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Abstract

Solar active regions (ARs) are three-dimensional magnetic structures extend-

ing from deep sub-photosphere to coronal heights. These ARs are responsible for

producing most of the energetic transients, such as flares and Coronal Mass Ejec-

tions (CMEs), due to a complex interplay of their magnetic and velocity fields.

Therefore, accurate high spatial and temporal measurements of solar magnetic and

velocity fields are essential ingredients for the understanding of the evolution and

energetic activities of ARs. However, availability of these measurements is limited

only to the photosphere and to some extent, to the chromosphere. The energetic

charged particles released during these transients may also affect the measurements

of magnetic and Doppler velocity fields. In addition, the energetic transients are

expected to excite p-mode oscillations in ARs by imparting a mechanical impulse

associated with their thermal expansion on the photosphere.

While studying the magnetic and velocity fields in AR NOAA 10486, we de-

tected some puzzling moving transient features during the X17/4B and the X10/2B

flares of 28 and 29 October 2003, respectively. Both these flares were extremely

energetic white-light events. The transient features appeared during impulsive

phases of the flares and moved with speeds ranging from 30 to 50 km s−1. These

features were located near the previously reported compact acoustic (Donea and

Lindsey, 2005) and seismic sources (Zharkova and Zharkov, 2007). We have exam-

ined the origin of these features and their relationship with various other aspects of

the flares, viz., hard X-ray emission sources and flare kernels observed at different

layers - i) photosphere (white-light continuum), ii) chromosphere (Hα 6563Å), iii)

temperature minimum region (UV 1600Å), and iv) transition region (UV 284Å).

We have determined the characteristic properties of local oscillation modes by

applying the ring diagram technique to 3-D power spectra of NOAA 10486. Strong

evidence of substantial increase in mode amplitude and systematic variations in

sub-surface flows are found from comparison of the pre- to the post-flare phases

of the energetic X17/4B flare of 28 October 2003. Furthermore, we have found

statistically significant association between the mode energy and flare energy from
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the study of several ARs of Solar Cycle 23.

Our study has revealed the prevalence of strongly twisted flows in the interior

of ARs having complex magnetic fields. Using the Doppler data obtained by the

Global Oscillation Network Group (GONG) project for a sample of 74 ARs, we

have discovered the presence of steep gradients in meridional velocity at depths

ranging from 1.5 to 5 Mm in flare productive ARs. The gradients showed an

interesting hemispheric trend of negative (positive) sign in the northern (southern)

hemispheres.

We have discovered presence of three sheared layers in the depth range of

0–10 Mm in many flare productive ARs, providing an evidence of their complex

flow structures as compared to the dormant or less productive ARs. An important

inference derived from our analysis is that the location of the deepest zero vertical

vorticity is correlated with the remaining lifetime of ARs. These new findings may

be employed as important tool for predicting the life expectancy of an AR and

space weather predictions.

Finally, we have studied the kinetic helicity in sub-photospheric flows and

magnetic helicity in photospheric magnetic fields of 91 ARs of solar cycle 23. We

have investigated the hemispheric trend in the kinetic helicity of sub-photospheric

flows averaged over depths 2.5-12 Mm. This has been examined with magnetic

helicity parameter obtained for the ARs by using photospheric vector magnetic

fields. However, any significant association between the twists of sub-photospheric

flows and photospheric magnetic fields is not found.
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