A Study of Oscillations in Solar Active Regions

A THESIS

submitted for the award of Ph.D. degree of MOHANLAL SUKHADIA UNIVERSITY

in the Faculty of Science by

Ram Ajor Maurya

Under the Supervision of **Dr. Ashok Ambastha**

Professor

UDAIPUR SOLAR OBSERVATORY PHYSICAL RESEARCH LABORATORY, UDAIPUR

> DEPARTMENT OF PHYSICS FACULTY OF SCIENCE

MOHANLAL SUKHADIA UNIVERSITY UDAIPUR

2010

DECLARATION

I hereby declare that the work incorporated in the present thesis entitled "A Study of Oscillations in Solar Active Regions" is my own work and is original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma.

Date:

Ram Ajor Maurya (Author) Udaipur Solar Observatory Physical Research Laboratory Dewali, Badi Road Udaipur 313 001 India.

<u>CERTIFICATE</u>

I feel great pleasure in certifying that the thesis entitled "A Study of Oscillations in Solar Active Regions" embodies a record of the results of investigation carried out by Mr. Ram Ajor Maurya under my guidance. I am satisfied with the analysis of data, interpretation of results and conclusions drawn.

He has completed the residential requirement as per the rules.

I recommend the submission of thesis.

Date:

Prof. Ashok Ambastha (Thesis Supervisor) Udaipur Solar Observatory Physical Research Laboratory Dewali, Badi Road Udaipur 313 001 India.

Countersigned by Head of the Department To my parents

Contents

Li	st of	Figures	\mathbf{v}
Li	st of	Tables	viii
A	cknov	vledgments	ix
A	bstra	\mathbf{ct}	xi
1	Intr	oduction	1
	1.1	The Discovery of Solar Oscillations	2
	1.2	Global Helioseismology	3
		1.2.1 Modes of Solar Oscillation	5
		1.2.2 Results of Global Helioseismology	7
		1.2.3 Limitations of Global Helioseismology	8
	1.3	Local Helioseismology	8
		1.3.1 Ring Diagram Analysis	9
		1.3.2 Time-Distance Analysis	9
		1.3.3 Helioseismic Holography	9
		1.3.4 Results of Local Helioseismology	10
	1.4	Motivations and Organization of the Thesis	11
2	The	Observational Data and Methods of Analysis	15
	2.1	Introduction	15
	2.2	The Observational Data	16
		2.2.1 Data for Helioseismic Studies	16
		2.2.2 Data for the Study of Solar Transients	22
	2.3	Summary and Conclusions	27
3	Flar	e Ribbon Separation and Energy Release	29
	3.1	Introduction	29
	3.2	Basic Formalism	32
	3.3	Feature Development using Mathematical Morphology	35
		3.3.1 Feature Extraction	36
		3.3.2 Hole Filling	39

