STUDIES IN EQUATORIAL AERONOMY ## A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE GUJARAT UNIVERSITY BY HAR SURENDRA SAHAI SINHA 043 NOVEMBER 1976 PHYSICAL RESEARCH LABORATORY AHMEDABAD 380009 INDIA ## CONTENTS | STATEMENT | A ANGER ANGER ANGE
Transport de la Comp <mark>t</mark> it de la comptant de la California de la California de la California de la California de
Transport de la California | 1 | |-------------------|---|------| | ACKNOW LEDGEMENTS | | iv | | CONTENTS | | vlii | | CHAPTER I | INTRODUCTION | 1 | | CHAPTER II | GENERATION MECHANISMS OF | | | | IRREGULARITIES | 47 | | CHAPTER III | LANGMUIR PROBE, INSTRUMENTATION | | | | AND DATA ANALYSIS | 72 | | CHAPTER IV | RESULTS DURING PERIODS OF | | | | NORMAL ELECTROJET | 117 | | CHAPTER V | RESULTS DURING PERIODS OF | | | | COUNTER ELECTROJET | 143 | | CHAPTER VI | DISCUSSION AND CONCLUSIONS | 153 | | REFERENCES | | 179 | | CHAPTER I | | INTRODUC | | 1-46 | |--|-----|----------------------|--|----------| | | 1.1 | Equatori | al Electrojet | 3 | | | | 1.1.1 | Conductivities in the Ionosphere | 5 | | | | 1.1.2 | Models of the Equatorial
Electrojet | 9 | | | 1.2 | Counter | Electrojet | 17 | | | 1.3 | D and E- | region Irregularities | 23 | | | | 1.3.1 | Observational Results of
Ionization Irregularities
from Ground Based Studies | 23 | | | | 1.3.1.1 | Studies with Ionosonde | 23 | | , | | 1.3.1.2 | Studies with V.H.F. Forward and Backscatter Radar | 25
25 | | | | | a) Electrojet Irregularities | 25 | | | | | b) Irregularities due to
Neutral Turbulence | 34 | | | | 1.3.2 | Observational Results of Ionization Irregularities from Rocket Borne Studies | 36 | | | | | | | | CHAPTER II | | GENERATI
IRREGULA | ON MECHANISMS OF
RITIES 47 | 7-71 | | | 2.1 | Theories | of Cross-field Instability | 47 | | | | 2.1.1 | Linear Theories | 47 | | | | 2.1.2 | Non-linear Theories | 54 | | | 2.2 | Neutral ' | Turbulence | 61 | | | | 2.2.1 | General Nature of Turbulence | 61 | | MINESON TO THE REAL PROPERTY OF THE O | | 2.2.2 | Regions of Turbulence in the Ionosphere | 66 | | | 2.2.3 | Electron Density Fluctua-
tions Due to Fluctuations
in Neutral Density | 68 | |-------------|----------------------|--|--------| | | 2.2.4 | Electron Density Fluctua-
tions Due to Turbulent
Mixing | 69 | | CHAPTER III | | PROBE, INSTRUMENTATION
ANALYSIS | 72-116 | | 3.1 | Basic Pr | inciple of Langmuir Probe | 72 | | SALEDE AL | 3,1.1 | Behaviour of Probe at
Different Potentials | 73 | | | 3.1.2 | Different Versions of
Langmuir Probe Used by
Various Workers | 78 | | | 3.1.3 | Regions of Applicability | 81 | | | 3.1.4 | Sensor of the Langmuir
Probe | 82 | | | 3.1.5 | Reference Electrode | 83 | | | 3.1.6 | Floating Potential | 84 | | 3.2 | | onality Between the Probe
and Electron Density | 85 | | . 3•3 | Irregula
Langmuir | rity Measurements with
Probe | 87 | | 3.4 | Instrume | ntation was reserved to the | 88 | | | 3.4.1 | Power Supply Regulator | 91 | | | 3.4.2 | Electrometer Amplifier | 93 | | | 3.4.3 | Sweep Circuit | 98 | | | 3.4.4 | High Frequency Noise
Amplifier | 101 | | | 3.4.5 | Duct Amplifier | 102 | | 3.5 | Data Ana | lvsis | 105 | | | | 3.5.1 | Determination of Electron
Density | 107 | |------------|-----|---------------------------------|---|--------| | | | 3.5.2 | Analysis of 30-300 Meter
Scalesizes | 109 | | | | | a) Fourier Transform
Technique | 109 | | | | | b) Zero Crossing Technique
for Most Prominent
Scalesize | 112 | | | | 3.5.3 | Analysis of 1-15 Meter
Irregularite, | 114 | | CHAPTER IV | | RESULTS
ELECTROJ | DURING PERIODS OF NORMAL ET 1 | 17-142 | | | 4.1 | sity Pro | Nature of Electron Den-
file During Different
the Day | 118 | | • | 4.2 | Density | Nature of Electron
Gradients During Different
'the Day | 120 | | | 4.3 | Ionizati
Through
Mechanis | on Irregularities Produced
Cross-field Instability
m | 123 | | | | 4.3.1 | Irregularities in 30-300
Meter Scalesize Range | 123 | | | | | a) Region of Occurrence | 123 | | · | | | b) Shape of Irregularities | 125 | | | | y
Kanada Logari | c) Spectrum of Irregu-
larities | 126 | | | | | d) Amplitude of Typical
Scalesizes | 128 | | | | | e) Variation of Scale-
size with Altitude | 129 | | | | 4.3.2 | Irregularities in 1-15
Meter Scalesize Range | 130 | | | | | | (xii | |-------------------------|-------|----------------------|---|---------| | | | | · Andrews And | | | | | | a) Region of Occurrence | 130 | | | | , | b) Spectrum of Irregula-
rities | 132 | | | 1+.1+ | | ion Irregularities Produced
Neutral Turbulence
sm | 136 | | | | 4.4.1 | Irregularities in 30-300
meter Scalesize Range | 137 | | in in the second of the | | 4.4.2 | Irregularities in 1-15
meter Scalesize Range | 140 | | CHAPTER V | | RESULTS
ELECTRO | DURING PERIODS OF COUNTER
VET | 143-152 | | | 5.1 | | ental Results During
Electrojet | 143 | | | | 5.1.1 | Electron Density and its
Gradient | 145 | | | | 5.1.2 | Irregularities Due to Cross-field Instability | 146 | | | | 5.1.3 | Irregularities Due to
Neutral Turbulence | 147 | | | | 5.1.4 | Irregularities Due to
Streaming Instability | 151 | | | | 5.1.5 | Irregularities Due to
Unknown Mechanism | 152 | | CHAPTER VI | | DISCUSSI | ON AND CONCLUSIONS | 153-178 | | | 6.1 | Irregula
Mechanis | rities Due to Cross-field | 153 | | | | 6.1.1 | 30-300 Meter CF Irregularities During Normal Electrojet | 153 | | | | 6.1.2 | 30-300 Meter CF Irregula-
rities During Counter
Electroiet | 161 | | · | | 6.1.3 1-15 Meter CF Irregula-
rities During Normal
Electrojet | 162 | |------------|-----|---|---------| | | 6.2 | Irregularities Produced by Neutral Turbulence Mechanism | 169 | | | 6.3 | Irregularities Produced by Unkrown Mechanism | 172 | | | 6.4 | Conclusions | 173 | | REFERENCES | | | 179-186 |