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Abstract

Aerosols exhibit large spatio-temporal variabilities in their optical, phys-

ical and chemical properties, and can influence our planet by interacting with

incoming solar and outgoing terrestrial radiation. The objectives of the thesis

are to characterize the spatial and temporal variabilities in optical and phys-

ical properties of aerosols, source apportion black carbon aerosols, and to

estimate the aerosol radiative forcing and their seasonal variability over dis-

tinct environments (urban, and high altitude remote). Aerosol characteristics

were measured and examined over an urban (characterized by high aerosol

concentrations dominated by anthropogenic aerosols) (Ahmedabad (23.03oN,

72.55oE, 55 m above mean sea level (AMSL)), and a high altitude remote re-

gion (with low aerosol concentration dominated by transport mechanisms)

(Gurushikhar (24.65oN, 72.78oE, 1680 m AMSL). These study locations in west-

ern India are influenced by similar meteorology. The influence of atmospheric

aerosols on the Earth-atmosphere radiation budget is examined using radia-

tive transfer model. The shortwave aerosol radiative forcing is estimated us-

ing two single scattering albedo (SSA) values, one derived from the surface

measurements of aerosol scattering and absorption coefficients (Method 1),

and the other derived from remote sensing satellite measurement (Method 2).

Further, to delineate the impact of black carbon (BC) aerosols on the Earth-

atmosphere radiation budget the shortwave radiative forcing is computed for

BC aerosols only over both the study locations.

Over the urban site, Ahmedabad, high values of scattering (βsca) and ab-

sorption (βabs) coefficients are found during morning and late evening due

to a substantial increase in the anthropogenic activities and the atmospheric

boundary layer dynamics. The scattering and absorption coefficients decrease

as day advances (due to the evolution of the atmospheric boundary layer) and
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Abstract

attains a minimum value around afternoon. On the contrary, βsca and βabs over

Gurushikhar are higher in the afternoon hrs when compared to forenoon and

night because of atmospheric boundary layer dynamics which when accom-

panied with strong thermal convection aid an upward movement of pollutants

to the observational site from the surrounding foothills.

The surface single scattering albedo shows a rare diurnal variability

over Gurushikhar when compared to Ahmedabad. The near surface SSA is

lower over Ahmedabad than Gurushikhar due to the dominance of absorb-

ing aerosols over Ahmedabad from the anthropogenic emissions. The diur-

nal variation in Ångström exponent (α), backscatter fraction (b), and asym-

metry parameter (g) over Gurushikhar do not show any morning or evening

peaks as observed over Ahmedabad consistent with βsca and βabs variations.

The maximum α observed during winter suggests the dominance of smaller

size aerosols. The minimum α and b, and maximum g found during mon-

soon suggest the dominance of larger particles reaching the observational site

from the marine region (Arabian Sea). The aerosol optical depth (AOD) over

Gurushikhar is lower than Ahmedabad, as Ahmedabad is consistently influ-

enced by the high magnitude of anthropogenic emissions, whereas the remote

high altitude Gurushikhar is influenced by local and longrange transported

aerosols.

The black carbon (BC) mass concentrations, and its equivalent BC from

fossil fuel (BCFF ) and wood burning (BCWB) exhibit strong diurnal variations

over Ahmedabad compared to Gurushikhar due to the combined effects of

the diurnal evolution of atmospheric boundary layer and consistent anthro-

pogenic emissions. A distinct BC variation is observed over Gurushikhar with

an increase in BC concentration during noontime as seen in βabs. The diurnal

contribution of BCFF in total BC dominates throughout the day at both the

observational sites. The annual mean contribution of BCFF to total BC mass

concentration is 80 and 72% over Ahmedabad and Gurushikhar respectively.

This comparison indicates that even a high altitude remote site can have com-
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parable fossil fuel contribution due to emissions produced over urban regions.

The study highlights the roles of single scattering albedo and aerosol op-

tical depth (AOD) in the aerosol radiative forcing estimate. The differences

in the forcing (ARF) for composite aerosol following Methods 1 and 2 is at-

tributed to the differences in SSA values viz; surface and column. ARF esti-

mated using surface SSA (lower) (Method 1) is always higher than column SSA

(higher) (Method 2). The spectral aerosol properties for the black carbon (BC)

aerosols exhibit significant variation in the AOD for BC aerosols only, but SSA

and g remain the same. The forcing for BC aerosols only over Ahmedabad is

higher by a factor of 2-3 than Gurushikhar when AOD also varies by the same

factor, which confirms the linear dependence of AOD on the ARF. Over an ur-

ban location(Ahmedabad), TOA forcing is comparable for Method 1 and BC

aerosols only, whereas significant variations are found in SFC and ATM forc-

ing due to AOD. On the contrary, the TOA forcing flips sign from +ve to -ve

following Method 2 as compared to BC aerosols only. Over a high altitude re-

mote location (Gurushikhar), the forcing values are comparable from both the

methods as the SSA values are comparable. The TOA forcing is always negative

as SSA is higher over Gurushikhar. The study reveals that over an urban and

a high altitude remote locations the BC aerosols alone can contribute in the

range of 20 to 60% to the shortwave atmospheric forcing.

