Study of Small Scale Processes on the Sun using High Resolution Techniques

A THESIS

submitted for the Award of Ph.D. degree of MOHANLAL SUKHADIA UNIVERSITY

in the

Faculty of Science

BY

Rohan Eugene Louis

Under the Supervision of

Professor P. Venkatakrishnan

SENIOR PROFESSOR

UDAIPUR SOLAR OBSERVATORY

PHYSICAL RESEARCH LABORATORY, UDAIPUR

MOHANLAL SUKHADIA UNIVERSITY UDAIPUR

Year of Submission : 2010

DECLARATION

I hereby declare that the work incorporated in the present thesis entitled "Study of Small Scale Processes on the Sun using High Resolution Techniques" is my own work and is original. This work (in part or in full) has not been submitted to any University for the award of a Degree or a Diploma.

Rohan Eugene Louis

CERTIFICATE

I feel great pleasure in certifying that the thesis entitled "Study of Small Scale Processes on the Sun using High Resolution Techniques" embodies a record of the results of investigations carried out by **Rohan Eugene Louis** under my guidance. I am satisfied with the analysis of data, interpretation of results and conclusions drawn.

He has completed the residential requirement as per rules.

I recommend the submission of thesis.

DATE:

Professor P. Venkatakrishnan

SUPERVISOR

To Mom, Dad, Julian & Mumu

Contents

Li	List of Figures				
Li	st of	Table	s	xiv	
A	cknov	wledge	ements	xv	
A	bstra	\mathbf{ct}		xix	
1	Intr	oducti	ion	1	
	1.1	Introd	luction	. 1	
	1.2	Sunsp	ot Fine Structure	. 4	
	1.3	Means	s of High Resolution Sunspot Observations	. 15	
	1.4	Organ	nization of the Thesis	. 16	
2	Scie	entific	Data from <i>Hinode</i> and SIR	21	
	2.1	Introd	luction	. 21	
	2.2	Hinod	le and the Solar Optical Telescope (SOT)	. 22	
	2.3	Stokes	s Inversion based on Response Functions (SIR)	. 28	
		2.3.1	Synthesis Module	. 29	
			2.3.1.1 Spectral synthesis	. 29	
			2.3.1.2 Response functions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 31	
		2.3.2	The inversion module	. 32	
			$2.3.2.1 \text{Error estimation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 35	
		2.3.3	Executing SIR	. 35	
		2.3.4	User Intervention	. 43	

3 Photospheric and Chromospheric Observations of Sunsp				
	Bri	dges 49		
	3.1	Introduction		
	3.2	Data		
	3.3	Data Processing		
	3.4	General Properties of LBs		
	3.5	Horizontal Flows in LBs		
	3.6	Chromospheric Observations		
	3.7	Magnetograms from the far line-wing positions 6		
	3.8	Summary and Discussion		
4	Det	ailed Investigation of a Chromospherically Active Sunspot		
	Lig	nt Bridge 75		
	4.1	Introduction		
	4.2	Observations		
	4.3	Results		
		4.3.1 Magnetic Configuration of LB and its Neighbourhood 7		
		4.3.2 Strong Downflowing Patches		
		4.3.3 Implications of Anomalous Polarization Profiles 80		
		4.3.3.1 Supersonic Downflows in the Light Bridge \ldots 80		
		4.3.3.2 Mixing of Light Bridge and Umbral Fields \ldots 90		
		4.3.3.3 Supersonic Downflows at the Umbra-Penumbra		
		Boundary \dots		
		4.3.4 Chromospheric Activity		
		4.3.5 Photometric Variation in the Photosphere and Chromosphere 100		
		4.3.6 The decay phase of the LB $\ldots \ldots \ldots$		
	4.4	Summary and Discussion		
5	Stru	acture of Penumbra in the Context of the Evershed Flow 116		
	5.1	Introduction		
	5.2	Observations		
	5.3	Inversions using a single component atmosphere		
	5.4	Defining the Normalized Radial Distance		