	3.4	Determination of Flare Ribbon Separation	40
		3.4.1 Energy Release during the X17/4B Flare	43
	3.5	Summary and Conclusions	47
4	Fla	re Associated Variations in Magnetic and Velocity Fields of	
	Act	tive Region NOAA 10486	49
	4.1	Introduction	49
	4.2	The Super Active Region NOAA 10486 and its Flares	52
	4.3	The Observational Data and Analysis	54
	4.4	The X17/4B Flare of 28 October 2003	55
		4.4.1 Evolution of Magnetic and Doppler Velocity Fields	56
		4.4.2 Magnetic Polarity Reversal during the X17/4B Flare	59
		4.4.3 Motion of the Magnetic/Doppler Transients and Flare Kernels	61
		4.4.4 Association of MFs with HXR Sources and White-Light	0 -
		Flare Ribbons	68
	4.5	The X10/2B Flare of 29 October 2003	71
	1.0	4.5.1 Magnetic Polarity Reversal during the X10/2B Flare	73
		4.5.2 Motion of Magnetic/Doppler Transients and Flare Kernels	73
		4.5.3 The Association of HXR Sources and White-Light Flare Rib-	
		bons	76
	4.6	Summary and Conclusions	78
5	Rin	g-Diagram Analysis and Inversion Techniques	81
5	Rin 5.1	ng-Diagram Analysis and Inversion Techniques Introduction	81 81
5	Rin 5.1 5.2	ng-Diagram Analysis and Inversion Techniques Introduction	81 81 82
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion Techniques Introduction	81 81 82 83
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion Techniques Introduction The Observational Data Data Reduction and Power Spectra 5.3.1	81 81 82 83 83
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking	81 82 83 83 83
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization	81 82 83 83 85 86
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power Spectra	81 82 83 83 85 86 87
5	Rin 5.1 5.2 5.3	ag-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting	81 82 83 83 85 86 87 90
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting	81 81 82 83 83 85 86 87 90 91
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting5.4.2Dense-Pack (DP) Fitting	81 82 83 83 85 86 87 90 91 94
5	Rin 5.1 5.2 5.3	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting5.4.2Dense-Pack (DP) Fitting5.4.3Comparison of APP and DP Fittings	81 81 82 83 83 85 86 87 90 91 94 96
5	Rin 5.1 5.2 5.3 5.4	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting5.4.2Dense-Pack (DP) Fitting5.4.3Comparison of APP and DP FittingsSub-Photospheric Velocity Inversion	 81 81 82 83 83 85 86 87 90 91 94 96 99
5	Rin 5.1 5.2 5.3 5.4	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting5.4.2Dense-Pack (DP) Fitting5.4.3Sub-Photospheric Velocity Inversion5.5.1SOLA Inversion	81 82 83 83 85 86 87 90 91 94 96 99 102
5	Rin 5.1 5.2 5.3 5.4	ng-Diagram Analysis and Inversion Techniques IntroductionThe Observational DataData Reduction and Power SpectraData Reduction and Power Spectra5.3.1 The Data Cube5.3.2 Remapping and Tracking5.3.3 Interpolation and Apodization5.3.4 Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1 Asymmetric Peak Profile (APP) Fitting5.4.2 Dense-Pack (DP) Fitting5.4.3 Comparison of APP and DP FittingsSub-Photospheric Velocity Inversion5.5.1 SOLA Inversion15.5.2 RLS Inversion	81 81 82 83 83 85 86 87 90 91 94 96 99 102 109
5	Rin 5.1 5.2 5.3 5.4	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting5.4.2Dense-Pack (DP) Fitting5.4.3Comparison of APP and DP Fittings5.5.1SOLA Inversion15.5.2RLS Inversion15.5.3Comparison of SOLA and RLS Inversions	81 82 83 83 85 86 87 90 91 94 96 99 102 109
5	Rin 5.1 5.2 5.3 5.4 5.5	ng-Diagram Analysis and Inversion TechniquesIntroductionThe Observational DataData Reduction and Power Spectra5.3.1The Data Cube5.3.2Remapping and Tracking5.3.3Interpolation and Apodization5.3.4Temporal Filtering and Three-Dimensional Power SpectraRing-Diagram Fitting5.4.1Asymmetric Peak Profile (APP) Fitting5.4.2Dense-Pack (DP) Fitting5.4.3Comparison of APP and DP Fittings5.5.1SOLA Inversion5.5.2RLS Inversion5.5.3Comparison of SOLA and RLS Inversions1Summary and Conclusions	81 82 83 83 85 86 87 90 91 94 96 99 102 109 115
5	Rin 5.1 5.2 5.3 5.4 5.5 5.6 Ene	ng-Diagram Analysis and Inversion Techniques Introduction The Observational Data Data Reduction and Power Spectra 5.3.1 The Data Cube 5.3.2 Remapping and Tracking 5.3.3 Interpolation and Apodization 5.3.4 Temporal Filtering and Three-Dimensional Power Spectra Ring-Diagram Fitting 5.4.1 Asymmetric Peak Profile (APP) Fitting 5.4.2 Dense-Pack (DP) Fitting 5.4.3 Comparison of APP and DP Fittings 5.5.1 SOLA Inversion 5.5.2 RLS Inversion 5.5.3 Comparison of SOLA and RLS Inversions 1 Stummary and Conclusions 1 Summary and Conclusions	81 82 83 83 85 86 87 90 91 94 96 99 102 109 115 116 .18
6	Rin 5.1 5.2 5.3 5.4 5.4 5.5 5.6 Ene 6.1	ng-Diagram Analysis and Inversion Techniques Introduction The Observational Data Data Reduction and Power Spectra 5.3.1 The Data Cube 5.3.2 Remapping and Tracking 5.3.3 Interpolation and Apodization 5.3.4 Temporal Filtering and Three-Dimensional Power Spectra Ring-Diagram Fitting 5.4.1 Asymmetric Peak Profile (APP) Fitting 5.4.2 Dense-Pack (DP) Fitting 5.4.3 Comparison of APP and DP Fittings Sub-Photospheric Velocity Inversion 5.5.1 SOLA Inversion 5.5.3 Comparison of SOLA and RLS Inversions 5.5.3 Comparison of SOLA and RLS Inversions 1 Summary and Conclusions 1 Introduction	81 82 83 85 86 87 90 91 94 96 99 102 102 109 115 116 .18