It is to be noted that when a high altitude remote site is in the same re-

gion as that of an urban aerosol source location, and both theses locations are

governed by the same meteorology and atmospheric dynamics, then aerosol

measurements over the high altitude region can serve as regional background

which is the case here. Results indicate that although Gurushikhar is a high

altitude remote site, it is significantly influenced by the local and longrange

transported aerosols through convection and advection. The study reveals

that Gurushikhar lacks anthropogenic emissions and the aerosol properties

over Gurushikhar do not exhibit any significant inter-annual variability, con-

firming that Gurushikhar is a regional background site for aerosols in western
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India. These results can be used as inputs in regional and global climate mod-

els for the estimation of climate forcing, to further improve our understanding

on the spatio-temporal variability and radiative effects of aerosols over differ-

ent environments.
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(SSA), Ångström exponent (α), backscatter fraction (b), asym-

metry parameter (g), aerosol optical depth (AOD), and colum-

nar single scattering albedo (SSA (OMI)) at Gurushikhar during

January 2015 - December 2016. . . . . . . . . . . . . . . . . . . . 91

4.1 Mean sunrise and sunset time for each month at Ahmedabad

during January 2015 - December 2016. . . . . . . . . . . . . . . . 98

4.2 Variations (seasonal) in the contribution (%) of BC(Day) and

BC(Night) in total BC at Ahmedabad during 2015-2016. . . . . . 102

4.3 Seasonal variation of BC mass concentration (µg m−3) measured

at various urban locations in India . . . . . . . . . . . . . . . . . 103

4.4 Variations (seasonal) of the contribution (%) of BCFF , BCWB,

BC(Day)FF , BC(Day)WB, BC(Night)FF , BC(Night)WB, BC(M)FF ,

BC(M)WB, BC(A)FF , BC(A)WB, BC(E)FF , BC(E)WB, BC(N)FF and

BC(N)WB in BC mass over Ahmedabad during 2015 - 2016. . . . 111

4.5 Mean sunrise and sunset time (hrs) for each month at Gu-

rushikhar, Mt. Abu during January 2015 - December 2016. . . . . 115

4.6 Variations (seasonal) in the contribution (%) of BC(Day) and

BC(Night) in total BC mass over Gurushikhar, Mt. Abu during

2015-2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xxxii



List of Tables

4.7 Seasonal (Winter, Premonsoon, Monsoon, and Postmonsoon)

variation of BC mass concentration (µg m−3) measured at var-

ious high altitude locations in India. . . . . . . . . . . . . . . . . 119

4.8 Variations (seasonal) in the contribution (%) of BCFF , BCWB,

BC(Day)FF , BC(Day)WB, BC(Night)FF , and BC(Night)WB in BC

mass over Gurushikhar during 2015-2016. . . . . . . . . . . . . . 126

5.1 Aerosol scattering coefficient (βsca, km−1), absorption coeffi-

cient (βabs, km−1), extinction coefficient (βext, km−1), and sin-

gle scattering albedo (SSA) estimated using Mie theory (Bohren

and Huffman, 1983) for black carbon aerosol as a function of

refractive indices at 0.55 µm. Case 1 corresponds to the OPAC

dataset for black carbon at 0% relative humidity (Hess et al.,

1998). Cases 2-6 represent the computed aerosol optical prop-

erties for the recommended range of refractive indices given in

Bond and Bergstrom (2006). 4SSA represents the percentage

change in SSA estimated with respect to SSA of case 1. . . . . . . 141

5.2 Annual mean aerosol radiative forcing (ARF) (Wm−2) at the TOA

(top of the atmosphere), SFC (surface) and ATM (atmosphere)

along with atmospheric heating rate (Kd−1) estimated using sur-

face SSA (Method 1), column SSA (Method 2), and BC aerosols

only over Ahmedabad and Gurushikhar during 2015-2016. . . . 151

5.3 Aerosol radiative forcing (ARF) (Wm−2) at the TOA (top of the

atmosphere), SFC (surface) and ATM (atmosphere) along with

the heating rate (Kd−1) over different environments in India. . . 160

xxxiii



List of Publications

1. Black carbon aerosol mass concentration, absorption and single scattering

albedo from single and dual spot aethalometers: Radiative implications

T.A. Rajesh, and S. Ramachandran

Journal of Aerosol Science, 119, 77-90, 2018.

2. Characteristics and source apportionment of black carbon aerosols over

an urban site

T.A. Rajesh, and S. Ramachandran

Environmental Science and Pollution Research, 24, 8411-8424, 2017.

3. Contribution of aerosol components to aerosol optical depth over a semi-

arid location in western India

T.A. Rajesh, S. Ramachandran and Toshihiko Takemura

IASTA-Bulletin, ISSN:0971-4510, Vol. 22 Issue 1 & 2, 398-401, 2016.

4. Aerosol optical depth and its component trends over Vallabh Vidyanagar,

Anand

T.A. Rajesh, S. Ramachandran and P. C. Vinodkumar

IASTA-Bulletin, ISSN:0971-4510, Vol. 22 Issue 1 & 2, 402-405, 2016.

5. Black carbon aerosols over urban and high altitude remote regions: Char-

acteristics and Radiative implications

T.A. Rajesh, and S. Ramachandran

Atmospheric Environment, 194, 110-122, 2018.

6. Aerosol optical properties over Gurushikhar, Mt. Abu: A high altitude

mountain site in India

T.A. Rajesh, and S. Ramachandran

Aerosol and Air Quality Research, 19, 1259-1271, 2019.

xxxiv



References

Abu-Rahmah, A., W. P. Arnott, and H. Moosmüller (2006), Integrating neph-

elometer with a low truncation angle and an extended calibration scheme,

Meas. Sci. Tech., 17 (7), 1723.

Anderson, T. L., and J. A. Ogren (1998), Determining aerosol radiative proper-

ties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–

69.

Andrews, E., et al. (2006), Comparison of methods for deriving aerosol

asymmetry parameter, J. Geophys. Res. Atmos., 111(D5), doi:10.1029/

2004JD005734.
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