CONTENTS

	5.5	Result	S		126
		5.5.1	Penumb	ral Spine and Intraspine Structure	126
		5.5.2	Radial V	Variation of Parameters	133
		5.5.3	Charact	eristics of Spines, Intraspines and Evershed Clouds	135
		5.5.4	Perturba	ative Nature of ECs	138
		5.5.5	The Lor	ng Term Horizontal Flow Field	143
		5.5.6	Coheren	ce of Penumbral Fine Structure	146
	5.6	Summ	ary and (Conclusion	149
6	Res	ults P	ertainin	g to the Development of Adaptive Optics a	ıt
	Uda	aipur S	olar Ob	servatory	154
	6.1	Introd	luction .		154
	6.2	Conce	pt of Ada	aptive Optics	158
	6.3	Memb	orane base	ed Deformable Mirror: Intrinsic Aberrations and	
		Alignr	nent Issue	es	168
		6.3.1	Experim	nent	170
			6.3.1.1	Optical Setup	170
			6.3.1.2	Intrinsic Aberrations and Image quality	170
		6.3.2	Dealing	with Induced and Intrinsic Astigmatism	176
	6.4	DM P	erforman	ce in Compensating Real Time Aberrations	176
		6.4.1	Optical	Setup	176
		6.4.2	Experim	nent and Results	178
			6.4.2.1	Mapping of the DM Actuator Surface with the	
				Lenslet Array	178
			6.4.2.2	Generating the Influence Matrix	181
			6.4.2.3	DM in Real-Time Correction Mode	181
		6.4.3	Simulati	ions Demonstrating the Effectiveness of Phase Di-	
			versity o	on AO Corrected Images	185
	6.5	Choos	ing the O	ptimal Shack Hartmann Wave Front Sensor for the	
		Adapt	ive Optic	s System at USO	190
		6.5.1	Propose	d Optical Setup for the prototype AO System	190
		6.5.2	Shift Es	timation Algorithms	192
		6.5.3	Perform	ance of SH Wave Front Sensors	195

		6.5.3.1 Constructing the Influence Matrix	197
		6.5.3.2 Random Test Wave Fronts	199
		6.5.3.3 Realistic Seeing Conditions	202
	6.6	First Light Observations using the Prototype Adaptive Optics Sys-	
		tem	208
		6.6.1 Optical Setup of the Prototype AO system	209
		6.6.2 Determination of the Influence Matrix	211
		6.6.3 Performance of the Prototype AO system	211
	6.7	Summary and Discussion	219
7	Sun	nmary, Discussion and Future Work	223
	7.1	Photospheric and Chromospheric Observations of Sunspot Light	
		Bridges	224
	7.2	Detailed Investigation of a Chromospherically Active Sunspot Light	
		Bridge	225
	7.3	Penumbral Fine Structure in the Context of the Evershed Flow $\ .$	227
	7.4	Results Pertaining to the Development of Adaptive Optics at Udaiput	r
		Solar Observatory	228
	7.5	Synthesis	230
	7.6	Future Work	233
\mathbf{A}	ppen	dix - A	236
\mathbf{A}	ppen	dix - B	238
Bi	bliog	graphy	241
\mathbf{Li}	st of	Publications	255

List of Figures

1.1	Full disk continuum image of the Sun taken by SoHO	3
1.2	G band image of sunspot \ldots	5
1.3	Ca II H image of sunspot	6
1.4	High resolution image of a sunspot light bridge	9
1.5	Dark cores in penumbral filaments	11
1.6	Narrowband filtergram and Dopplergram of a sunspot illustrating	
	the Evershed Flow	13
2.1	Optical Telescope Assembly (OTA) and Focal Plane Package (FPP)	
	of <i>Hinode</i>	24
2.2	Level-0 and Level-1 G band filtergrams \hdots	27
2.3	Schematic explanation on the choice of nodes $\ldots \ldots \ldots \ldots$	33
2.4	Observed and inverted Stokes profiles for an umbral pixel	44
2.5	Stratification of the physical parameters based on a single node	
	SIR inversion	44
2.6	Observed and inverted Stokes profiles for a penumbral pixel using	
	two different model atmospheres	45
2.7	Stratification of the physical parameters for the model atmosphere	
	with and without gradients	46
3.1	The four sunspots containing the light bridges	53
3.2	Removal of Limb Darkening from G band filtergrams $\ . \ . \ .$.	55
3.3	Deprojected image of sunspot in NOAA AR 10961	56
3.4	Horizontal flows in LBs determined from LCT $\ . \ . \ . \ . \ .$.	59
3.5	Tracks of granular cells identified in each light bridge \ldots .	61

