ISOTOPIC STUDIES OF REFRACTORY PHASES IN PRIMITIVE METEORITE BY AN ION MICROPROBE

KULJEET KAUR MARHAS

Ph.D. THESIS AUGUST 2001

PHYSICAL RESEARCH LABORATORY NAVRANGPURA, AHMEDABAD 380 009, INDIA

Isotopic Studies of Refractory Phases in Primitive Meteorite by an Ion Microprobe

A thesis submitted to DEVI AHILAYA VISHWAVIDHAYALAYA Indore

for

THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS

by

Kuljeet Kaur Marhas

PHYSICAL RESEARCH LABORATORY NAVRANGPURA, AHMEDABAD 380 009, INDIA

AUGUST 2001

CERTIFICATE

I hereby declare that the work presented in this thesis is original and has not formed the basis for the award of any degree or diploma by any University or Institution.

Author

(Kuljeet Kaur Marhas)

Thesis Supervisor

(Prof. J. N. Goswami) Physical Research Laboratory, Ahmedabad 380 009.

Co-guide

(Dr. A. K. Dutta) Devi Ahilaya Vishwavidhyalaya, Indore 452 001

Dedicated to mummy & papa

Contents

Acl	Acknowledgements List of figures List of tables					
Lis						
Lis						
1.	Introduction					
	1.1	Meteorite	es and early	y solar system objects	3	
	1.2	1.2 Hibonites				
	1.3	Aim of th	e present s	study	7	
	1.3.1 Short-lived radionuclides in the early solar system					
	1	.3.2 Stab	le isotopic	anomalies in early solar system solids	12	
1.3.3 Rare earth and refractory trace elements in CAIs						
	1.4 Scope of the present thesis					
2.	2. Experimental Techniques					
	2.1	Secondar	y ion mass	spectrometer (SIMS)	17	
		2.1.1	Primary	column	17	
		2.1.2	Secondar	ry column	19	
	2.2	Analytica	l techniqu	es and precautions	21	
		2.2.1	Sample _I	preparation and measurement procedures	24	
		2.2.2	Al-Mg is	sotopic systematics	25	
		2.2.3	Ca-K iso	topic systematics	27	
		2.2.4	Ti isotop	ic measurement	28	
		2.2.5	Ca isotoj	pic measurement	31	
		2.2.6	Oxygen	isotopic measurement	32	
		2.2.7	Measure	ment of rare earth and refractory		
			trace eler	ment (REE & RTE) abundances	34	
			2.2.7.1	Energy filtering technique	35	
			2.2.7.2	Mass-magnetic field calibration	36	
			2.2.7.3	Oxide factors	38	
			2.2.7.4	Sensitivity factors	39	

		2.2.7.5 REE analysis of standards	39						
3.	San	ple Description	41						
	3.1	Separation of hibonite from host meteorite	42						
	3.2	Sample description	43						
	3.3	Hibonite composition							
4.	Res	ults	56						
	4.1 Short-lived radionuclides ²⁶ Al and ⁴¹ Ca in CM hibonites								
		4.1.1 Al-Mg isotopic systematics	57						
		4.1.2 Ca-K isotopic systematics	59						
	4.2	Stable isotopes of Ti, Ca and O	62						
		4.2.1 Ti isotopic composition	62						
		4.2.2 Ca isotopic composition	64						
		4.2.3 O isotopic composition	66						
	4.3	Rare earth and refractory trace element (REE & RTE) abundances	68						
5.	Disc	Discussion							
	5.1	Source(s) of short-lived nuclides in the early solar system	76						
		5.1.1 'Fossil origin' of short-lived nuclides	76						
		5.1.2 'Live origin' of short-lived nuclides	77						
	5.2	Extinct nuclides and origin of the solar system	81						
	5.3	Trends in isotopic and trace element abundances in CM hibonites	84						
		5.3.1 Al-Mg systematics	84						
		5.3.2 Ca-Ti isotopic anomalies	85						
		5.3.3 Oxygen isotopic systematics	87						
		5.3.4 Rare earth element abundances in CM hibonite	89						
	5.4	Formation of CM hibonites	90						
6.	Summary and Conclusions								
	6.1	Future scope	98						
Re	feren	ces	101						

Acknowledgement

I take this opportunity to express my thanks and gratitude to all those who have helped and encouraged me throughout my thesis work.

