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Abstract

Magnetic fields are ubiquitous on the Sun and are organized on a large range

of spatial scales. The magnetic field is responsible for the solar activity and is

manifest as different structures in the solar atmosphere. Sunspots, which are

the largest and most conspicuous concentrations of magnetic fields on the Sun,

are produced by a global dynamo that governs the 22 year periodicity of the so-

lar magnetic field. While a sunspot is a highly stable and coherent object with

typical lifetimes of the order of days, its global properties arise from the organi-

zation and evolution of the ensemble of small scale structures, which constitute

a sunspot and evolve on much shorter time scales. Moreover, the interplay be-

tween convection and the orientation of magnetic fields within sunspots gives rise

to different structures or processes whose diagnosis is crucial for understanding

the formation, evolution and decay of sunspots. Understanding the global mag-

netic field on the Sun, thus requires investigation of sunspot fine structure at the

highest spatial resolution. This can be facilitated through space based telescopes

which can carry out observations in a ‘seeing-free’ environment as well as with

instruments coupled to large ground based telescopes, equipped with on-line and

off-line techniques to combat and correct image degradation introduced by at-

mospheric turbulence. The motivation of the thesis is to investigate the nature

and evolution of small scale magnetic and velocity inhomogeneities in sunspot

light bridges and the Evershed flow, while also assisting in developing the means

to carry out such a study at high spatial resolution from Udaipur. The thesis is

organized as follows.

Chapter 1 describes the physical, magnetic, thermal and dynamic properties

of a sunspot which is followed by a similar description of sunspot fine structure.
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The importance of the small scale processes in sunspots in the context of a scale-

free flux producing mechanism is established. Furthermore, the means of studying

such processes from space as well as from ground is described. A brief chapterwise

description of the thesis is presented.

The high resolution scientific data used extensively in the thesis comprises of

filtergrams and Stokes spectra obtained from the Japanese space satellite Hin-

ode. In Chapter 2, the spacecraft and the instruments are briefly described and

the different data processing steps are illustrated. This chapter also details the

inversion code SIR, that was employed to extract the thermal, magnetic and kine-

matic information from the Hinode spectropolarimetric data. The concept and

importance of nodes while inverting actual data, is discussed.

In Chapter 3, high resolution photospheric and chromospheric filtergrams as

well as spectropolarimetric observations of a set of four sunspot light bridges are

utilized to investigate the association of velocity inhomogeneities in the photo-

sphere to the chromospheric activity, if any, above light bridges. The physical

properties and long term flows of the four light bridges are described and the

dynamic nature of the brightness enhancements in the light bridges is presented.

Following the results of Chapter 3, the sunspot light bridge in NOAA AR

10953 was selected for a detailed investigation of its magnetic and kinematic

properties and their possible role in the persistent and enhanced activity ob-

served in the chromosphere. The rapid evolution of the photospheric magnetic

field is described and the corresponding changes in the organization of velocity

inhomogeneities is presented. The relationship between the photospheric mag-

netic and velocity sub-structures to the chromospheric phenomena is attempted.

Furthermore, the impact of the evolution of the light bridge on the photometric

throughput at the two heights in the solar atmosphere is established. The asso-

ciation of the light bridge to other structures such as penumbral filaments and

umbral dots is discussed.

Chapter 5 highlights the penumbral fine structure in the context of the Ever-

shed flow. The spatial and vertical distribution of the Evershed flow is obtained

from the inversions assuming a spatially resolved magnetic structure. The ex-

istence of two distinct magnetic and thermal components in the penumbra and
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the presence of strong fields in the continuum layers is established. The spec-

tral characteristics of the two penumbral components is presented. The temporal

evolution of Evershed clouds and their perturbative effects on the intraspine chan-

nels is investigated. The coherence of the thermal and magnetic structure of the

penumbra, over time scales much greater than that of the small scale features, is

determined.

The developmental aspects of designing an Adaptive Optics system at Udaipur

Solar Observatory are described in Chapter 6. A component wise study was con-

ducted that included the estimation of the intrinsic and induced aberrations in

the Deformable Mirror, determination of the influence matrix with real time

correction of wave front errors induced by a second Deformable Mirror and deter-

mination of the optimal wave front sensor for the prototype Adaptive Optics sys-

tem through computer simulations. The possibility of employing post-processing

methods such as Phase Diversity on Adaptive Optics corrected images is also

presented. First light observations with the prototype Adaptive Optics are high-

lighted and the improvement in image quality is discussed.

Chapter 7 presents a summary of the thesis work and conclusions drawn

therein. Future scientific and instrumentation projects are briefly described.
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