotted against total aerosol-Fe (Fe_{Tot}). Modeled data points (this study) and hyperbolic relationship (dash line) is obtained by a two end member mixing, (1) Dust: with high Fe_{Tot} with low Fe_{ws} %; and (2) Combustion sources: low Fe_{Tot} with high Fe_{ws} (%). (b) Linear increase of Fe_{ws} % with $1/Fe_{Tot}$, further establishes that fractional solubility of aerosol-Fe can be explained by two end-member mixing (mineral dust and anthropogenic combustion sources). Figure 6.6: Temporal variability of the mass concentrations of mineral dust, Fe_{Tot}, nss-SO₄², Fe_{ws} and Fe_{ws} (%) in the IGP-outflow (Kharagpur)...... 123 Figure 6.7: The scatter plot of (a) Fe and Al (b) Fe and Fe_{ws} at Kharagpur (IGP), suggests that significant contribution of soluble iron is derived from Crustal Figure 6.8: The scatter plot of (a) nss- K^+ and OC (b) Fe_{ws} and OC, suggest the significant contribution of soluble iron from Biomass burning source in the IGP-outflow (Kharagpur). 125 Figure 6.9: Scatter plot of mineral dust mass concentrations versus fractional solubility of aerosol iron (from the present study and earlier studies) over the Bay of Bengal, exhibits an inverse linear relation suggesting the control of Figure 7.1: Spatial distribution of dry-deposition fluxes of nutrients during (a) January'09 (b) March-April'06 (c) April-May'06 over the northern Indian Figure 7.2: Marine geochemical budget of nitrogen and phosphorous to the (a) Figure 7.3: Estimated potential carbon (Pg-C yr^{-1}) and nitrogen fixation rates (Tg-

Figure 7.4: Molar N/P ratio in the air-sea deposition during (a) January'09 (b)
March-April'06 (c) April-May'06 144
Figure 8.1: Spatio-temporal variability of crustal elements (Al, Fe and Ca), trace
metals (V, Cu, Pb, Cd and Mn) for the cruise undertaken in the Bay of
Bengal during January'09 154
Figure 8.2: Spatio-temporal variability of crustal elements (Al, Fe and Ca), trace
metals (V, Cu, Pb, Cd and Mn) for the cruise undertaken in the Bay of
Bengal during March-April'06
Figure 8.3: Characteristic differences in the mass ratios of Pb/nss- SO_4^{2-} , Cd/nss-
SO ₄ ²⁻ , Pb/EC and Cd/EC between IGP- and SEA-outflow during the cruise in
January'09
Figure 8.4: Elemental ratios of Ca/Al, Mg/Al and Fe/Al over the Bay of Bengal
during March-April'06 (Kumar et al., 2008b) and January'09(this study); and
over the Arabian Sea (Kumar et al., 2008a)
Figure 8.5: Mean enrichment factors of trace metals within the MABL of Bay of
Bengal during January'09 and March-April'06
Figure 8.6: Spatial variability in dry-deposition fluxes of crustal elements and
trace metals in aerosols from the Bay of Bengal