		6.2.1 The White-Light Superflare of NOAA 10486	121
		6.2.2 The Observational Data	122
		6.2.3 Determination of Mode Energy	123
		6.2.4 Results and Discussions	124
	6.3	Evolution of <i>p</i> -Mode Parameters in NOAA 10486	126
	6.4	Statistics of Flares and <i>p</i> -Modes Energy	128
		6.4.1 Flare Productive ARs of Solar Cycle 23	129
		6.4.2 The Observational Data and Analysis	129
		6.4.3 Results and Discussions	133
	6.5	Summary and Conclusions	136
7	Sub	p-photospheric Flows in Solar Active Regions	138
	7.1	Introduction	138
	7.2	The Basic Formalism	141
		7.2.1 Gradient, Divergence and Vorticity of Horizontal Flows	141
		7.2.2 Vertical Component of Flow	143
	7.3	Three Dimensional Flow Distribution Beneath NOAA 10486 \ldots .	144
	7.4	Variations in Sub-photospheric Flows with a Large Flare	147
		7.4.1 The Observational Data and Analysis	147
		7.4.2 Results and Discussions	147
	7.5	Sub-photospheric Meridional Flow, Vorticity and the Lifetime of	
		Active Regions	150
		7.5.1 The Observational Data and Analysis	151
		7.5.2 Results and Discussions	151
	7.6	Summary and Conclusions	160
8	Kin	etic and Magnetic Helicities of Solar Active Regions	162
	8.1	Introduction	162
	8.2	Measurements of Magnetic and Kinetic Helicities	168
	8.3	Evolution of Kinetic and Magnetic Helicities in NOAA 10930	170
	8.4	Statistics of Helicities in Sub-photospheric Flows and Photospheric	
		Magnetic Fields	172
		8.4.1 The Observational Data and Analysis	172
		8.4.2 Twist Parameters of Photospheric Magnetic Fields	175
		8.4.3 Twist Parameters of Sub-photospheric Velocity Fields	177
		8.4.4 Relation between Kinetic and Magnetic Helicities	181
		8.4.5 Activity Related Variation in Twist Parameters	183
	8.5	Summary and Conclusions	185
9	Sun	nmary, Conclusions and Future Plan	187
	9.1	Present Work	188
		9.1.1 Determination of Flare Ribbon Separation	188