I am grateful to Prof. J. N. Goswami for his invaluable guidance throughout the duration of this thesis work. I have been immensely benefited by his vast knowledge in the field of space science. His thought provoking arguments, ideas and valuable suggestions have helped me a great deal in understanding the various aspects of the subject.

I am grateful to Prof. A.M. Davis for providing Murchison Hibonites for my research work and Prof. Fahey for availing NIST standards for rare earth element analyses and REE deconvolution program. I thank Prof. McKeegan for providing laboratory facilities to carryout oxygen isotopic measurements at UCLA. I acknowledge Dr. Raole for allowing me to freely access the scanning electron microscope at FCIPT, Gandhinagar.

I would like to thank Prof. Krishnaswami, Prof. Somayajulu, Prof. Bhandari, Dr. Kanchan Pande and Dr. P. N. Shukla for their concern and moral support. My sincere thanks are due to academic committee for critically reviewing my work at various stages.

I am truly indebted to Mr. V. G. Shah for successful and smooth operation of ion probe and above all for his fatherly affection for me. I acredit Nirjhari for teaching me some aspects of sample preparation. I have found a compassionate friend in her. I express my deep regards to my colleagues, Dr. Srinivasan, Sandeep and Murariji for their kind cooperation.

Sincere thanks to the staff members of library, workshop, computer center and SOS-GE office for their timely help. I express my sincere gratitude to Bhavsar Bhai, Panchal bhai and Pandianji.

I am grateful to Prof. K. P. Maheshwari and Dr. A. K. Dutta for their kind coorperation.

I cherish the wonderful moments shared with my friends at PRL. I owe a lot to my batchmates (Alam, Alok, Mittu, Cauchy, Rajesh, Rajneesh, Sankar, Sudhir, Lambu, Vinu) for their motivation and encouragement. Thanks to Rajneesh, Shukla, Kulbir, Ansu, Subrata, Pradeep and Aninda for always standing besides me through highs and lows. Thanks to Sheelaji, Deepaji, Pauline and Sravani for their love and affection. I also thank my friends, Ashish da, Ravi, Ghosh, Soumen da, Nandu, Renu, Sudipta, Preeti, Kunu, Prashanta, Ashu.

This thesis is a result of constant words of encouragement from my father. Unfathomable love and support from my family (mummy, papa, didi, jijju, simmi, neeraj and my little-sweet angel: "KHUSHI") have always kept me going.

List of Figures

Chapter 1

- Fig. 1.1. Classification of meteorites.
- Fig. 1.2. Hibonite crystal structure (from Burns and Burns, 1984). The contents of onehalf of the hexagonal unit cell between z=1/4 and z=3/4 along the c axis are shown.
- Fig. 1.3. Flowchart depicting the studies carried out on refractory grains (hibonites) in CM meteorites and their broad implications
- Fig. 1.4. Al-Mg isotopic systematics in hibonites (literature data). The expected trend line for an initial 26 Al/ 27 Al value of 5×10⁻⁵ is also shown. ' δ ' is the deviation in measured 26 Mg/ 24 Mg ratio from of the reference value (26 Mg/ 24 Mg = 0.13932) at per mil level. The dotted line represents normal 26 Mg/ 24 Mg (δ^{26} Mg = 0). Data from Fahey et al., 1987a; Ireland, 1988; Ireland, 1990; Ireland et al., 1991; Simon et al., 1998.
- Fig. 1.5 A plot of δ^{17} O vs δ^{18} O for hibonites (literature data). The δ values represent deviations in measured 17 O/ 16 O and 18 O/ 16 O ratios from reference SMOW values (SMOW = standard mean ocean water; 17 O/ 16 O = 0.00038309, 18 O/ 16 O = 0.0020057; δ = 0) in parts per mil. Data from meteoritic CAIs fall along the Carbonaceous Chondrite Anhydrous Mineral (CCAM) line. Terrestrial samples fall along the Terrestrial Fractionation (TF) line. Data from Fahey et al., 1987b; Ireland, 1988; Ireland et al., 1991.
- Fig. 1.6. REE patterns observed in meteoritic CAIs (from MacPherson et al., 1988).