3.6	Histograms of grain lifetimes and average speeds	62
3.7	Snapshots of Ca II H brightness in the four light bridges	65
3.8	Ca II H time sequences starting at 4:08 UT illustrating the propa-	
	gation of a brightness enhancement along the light bridge	66
3.9	Average quiet Sun profiles for the four days	69
3.10	Magnetograms constructed at different positions on the blue wing	
	of the Fe 6302.5Å line \ldots	70
3.11	Magnetograms constructed at different positions on the red wing	
	of the Fe 6302.5Å line \ldots	71
4.1	Continuum image of NOAA AR 10953 at 630 nm	79
4.2	Physical parameters derived from SIR inversions of the light bridge	81
4.3	Physical parameters derived from SIR inversions of the light bridge	82
4.4	Transverse component of the magnetic field in the light bridge	83
4.5	Anomalous Stokes profiles in the light bridge and their spatial dis-	
	tribution	85
4.6	Results from inversions of Type-I profiles based on a two-component	
	atmosphere	87
4.7	Results from inversions of Type-I profiles based on a two-component	
	discontinuous atmosphere	88
4.8	Results from inversions of Type-I profiles based on a two-component	
	discontinuous atmosphere	89
4.9	Results from inversions of Type-II profiles	91
4.10	LOS velocities along a slit passing through the umbra-penumbra	
	boundary	92
4.11	Stokes profiles along the slit passing through the umbra-penumbra	
	boundary	94
4.12	Ca II H filtergram acquired during the spectropolarimetric scan of	
	the light bridge	96
4.13	Chromospheric event map constructed during SP2	98
4.14	G band and Ca II H filtergrams taken during the spectropolari-	
	metric scan of the light bridge	99

4.15	Photospheric and chromospheric light curves at two different loca-	
	tions on the light bridge \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	101
4.16	G band filtergram taken before and after the spectropolarimetric	
	scan of the light bridge	102
4.17	Photospheric and chromospheric light curves for a pixel on the	
	light bridge	103
4.18	Space time maps constructed from the slit along the axis of the	
	light bridge	105
4.19	Time sequences of Ca II H filtergrams	106
4.20	Time sequences of Ca II H filtergrams	108
4.21	Time sequences of G band filtergrams	109
5.1	G Band image of sunspot in NOAA AR 10944	119
5.2	Maps of physical parameters derived from SIR-1 inversions \ldots .	122
5.3	Maps of physical parameters derived from SIR-2 inversions aver-	
	aged between the $\log \tau = 0$ and $\log \tau = -0.5$ layers	123
5.4	Maps of physical parameters derived from SIR-2 inversions aver-	
	aged between the $\log \tau = -0.5$ and $\log \tau = -1.0$ layers	124
5.5	Maps of physical parameters derived from SIR-2 inversions aver-	
	aged between the $\log \tau = -1.0$ and $\log \tau = -1.5$ layers	125
5.6	Physical parameters corresponding to sequence 20	127
5.7	Distribution of physical parameters with LOS velocity	128
5.8	Mean Spine and Intraspine stratifications	132
5.9	Radial variation of physical parameters averaged over different	
	heights	134
5.10	Stokes profiles corresponding to the spine, intraspine and EC	136
5.11	Stratification of spine, intraspine and EC pixels	137
5.12	Temporal evolution of an EC \ldots	139
5.13	Stokes profiles emanating from an EC pixel for different time se-	
	quences	140
5.14	Histogram of physical parameters corresponding to intraspines and	
	ECs	141