	9.1.2	Transient Magnetic and Doppler Features Related to the	
		White-Light Flares in NOAA 10486	189
	9.1.3	Ring-Diagram Analysis and Inversion Techniques	190
	9.1.4	Variations in <i>p</i> -Mode Parameters with Changing Onset Time	
		of a Large Flare	191
	9.1.5	Three-dimensional Flow Distribution Beneath the Active Re-	
		gions	192
	9.1.6	Topology of Sub-photospheric Flows and the Lifetime of Ac-	
		tive Regions	193
	9.1.7	Kinetic and Magnetic Helicities of Solar Active Regions	194
9	.2 Limita	ations of the Techniques	194
9	.3 Future	e Directions	195
	9.3.1	Association of Photospheric p -Mode Parameters with Ener-	
		getic Transients	195
	9.3.2	Association of Sub-photospheric Flows with Energetic Tran-	
		sients	196
	9.3.3	Sub-photospheric Fluid Topology and the Lifetime of Active	
		Regions	196
	9.3.4	Long Term Evolution of Super Active Regions	197
	9.3.5	Chromospheric Oscillations	197
A /	Now M	othed of Trapozoidal Integration	100
AF	1 INEW INI	ethod of Trapezoidal Integration	199
Bibl	liography		201
List	of Public	cations	220

List of Figures

1.1	Spherical harmonic representation of the solar oscillations for differ- ont ℓ and m	4
1.2	The $\ell - \nu$ diagram for mode frequencies up to 10 mHz and $\ell = 1000$	$\frac{4}{5}$
2.1	Positions of four band passes in Ni $\ensuremath{\mathtt{I}}$ line profile used in SOHO/MDI	20
3.1	Post flare loops of the X17/4B flare of 28 October 2003	31
3.2	Results of MMO applied to a typical H α filtergram obtained for the X17/4B flare of 28 October 2003 at 11:03 UT	37
3.3	Cartoon of a two ribbon flare illustrating a method to determine flare ribbon separation	/11
3.4	Separation of different parts of flare ribbons from the neutral line	41
3.5	during the X17/4B flare of 28 October 2003 Flare ribbon separation and energy released during the X17/4B flare	$44 \\ 45$
4.1	Disk integrated GOES X-ray flux observed during 22 October - 6	
4.9	November 2003	53
4.2	The peak phase of the $X17/4B$ flare of 28 October 2003	56
4.3	Magnetogram image of the NOAA 10486 overlaid with dopplergram contours	57
4.4	Variations in the net magnetic and Doppler velocity fields of NOAA	58
4.5	The direction of magnetic and Doppler features motion observed	00
4.6	during the X17/4B flare of 28 October 2003	59
47	during the pre- and peak phases of the X17/4B flare	60
4.1	pulsive phase of the $X17/4B$ super-flare of 28 October 2003	63
4.8	Separation velocities of transient features and flare ribbons during the X17/4B flare of 28 October 2003	64
4.9	Magnetic flux and the feature motion along the reference line AB .	67
4.10	X-ray flux for the event X17/4B of 28 October 2003	69