Chapter 2

- Fig. 2.1. A schematic of the primary beam sources and the primary column of the secondary ion mass spectrometer, Cameca ims-4f.
- Fig. 2.2. A schematic diagram of the secondary ion column of the secondary ion mass spectrometer, Cameca ims-4f.
- Fig. 2.3. High resolution (M/ Δ M ~ 4,500) spectra at mass 25 in terrestrial hibonite showing well resolved peaks of ²⁵Mg and ²⁴MgH.

- Fig. 2.4. High resolution (M/ Δ M ~5000) mass spectra at mass 41 showing well resolved peaks of ⁴¹K and ⁴⁰CaH.
- Fig. 2.5. High resolution (M/ Δ M ~ 9000) spectra at mass 48 showing partially resolved peaks of ⁴⁸Ti and ⁴⁸Ca. The tail of ⁴⁸Ca peak is ~3 field bits off from the centre of ⁴⁸Ti peak at 1‰ level. The stability of the magnetic field between calibration is better than ± 2 field bits.
- Fig. 2.6. High resolution (M/ Δ M ~ 6,000) mass spectra at mass 17 obtained using the Cameca ims-4f showing nearly resolved ¹⁷O and ¹⁶OH peaks.
- Fig. 2.7. Normalized count rates for complex molecules, rare earth and other major elements (such as Al, Ca, Si) as a function of sample voltage offset obtained on Arizona REE standards.
- Fig. 2.8. Mass-Magnetic field calibration based on the analysis of a silicon wafer.
- Fig. 2.9. Mass spectra (for NIST SRM 610 standard) at low mass resolution. The hatched regions represent the mass interval around the peak center scanned in each case.
- Fig. 2.10. MO^+/M^+ ratio as a function of energy offset measured in NIST standards, K3399 and K3400.
- Fig. 2.11. Measured REE abundances in NIST standards (SRM 610, SRM 612, KW 3610) using sensitivity factors obtained from independent analysis of SRM 610. The lower panel in each case shows the deviation in the measured abundances from the reference values.

Chapter 3

- Fig. 3.1. Energy-dispersive X-ray spectrum of a hibonite from CM meteorite, Murray, showing the major peaks at Al, Ca and Ti.
- Fig. 3.2. Backscattered electron images of platelet hibonites from the Murchison meteorite.
- Fig. 3.3. Backscattered electron images of spinel-hibonite spherules from the Murchison meteorite.
- Fig. 3.4. Backscattered electron images of two platelet hibonites from the Murray meteorite surrounded by silicate and Fe-rich phases.
- Fig. 3.5. Backscattered electron images of spherules from the Murray meteorite.
- Fig. 3.6. Pie-chart showing the composition of platelet and spherule hibonites.

Fig. 3.7. Compositional data for the analyzed CM hibonites. The reference (solid) line for stoichiometric hibonite is also shown.

Chapter 4

- Fig. 4.1. Measured ²⁶Mg/²⁴Mg ratio plotted as a function of ²⁷Al/²⁴Mg for Murchison and Murray hibonites. The dashed line represents reference ²⁶Mg/²⁴Mg ratio of 0.13932 (δ =0). The solid line represents evolution of the Al-Mg isotopic system for an initial ²⁶Al/²⁷Al ratio of 5 × 10⁻⁵. Data for multiple analyses done in two samples, MY-H5 and MY-H11a, are also labeled. 1 σ error bars are shown for clarity in presentation.
- Fig. 4.2. Ca-K isotopic systematics in CM hibonites. The dashed line represents reference ${}^{41}\text{K}/{}^{39}\text{K}$ ratio of 0.072. The solid line represents the expected trend line for an initial ${}^{41}\text{Ca}/{}^{40}\text{Ca}$ ratio of 1.4×10^{-8} . An enlarged view of the data from the spherule is shown in the inset. Error bars are 1σ .
- Fig. 4.3. Abundance anomalies in ⁵⁰Ti in CM hibonites (δ^{50} Ti) expressed in per mil unit using a reference ⁵⁰Ti/⁴⁸Ti ratio of 0.072418. The data for terrestrial standards are consistent with the reference Ti isotopic composition (δ^{50} Ti =0) indicated by the vertical dashed line.
- Fig. 4.4. Abundance anomalies in ⁴⁸Ca in CM hibonites (δ^{48} Ca) expressed in per mil unit using a reference ⁴⁸Ca/⁴⁴Ca ratio of 0.088727. The data for terrestrial standards are consistent with reference Ca isotopic composition (δ^{48} Ca =0) indicated by the vertical dashed line.
- Fig. 4.5. Oxygen isotopic composition in CM hibonites and terrestrial standards shown in a plot of measured Δ^{17} O vs Δ^{18} O, the per mil deviations from the standard ratios (17 O/ 16 O= 0.00038309, 18 O/ 16 O=0.0020057). The terrestrial fractionation (TF) line and the Carbonaceous Chondrite Anhydrous Mineral (CCAM) lines are also shown.
- Fig. 4.6a. Rare earth and refractory trace element abundance patterns in Murchison hibonites normalized to CI abundances.
- Fig. 4.6b. Rare earth and refractory trace elements abundance patterns in Murray hibonites normalized to CI abundances.