5.15	Mean radial variation of the physical parameters corresponding to	
	the intraspines and the ECs	142
5.16	Average transverse flow field derived using LCT	144
5.17	Radial distribution of the transverse velocity	145
5.18	Average maps of the physical quantities	147
5.19	Radial distribution of the linear correlation co-efficient between	
	LOS velocity and other physical parameters	148
6.1	Concept of an Adaptive Optics System	159
6.2	The concept of the Shack-Hartmann wave front sensor $\hfill\hfilt$	160
6.3	Sub-aperture images produced by a hexagonal lenslet array	161
6.4	WFSC at USO	163
6.5	Tip-Tilt Mirror	166
6.6	37 channel Micro Machined Deformable Mirror	167
6.7	Actuator Geometry of the Deformable Mirror	167
6.8	Interferometric pattern of the 37 channel 15mm MMDM $~$	168
6.9	f#15 Coudé refractor	171
6.10	Optical setup with the DM at different angles of incidence \ldots .	172
6.11	Change in focus w.r.t change in voltage to DM and intrinsic astig-	
	matism	173
6.12	Comparison of image quality using a plane mirror and DM $\ . \ . \ .$	174
6.13	Change in astigmatism with radius of curvature for different angles	
	of incidence	174
6.14	Images corresponding to different angles of incidence	175
6.15	Optical Setup using the two DMs in the lab	177
6.16	Mapping the DM actuators to the lenslet array	179
6.17	Shifts in the central sub-aperture for voltages applied to different	
	actuators	180
6.18	Comparison of open and closed loop shifts for different time delays	182
6.19	Performance of AO system when global tilt is generated using the	
	DM	183
6.20	Performance of AO system when global tilt is generated using the	
	DM	184

6.21	Image Reconstruction using Phase Diversity for different seeing	
	${\rm conditions} \ \ldots \ $	186
6.22	Image Reconstruction using Adaptive Optics and Phase Diversity	189
6.23	Tentative Optical setup of the prototype AO system	191
6.24	Comparison of different shift estimation routines in retrieving ran-	
	dom shifts using a point source	194
6.25	Comparison of different shift estimation routines in retrieving ran-	
	dom shifts using a sunspot \ldots	194
6.26	Comparison of different shift estimation routines in retrieving ran-	
	dom shifts using solar granulation	195
6.27	Lenslet configurations considered for the simulations	196
6.28	First 30 Zernike Polynomials	198
6.29	Histogram of the residual wave front errors using the four lenslet	
	arrays	199
6.30	Comparison between input random wave front and estimated wave	
	front using $Hx(360)$	200
6.31	Phase screen derived from a Kolmogorov spectrum corresponding	
	to an r_0 of 3 cm	201
6.32	Histogram of the fractional increase in the azimuthally averaged	
	MTF area	203
6.33	Azimuthally averaged MTF before and after AO compensation un-	
	der different seeing conditions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	204
6.34	AO corrected images using $Sq(340)$ and $Hx(360)$ lenslet arrays for	
	an $r_0 = 3$ cm seeing	206
6.35	AO corrected images using $Sq(340)$ and $Hx(360)$ lenslet arrays for	
	an $r_0 = 5$ cm seeing	207
6.36	Optical setup of the prototype AO system	208
6.37	Sub-aperture images using the square 500 μm lenslet array $~$	209
6.38	Constructing the Influence Matrix	212
6.39	Constructing the Influence Matrix	213
6.40	Verification of the Influence Matrix	214
6.41	Performance of the Image Stabilization system	215
6.42	Comparison of uncorrected and AO corrected images	216

6.43 Spat	ial resolution	of the AO of	corrected image				. 217
-----------	----------------	--------------	-----------------	--	--	--	-------