4.11	Mosaic of images of NOAA 10486 observed in different wavelengths	
	during the peak phase of the $X10/2B$ flare of 29 October 2003	71
4.12	The direction of magnetic and Doppler features motion observed	
1.10	during the event X10/2B flare of 29 October 2003	72
4.13	Magnetic flux along the reference lines XY and LM of NOAA 10486	
	measured during the pre- and peak phases of the $X10/2B$ flare	72
4.14	A mosaic of various observations obtained with time during the im-	- 4
4.15	pulsive phase of the flare X10/2B of 29 October 2003	74
4.15	Separation of flare ribbons during the X10/2B flare of 29 October	
4 1 6	2003	61
4.10	The association of magnetic features, white-light patches and hard	77
	A-ray flux for the event $A10/2B$ of 29 October 2003	((
5.1	A schematic diagram of main steps of the ring diagram analysis	84
5.2	Truncation of rings near the edges due to aliasing of higher frequen-	
	cies toward lower side.	86
5.3	Two-dimensional <i>p</i> -mode power spectra at different frequencies	88
5.4	Wave propagating in the presence/absence of a mean flow field	89
5.5	Asymmetry parameter (S) for different radial order	92
5.6	p-mode parameters obtained from the APP fitting	93
5.7	Dense-pack ring diagram maps with centers separated by 7.5°	94
5.8	p-mode parameters obtained from the DP fitting	95
5.9	A comparison of $\ell - \nu$ diagram obtained from APP and DP fittings	96
5.10	A comparison of <i>p</i> -mode amplitudes obtained from APP and DP	
	fittings	97
5.11	A comparison of <i>p</i> -mode width obtained from APP and DP fittings	98
5.12	A comparison of <i>p</i> -mode frequency shift obtained from APP and DP	
× 10	fittings	99
5.13	A comparison of zonal velocities obtained from APP and DP fittings.	100
5.14	A comparison of meridional velocities obtained from APP and DP	100
F 1F	Ittings	100
5.15	velocities of photospheric now neids obtained using a forward tech-	105
5 16	SOLA everyging kernels at target radius $\alpha = 0.08P$ for different	100
5.10	SOLA averaging kernels at target radius $z_0 = 0.96 N_{\odot}$ for different inversion parameters	106
5 17	SOLA inversion trade off diagram	$100 \\ 107$
5.18	SOLA averaging kernels for different depths	107
5 19	A comparison of exact and SOLA inverted velocity profiles	100
5.20	The cubic B-splines at ten equally spaced knots	110
5.21	L-curve to determine the optimum value of regularization parameter	
	in RLS inversion	113
5.22	A comparison of exact and RLS inverted velocity profiles	114
5.23	A comparison of SOLA and RLS inverted velocity profiles	115

6.1	GOES X-ray flux and data cubes used for the study of flare onset	
	time associated changes in <i>p</i> -mode parameters	22
6.2	Mode inertia as a function of frequency for radial order $n = 0,, 5$ 1	24
6.3	Relative variation in <i>p</i> -mode amplitude with frequency at different	
	radial order	25
6.4	Evolution in surface <i>p</i> -mode parameters of ARs	27
6.5	A map showing the positions of 74 selected ARs used in our study . 1	30
6.6	Association of mode energy and magnetic index of ARs 1	34
6.7	Association of <i>p</i> -mode energy and flare index	.35
7.1	A map of solar sub-photospheric flows of 27-28 October 2003 1	45
7.2	Sub-photospheric flows beneath active and quiet regions 1	46
7.3	Zonal and meridional flows during pre- to post- flare phases of the	
	event $X17/4B$	48
7.4	Profiles of sub-photospheric flow parameters during pre- to post-	
	flare phases of the $X17/4B$.49
7.5	Sub-photospheric meridional velocity profiles of NOAA 10030 and	
	10486	.52
7.6	Sub-photospheric meridional velocity profiles of nine selected ARs . 1	.53
7.7	Latitudinal distribution of the meridional velocity gradient of 74 ARs1	.56
7.8	Vertical vorticity profiles of sub-photospheric flows beneath NOAA	-
	10030 and 10226	.59
7.9	Latitudinal distribution of meridional velocity gradients of 74 ARs . 1	.60
8.1	Evolution of vertical vorticity, kinetic helicity and magnetic helicity	
	in NOAA 10930	71
8.2	A map showing the positions and areas of 91 selected ARs \ldots 1	74
8.3	Latitudinal distribution of magnetic and kinetic helicities of 91 ARs 1	76
8.4	Probability density function of magnetic helicity of 91 ARs 1	77
8.5	Latitudinal distribution of the vertical component of vorticity and	
	kinetic helicity density of 91 ARs 1	79
8.6	Probability density function of the vertical component of vorticity	
	and kinetic helicity density of 91 ARs	.80
8.7	Association of magnetic and kinetic helicities	.82
8.8	Association of current and kinetic helicities	.84
A.1	Graphic illustration of trapezoidal rule	200