Chapter 5

Fig. 5.1. SEP flux enhancement factor (relative to contemporary long-term averaged value of $N(E > 10) = 100 \text{ cm}^{-2} \text{sec}^{-1}$) required for production of short lived nuclides present in meteorites in their observed abundances as a function of

irradiation time for a power law SEP energy spectrum, $dN = KE^{-3} dE$, and targets of solar (CI) composition following a size distribution of dn α r⁻⁴ dr. Results for ⁵³Mn are shown for two values of initial ⁵³Mn/⁵⁵Mn ratio.

- Fig. 5.2. Production of short-lived nuclides relative to 10 Be and their initial abundances in the solar system for different SEP spectral parameters (γ and R₀) and a specific target size distribution.
- Fig. 5.3. Plot of measured Mg and K isotopic ratios as a function of ${}^{27}\text{Al}/{}^{24}\text{Mg}$ and ${}^{40}\text{Ca}/{}^{39}\text{K}$ ratios, respectively, in CM hibonites. The expected trend lines for initial ${}^{26}\text{Al}/{}^{27}\text{Al} = 5 \times 10^{-5}$ and initial ${}^{41}\text{Ca}/{}^{40}\text{Ca} = 1.4 \times 10^{-8}$ are also shown. The dashed lines indicate normal (reference) isotopic ratio in each case. Error bars are 1σ .
- Fig. 5.4. δ^{48} Ca vs. δ^{50} Ti plot for Murchison hibonites [Sahijpal et al., 2000 and present study; fig. (a)] and for meteoritic hibonites [literature data; fig. (b)].
- Fig. 5.5. A schematic showing a plausible formation sequence of platelet hibonites and hibonite bearing spherules in CM meteorites.

List of Tables:

Chapter 1

- Table 1.1. Condensation temperature of refractory minerals at 10⁻³ atm in the solar nebula (Yoneda and Grossman, 1995).
- Table 1.2. Chemical composition of terrestrial hibonites (Maaskant et al., 1980).
- Table 1.3. Classification of hibonite based on morphology and TiO₂ content (Ireland et al., 1991).

Chapter 2

- Table 2.1. Titanium isotopes and interfering species.
- Table 2.2. Calcium isotopes and interfering species.

Chapter 3

- Table 3.1. Parameters for WDX measurements.
- Table 3.2.
 Composition in hibonites from Murchison and Murray meteorites.
- Table 3.3. Number of cations in hibonites per 19 oxygen.
- Table 3.4. Analyses performed on hibonites from the CM meteorites, Murchison and Murray.

Chapter 4

- Table 4.1. Al-Mg data for hibonites in CM meteorites, Murchison and Murray.
- Table 4.2. Ca-K data for Murchison and Murray hibonites.
- Table 4.3. Titanium isotopic composition in CM hibonites.
- Table 4.4. Calcium isotopic composition in Murchison hibonites.
- Table 4.5. O-isotopic data for Murchison and Murray hibonites.
- Table 4.6. REE and RTE concentration (ppm wt) in hibonites from CM meteorites.
- Table 4.7. REE patterns in CM hibonites.

Chapter 5

Table 5.1. Comparison of isotopic and trace elemental compositions in platelets and spherules.