List of Tables

2.1	Example of a SIR control file	37
2.2	Illustration of the LINEAS file	38
3.1	Details of observations used for the analysis of the light bridges $% \left({{{\left({{{\left({{{\left({{{\left({{{c}}} \right)}} \right.} \right.} \right)}_{0,0}}}}} \right)} \right)$.	52
3.2	Comparison of general physical properties of the light bridges $\ . \ .$	58
3.3	Number of grains sorted by different ranges of the mean relative	
	azimuth	63
4.1	Details of the data used in the analysis of the light bridge	78
4.2	Physical parameters derived along the slit passing through the	
	umbral-penumbral boundary	95
5.1	Mean errors in the physical parameters at different optical depths	129
5.2	Mean value of physical parameters and their r.m.s values corre-	
	sponding to spines and intraspines	130
6.1	A list of successful Adaptive Optics systems	157
6.2	List of Shack Hartmann wave front sensors at USO	162
6.3	Performance of the code for atmospheric turbulence of varying	
	wave front error	188
6.4	Performance of the Phase Diversity code vs no. of corrected terms	188
6.5	Performance of the code for various values of the defocusing pa-	
	rameter	189

Acknowledgements

It is said that the success of a movie is governed by the people behind the scenes, guiding and molding the actors to achieve the perfect shot. At this juncture, it gives me tremendous joy in thanking and acknowledging all the people who helped me in realizing this thesis. I am grateful to Prof. P. Venkatakrishnan for giving me this wonderful opportunity to work at the Udaipur Solar Observatory for my doctoral thesis. I could not have asked for a better place to do my research. He was magnanimous in providing the necessary infrastructure and encouraged me to think out-of-the-box and to develop a lateral independent approach to a problem. I also appreciate his interest in allowing me to pursue instrumentation and for involving me in the Adaptive Optics project. I thank Prof. J. N. Goswami, Director, PRL, for providing me the necessary funds to travel to Spain and Japan, thereby giving me an exposure to the international Solar Physics community. I am also grateful to the Academic Committee of PRL, whose suggestions allowed me to improve my thesis and work on two additional problems.

Dr. Shibu K. Mathew has been at the helm of developing instruments and I have learnt immensely from him. He was always eager to help and provided valuable suggestions whenever I was faced with uncertainty. I appreciate his efforts for helping me at various stages of my thesis including the many lighthearted moments that we shared. His never-rest just-do-it attitude is something that I have tried to imbue in my life. I am extremely grateful to Dr. Nandita Srivastava for her kind presence and words of advice. She has been a friend who always supported me and encouraged me during my troubled times. I enjoyed working with her and thank her for her patience and her timely anecdotes. Raja Bayanna, or 'Bava' as I fondly call him, has been an inspirational friend, counselor and teacher and whatever little Optics that I know, I owe to him. I will always remember the many wonderful and delicious meals both at his home as well as outside, when the fear of offending his wife Mahima was overwhelming. I shall always cherish their pleasant company.

I would like to express my sincere gratitude to the *Hinode* team for the high resolution data without which this thesis would not have been possible. *Hinode* is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. Scientific operation of the *Hinode* mission is conducted by the *Hinode* science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the postlaunch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway).

I thank Prof. Ashok Ambastha for his inputs and suggestions during my thesis. If there is one person who patiently and surprisingly tolerated me the most, it is Mr. Raju Koshy, who put up with my antics on the badminton court as well with my dumb jokes. The friendly and hospitable staff at Udaipur Solar Observatory consisting of Mr. Sudhir Gupta, Mr. Naresh Jain, Mr. Rakesh Jaroli, Mr. Pinakin Shikari, Mr. Shankarlal Paliwal, Mr. Lakshmilal Suthar, Mr. Dalchand Purohit, Mr. Ramchander Carpenter and Mr. Jagdish Chauhan provided a very homely environment. I also thank Ram Ajor Maurya, Anand Joshi and Vema Reddy for their company and assistance. I extend my appreciation to Vikram, Maulik, Manish and Niraj for helping out with the AO acquisition software. I am also grateful to Mahima, Sanjukta, Hari Ram, Ratanlal, Husna Bano, Divya Mathew, Aaditya and Kuldeep for their pleasant company. I am grateful to Mr. Mukesh Saradava for speedily fabricating opto-mechanical mounts at the USO workshop. The security staff at USO was very friendly and always greeted me with a smile even in the wee hours of the morning. I wish to thank the staff at the USO canteen for providing good, hygienic and nutritious meals that enabled me to stay fit and healthy.