List of Tables

4.1	Maximum distances, velocities, and time at the maximum velocities
	of transients of the X17/4B flare of 28 October 2003
4.2	Maximum distances and velocities of the flare kernels during the
	X10/2B flare of 29 October 2003
C 1	
0.1	The characteristics of ARs selected for the study
8.1	A list of references showing hemispheric trend of helicity parameters. 166
8.2	Latitudinal distribution of kinetic and magnetic helicities of 91 ARs. 181
8.3	Correlation table of various twist parameters of 91 ARs
	-

Acknowledgments

It is my great pleasure to express sincere thanks to my supervisor Prof. Ashok Ambastha for his valuable guidance and encouragement in carrying out this work. I am grateful to him for giving me this opportunity to work with him. Thank you sir, for your patience, your help and your care. Thank you for teaching me so much about solar physics and for accepting to take me as your PhD. student.

I am thankful to Prof. J.N. Goswami, Director PRL, for providing the necessary facilities required during this work. I would like to express my sincere gratitude to Prof. H.M. Antia of TIFR, Mumbai, for kindly giving me an opportunity to work with him for a month at TIFR during the initial stages of my research and for valuable discussions and help whenever needed. I am also thankful to Prof. P. Venkatakrishnan for many useful discussions on various concepts of solar physics.

I would like to record my sincere thanks to Dr. Frank Hill (NSO, USA), Dr. R. Komm (NSO, USA), Prof. M. Thomson (University of Sheffield, UK), Prof. Sarbani Basu (Yale University, USA), and Prof. J. Christensen-Dalsgaard (Danish AsteroSeismology Centre, Denmark) for their valuable communications on helioseismology at various stages of my work. Dr. J. Harvey (NSO, USA) was very kind in describing the basic principles of GONG and MDI observations and providing their comparisons. I am thankful to Dr. Sushant Tripathy (NSO, USA) for providing the required GONG data during my thesis work.

It is a pleasure for me to express my heartfelt thanks to all the faculty members of USO; Dr. Nandita Srivastava, Dr. Shibu Mathew, Dr. Sanjay Gosain, Dr. Brajesh Kumar, Dr. Bhuwan Joshi, Mr. Raja Bayanna and Dr. R. Bhattacharyya for providing their help whenever required. I would like to thank my friends Sanjeev, Vinay, Rohan, Jayant, Anand, Vema and Babulal for giving me their good company and sharing the moments of happiness. I am very much thankful to the families of Prof. Ambastha and Prof. Venkatakrishnan for their help and encouragement during my research, and to the families of Mr. Sudhir Gupta, Dr. Brajesh Kumar, Dr. Sanjay Gosain, Mr. Raja Bayanna, Dr. Bhuwan Joshi, Mr. Babulal Madhukar and Mr. Manoj Bhatnagar for helping me out whenever I faced problems.

The administrative staff of USO had been very supportive all through and I

wish to express my sincere thanks to them, particularly, to Mr. Raju Koshy, Mr. Rakesh Jaroli, Mr. Pinakin Shikari and Mr. Shankarlal Paliwal. I am thankful to Mr. Naresh Jain for providing the USO H α data used in this study. I thanks to USO staff, Mr. Laxmilal Suthar, Mr. Jagdish Singh Chauhan, Mr. Dalchand Purohit, Mr. Ramchandra Carpenter and Mukesh Bhai Saradawa for their help at various stages of my work. I am thankful to all those members of USO and PRL staff who have helped me directly or indirectly in this study and helped in completing my thesis.