I wish to thank Dr. R. Sridharan for his meticulous efforts in preparing the Kolmogorov phase screens that were useful for my thesis. I acknowledge Dr. Ravindra who was extremely helpful in providing useful tips on Local Correlation Tracking. Dr. Luis Bellot Rubio has been a proficient and patient teacher and gave me a lot of attention during my initial stint in understanding and executing the SIR code despite his extremely busy schedule. I thank him for his valuable inputs on Stokes polarimetry and on inversion codes. Dr. Horst Balthasar was very helpful during my stay at the VTT and explained the working of TIP in great detail. I also thank Prof. Dr. Carsten Denker and Torsten Waldmann for allowing me to work on the VTT AO system. I also thank Dr. Jürgen Rendtel and Thomas Hederer for assisting me during the observations. I am grateful to Prof. Oskar von der Lühe and Prof. Rolf Schlichenmaier for giving me the opportunity to visit the VTT. I acknowledge the KAOS team for an extremely user friendly interface which allowed me to operate the AO system with great ease.

Fr. Roger Lesser has been a spiritual advisor and a personal friend who lovingly and patiently guided me ever since I came to Udaipur. He has taught me to appreciate the many wonderful things beyond the purview of Science. I am deeply honoured to have lent my assistance during the preparation and publication of two of his books. I also thank Sheena for helping me in preparing the manuscript of his book. I acknowledge all the Reverend Fathers at St. Paul's for their kind and supportive company. A special word of appreciation to Ms. Celina Joy for graciously inviting me to several wonderful trips to her home at the Trident. I would like to express my gratitude to Varun Bhaiya and Joona Bhabhi for their love, support and encouragement and for making me feel at home with their warm hospitality.

My friends Sandeep Nanda, Pradeep Shankar, Srinivas Pradeep, Immanuel Anna and Lokesh Dewangan were always supportive of my research and chipped in with motivating words and lifted my spirits when I was feeling low. I am eternally grateful to Rev. Fr. Mudiappasamy Devadoss and Rev. Fr. Stephen Kulandaiswamy for giving me the educational support that enabled me to pursue research as a career. Rev. Fr. Stanislaus, Rev. Fr. Aloysius Xavier and the late Rev. Fr. Joseph always kept me in their prayers and I am truly thankful to them. My coming to PRL would have been impossible had it not been for the love, affection and care of Catherine Akka, Rajan Anna, Kulandaiswamy Uncle and Aunty, Victor Mama, Rosey Athai, Caro Akka, Thiru Anna, Pappy Athai and Uncle, Rev. Sr. Nirmala, my most loving grandmothers - Ammachi and Appai and my late grandfather.

The excellent LaTeX class file used for preparing this thesis document is based on Harish Bhanderi's PhD/MPhil template at Cambridge University. Parts of this template have been extended and corrected by Jakob Suckale to whom I am very grateful. I would like to acknowledge the thousands of individuals who have coded for the LaTeX project for free.

My parents, my brother Julian and my wife Soumita have stood by me through thick and thin and gave me all the love, moral support and motivation to carry out my research and work towards my PhD. The innumerable sacrifices that they made for me is beyond comprehension. It is thus only fitting that I dedicate my thesis to them for believing in me and my aspirations. I also acknowledge the support of Soumita's family who helped and encouraged me. The Almighty Lord has been most gracious with His abundant blessings and I thank Him for guiding me and protecting me at every step of the way.

Rohan Eugene Louis

Abstract

Magnetic fields are ubiquitous on the Sun and are organized on a large range of spatial scales. The magnetic field is responsible for the solar activity and is manifest as different structures in the solar atmosphere. Sunspots, which are the largest and most conspicuous concentrations of magnetic fields on the Sun, are produced by a global dynamo that governs the 22 year periodicity of the solar magnetic field. While a sunspot is a highly stable and coherent object with typical lifetimes of the order of days, its global properties arise from the organization and evolution of the ensemble of small scale structures, which constitute a sunspot and evolve on much shorter time scales. Moreover, the interplay between convection and the orientation of magnetic fields within sunspots gives rise to different structures or processes whose diagnosis is crucial for understanding the formation, evolution and decay of sunspots. Understanding the global magnetic field on the Sun, thus requires investigation of sunspot fine structure at the highest spatial resolution. This can be facilitated through space based telescopes which can carry out observations in a 'seeing-free' environment as well as with instruments coupled to large ground based telescopes, equipped with on-line and off-line techniques to combat and correct image degradation introduced by atmospheric turbulence. The motivation of the thesis is to investigate the nature and evolution of small scale magnetic and velocity inhomogeneities in sunspot light bridges and the Evershed flow, while also assisting in developing the means to carry out such a study at high spatial resolution from Udaipur. The thesis is organized as follows.

Chapter 1 describes the physical, magnetic, thermal and dynamic properties of a sunspot which is followed by a similar description of sunspot fine structure. The importance of the small scale processes in sunspots in the context of a scalefree flux producing mechanism is established. Furthermore, the means of studying such processes from space as well as from ground is described. A brief chapterwise description of the thesis is presented.

The high resolution scientific data used extensively in the thesis comprises of filtergrams and Stokes spectra obtained from the Japanese space satellite *Hinode*. In Chapter 2, the spacecraft and the instruments are briefly described and the different data processing steps are illustrated. This chapter also details the inversion code SIR, that was employed to extract the thermal, magnetic and kinematic information from the *Hinode* spectropolarimetric data. The concept and importance of nodes while inverting actual data, is discussed.

In Chapter 3, high resolution photospheric and chromospheric filtergrams as well as spectropolarimetric observations of a set of four sunspot light bridges are utilized to investigate the association of velocity inhomogeneities in the photosphere to the chromospheric activity, if any, above light bridges. The physical properties and long term flows of the four light bridges are described and the dynamic nature of the brightness enhancements in the light bridges is presented.

Following the results of Chapter 3, the sunspot light bridge in NOAA AR 10953 was selected for a detailed investigation of its magnetic and kinematic properties and their possible role in the persistent and enhanced activity observed in the chromosphere. The rapid evolution of the photospheric magnetic field is described and the corresponding changes in the organization of velocity inhomogeneities is presented. The relationship between the photospheric magnetic and velocity sub-structures to the chromospheric phenomena is attempted. Furthermore, the impact of the evolution of the light bridge on the photometric throughput at the two heights in the solar atmosphere is established. The association of the light bridge to other structures such as penumbral filaments and umbral dots is discussed.

Chapter 5 highlights the penumbral fine structure in the context of the Evershed flow. The spatial and vertical distribution of the Evershed flow is obtained from the inversions assuming a spatially resolved magnetic structure. The existence of two distinct magnetic and thermal components in the penumbra and the presence of strong fields in the continuum layers is established. The spectral characteristics of the two penumbral components is presented. The temporal evolution of Evershed clouds and their perturbative effects on the intraspine channels is investigated. The coherence of the thermal and magnetic structure of the penumbra, over time scales much greater than that of the small scale features, is determined.

The developmental aspects of designing an Adaptive Optics system at Udaipur Solar Observatory are described in Chapter 6. A component wise study was conducted that included the estimation of the intrinsic and induced aberrations in the Deformable Mirror, determination of the influence matrix with real time correction of wave front errors induced by a second Deformable Mirror and determination of the optimal wave front sensor for the prototype Adaptive Optics system through computer simulations. The possibility of employing post-processing methods such as Phase Diversity on Adaptive Optics corrected images is also presented. First light observations with the prototype Adaptive Optics are highlighted and the improvement in image quality is discussed.

Chapter 7 presents a summary of the thesis work and conclusions drawn therein. Future scientific and instrumentation projects are briefly described.