I am deeply indebted to the GONG and SOHO/MDI teams for providing their data, i.e., magnetograms, dopplergrams and intensitygrams. My work has made extensive use of MLSO, TRACE, GOES, MSFC, RHESSI and Hinode data, which I would like to acknowledge here.

Finally, words fail me in expressing the deep sense of gratitude to my parents for their continuous encouragement to work in science and undertake the long and arduous journey of a research scholar. I am grateful to my late grand mother for her inspiration and to my sister for her affection. My wife Shashikala has been very helpful and understanding throughout and provided me with delicious food when I came back home after a long and hard day's work. My lovely daughter Divya gave me her delightful company to play with and to make me happy and relaxed.

My life at Udaipur included moments of happiness and sadness, comfort and hardship, laughter and depression. However, all these moments shall be cherished by me as beautiful lifelong memories.

Ram Ajor Maurya

Abstract

Solar active regions (ARs) are three-dimensional magnetic structures extending from deep sub-photosphere to coronal heights. These ARs are responsible for producing most of the energetic transients, such as flares and Coronal Mass Ejections (CMEs), due to a complex interplay of their magnetic and velocity fields. Therefore, accurate high spatial and temporal measurements of solar magnetic and velocity fields are essential ingredients for the understanding of the evolution and energetic activities of ARs. However, availability of these measurements is limited only to the photosphere and to some extent, to the chromosphere. The energetic charged particles released during these transients may also affect the measurements of magnetic and Doppler velocity fields. In addition, the energetic transients are expected to excite p-mode oscillations in ARs by imparting a mechanical impulse associated with their thermal expansion on the photosphere.

While studying the magnetic and velocity fields in AR NOAA 10486, we detected some puzzling moving transient features during the X17/4B and the X10/2B flares of 28 and 29 October 2003, respectively. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km s⁻¹. These features were located near the previously reported compact acoustic (Donea and Lindsey, 2005) and seismic sources (Zharkova and Zharkov, 2007). We have examined the origin of these features and their relationship with various other aspects of the flares, *viz.*, hard X-ray emission sources and flare kernels observed at different layers - *i*) photosphere (white-light continuum), *ii*) chromosphere (H α 6563Å), *iii*) temperature minimum region (UV 1600Å), and *iv*) transition region (UV 284Å).

We have determined the characteristic properties of local oscillation modes by applying the ring diagram technique to 3-D power spectra of NOAA 10486. Strong evidence of substantial increase in mode amplitude and systematic variations in sub-surface flows are found from comparison of the pre- to the post-flare phases of the energetic X17/4B flare of 28 October 2003. Furthermore, we have found statistically significant association between the mode energy and flare energy from the study of several ARs of Solar Cycle 23.

Our study has revealed the prevalence of strongly twisted flows in the interior of ARs having complex magnetic fields. Using the Doppler data obtained by the Global Oscillation Network Group (GONG) project for a sample of 74 ARs, we have discovered the presence of steep gradients in meridional velocity at depths ranging from 1.5 to 5 Mm in flare productive ARs. The gradients showed an interesting hemispheric trend of negative (positive) sign in the northern (southern) hemispheres.

We have discovered presence of three sheared layers in the depth range of 0–10 Mm in many flare productive ARs, providing an evidence of their complex flow structures as compared to the dormant or less productive ARs. An important inference derived from our analysis is that the location of the deepest zero vertical vorticity is correlated with the remaining lifetime of ARs. These new findings may be employed as important tool for predicting the life expectancy of an AR and space weather predictions.

Finally, we have studied the kinetic helicity in sub-photospheric flows and magnetic helicity in photospheric magnetic fields of 91 ARs of solar cycle 23. We have investigated the hemispheric trend in the kinetic helicity of sub-photospheric flows averaged over depths 2.5-12 Mm. This has been examined with magnetic helicity parameter obtained for the ARs by using photospheric vector magnetic fields. However, any significant association between the twists of sub-photospheric flows and photospheric magnetic fields is not found.